logo

More info
  • ReceivedOct 25, 2018
  • AcceptedNov 26, 2018
  • PublishedJan 9, 2019

Abstract

This paper reviews the worldwide development course and current status of heliospheric boundary exploration. On the basis of the development trends revealed recently, we illustrate the four categories of scientific objectives of the solar system boundary exploration and propose some formulations for the overall objectives, phased goals, and short-term missions of China's explorations of the solar system boundary in the future. Additionally, we summarize six types of key techniques that may help make breakthroughs in the field. This study provides preliminary results for further demonstration and implementation of such a mission.


Funded by

中国工程院咨询研究项目(2018-XY-64)


References

[1] Encrenaz T, Bibring J P, Blanc M, et al. The Solar System. 3rd ed. Berlin: Springer, 2004. Google Scholar

[2] Wang C, Belcher J W. Numerical investigation of hydrodynamic instabilities of the heliopause. J Geophys Res, 1998, 103: 247-256 CrossRef ADS Google Scholar

[3] Zank G P, Heerikhuisen J, Wood B E. Heliospheric Structure: The Bow Wave and the Hydrogen Wall. Astrophys J, 2013, 763: 20 CrossRef ADS Google Scholar

[4] Izmodenov V V, Kallenbach R. The Physics of the Heliospheric Boundaries. ISSI Scientific Report SR-005. 2015. Google Scholar

[5] Hall C F. Pioneer 10. Science, 1974, 183: 301-302 CrossRef PubMed ADS Google Scholar

[6] Smith E J, Davis L, Jones D E. Jupiter's magnetic field, magnetosphere, and interaction with the solar wind - Pioneer 11. Science, 1975, 188: 451-455 CrossRef PubMed ADS Google Scholar

[7] Dyal P, Fimmel R O. Exploring beyond the planets — the Pioneer 10 and 11 missions. J Brit Interpla Soc, 1984, 37. Google Scholar

[8] Decker R B, Krimigis S M, Roelof E C. Voyager 1 in the Foreshock, Termination Shock, and Heliosheath. Science, 2005, 309: 2020-2024 CrossRef PubMed ADS Google Scholar

[9] Stone E C, Cummings A C, Mcdonald F B. Voyager 1 Explores the Termination Shock Region and the Heliosheath Beyond. Science, 2005, 309: 2017-2020 CrossRef PubMed ADS Google Scholar

[10] Burlaga L F, Ness N F, Acu?a M H. Observations of the Heliosheath and Solar Wind Near the Termination Shock by Voyager 2. Astrophys J, 2009, 692: 1125-1130 CrossRef ADS Google Scholar

[11] Wu W R, Yu D Y. Development of deep space exploration and its future key technologies. J Deep Space Explor, 2014, 1: 5--17. Google Scholar

[12] Wu W R, Wang Q, Ren B G, et al. Application of RHU/RTG in space missions. Spacecraft Eng, 2013, 22: 1--6. Google Scholar

[13] Smith B A, Soderblom L A, Beebe R. The Galilean satellites and Jupiter - Voyager 2 imaging science results. Science, 1979, 206: 927-950 CrossRef PubMed ADS Google Scholar

[14] Smith B A, Soderblom L, Batson R. A new look at the Saturn system - The Voyager 2 images. Science, 1982, 215: 504-537 CrossRef PubMed ADS Google Scholar

[15] Smith B A, Soderblom L A, Beebe R. Voyager 2 in the Uranian system - Imaging science results. Science, 1986, 233: 43-64 CrossRef PubMed ADS Google Scholar

[16] Smith B A, Soderblom L A, Banfield D. Voyager 2 at Neptune: Imaging Science Results. Science, 1989, 246: 1422-1449 CrossRef PubMed ADS Google Scholar

[17] Fountain G H, Kusnierkiewicz D Y, Hersman C B. The New Horizons Spacecraft. Space Sci Rev, 2008, 140: 23-47 CrossRef ADS arXiv Google Scholar

[18] Stern S A, Bagenal F, Ennico K. The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350: aad1815-aad1815 CrossRef PubMed ADS arXiv Google Scholar

[19] Moore J M, McKinnon W B, Spencer J R. The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351: 1284-1293 CrossRef PubMed ADS arXiv Google Scholar

[20] Sicardy B, Talbot J, Meza E. Pluto's Atmosphere from the 2015 June 29 Ground-based Stellar Occultation at the Time of the New Horizons Flyby. Astrophys J, 2016, 819: L38 CrossRef ADS arXiv Google Scholar

[21] Frisch P C, McComas D J. The Interstellar Boundary Explorer (IBEX):. Tracing the Interaction Between the Heliosphere and Surrounding Interstellar Material with Energetic Neutral Atoms. Space Sci Rev, 2013, 176: 101-113 CrossRef ADS arXiv Google Scholar

[22] McComas D J, Allegrini F, Bochsler P. Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX). Science, 2009, 326: 959-962 CrossRef PubMed ADS Google Scholar

[23] McComas D J, Zirnstein E J, Bzowski M. Seven Years of Imaging the Global Heliosphere with IBEX. Astrophys J Suppl Ser, 2017, 229: 41 CrossRef ADS arXiv Google Scholar

[24] National Aeronautics and Space Administration. Our Dynamic Space Environment: Heliophysics Science and Technology Roadmap for 2014-2033. 2014. https://explorers.larc.nasa.gov/HPSMEX/MO/pdf_files/2014_HelioRoadmap_Final_Reduced_0.pdf. Google Scholar

[25] Wang C, Richardson J D. Determination of the solar wind slowdown near solar maximum. J Geophys Res, 2003, 108: 1058 CrossRef ADS Google Scholar

[26] Mewaldt R A, Liewer P C. An interstellar probe mission to the boundaries of the heliosphere and nearby interstellar space. In: Proceedings of AIAA Space 2000 Conference and Exposition, Long Beach, 2000. Google Scholar

[27] Liewer P C, Mewaldt R A, Ayon J A, et al. NASA's interstellar probe mission. In: Proceedings of Space Technology and Applications International Forum (STAIF)-2000, Albuquerque, 2000. Google Scholar

[28] Jr McNutt R L, Andrews G B, McAdams J, et al. A realistic interstellar explorer. In: Proceedings of AIP Conference, 2000. 504: 917. Google Scholar

[29] Jr McNutt R L, Gold R E, Krimigis T, et al. Innovative interstellar explorer. In: Proceedings of the IGPP 5th Annual International Astrophysics Conference, Oahu, 2006. Google Scholar

[30] Gruntman M, McNutt R L, Jr Gold R E, et al. Innovative interstellar explorer. In: Proceedings of the 55th International Astronautical Congress, Vancouver, 2004. Google Scholar

[31] Wimmer-Schweingruber R F, McNutt R, Schwadron N A. Interstellar heliospheric probe/heliospheric boundary explorer mission-a mission to the outermost boundaries of the solar system. Exp Astron, 2009, 24: 9-46 CrossRef ADS Google Scholar

[32] Wang C, Richardson J D, Burlaga L. Propagation of the Bastille Day 2000 CME Shock in the Outer Heliosphere. Sol Phys, 2001, 204: 413-423 CrossRef ADS Google Scholar

[33] Desiati P, Lazarian A. Anisotropy of TeV Cosmic Rays and Outer Heliospheric Boundaries. Astrophys J, 2013, 762: 44 CrossRef ADS arXiv Google Scholar

[34] Caballero-Lopez R A, Moraal H, McDonald F B. The Modulation of Galactic Cosmic-ray Electrons in the Heliosheath. Astrophys J, 2010, 725: 121-127 CrossRef ADS Google Scholar

[35] Florinski V, Ferreira S E S, Pogorelov N V. Galactic Cosmic Rays in the Outer Heliosphere: Theory and Models. Space Sci Rev, 2013, 176: 147-163 CrossRef ADS Google Scholar

[36] Richardson J D, Kasper J C, Wang C. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 2008, 454: 63-66 CrossRef PubMed ADS Google Scholar

[37] Li H, Wang C, Richardson J D. Properties of the termination shock observed by Voyager 2. Geophys Res Lett, 2008, 35: L19107 CrossRef ADS Google Scholar

[38] Cummings A C, Stone E C, McDonald F B, et al. Anomalous cosmic rays in the heliosheath. In: Proceeding of AIP Conference, 2008. 1039: 343--348. Google Scholar

[39] Hanner M S, Weinberg J L, DeShields Ii L M. Zodiacal light and the asteroid belt: The view from Pioneer 10. J Geophys Res, 1974, 79: 3671-3675 CrossRef ADS Google Scholar

[40] Hauser M G, Dwek E. The cosmic infrared background: measurements and implications. 2001,. arXiv Google Scholar

[41] Primack J R, Gilmore R C, Somerville R S. Diffuse extragalactic background radiation. 2008,. arXiv Google Scholar

[42] Mobius E, Bochsler P, Bzowski M. Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer. Science, 2009, 326: 969-971 CrossRef PubMed ADS Google Scholar

[43] Bochsler P, Petersen L, M?bius E. Estimation of the Neon/Oxygen Abundance Ratio at the Heliospheric Termination Shock and in the Local Interstellar Medium from IBEX Observations. Astrophys J Suppl Ser, 2012, 198: 13 CrossRef ADS Google Scholar

[44] Burlaga L F, Ness N F. Observations of the Interstellar Magnetic Field in the Outer Heliosheath: Voyager 1. Astrophys J, 2016, 829: 134 CrossRef ADS Google Scholar

[45] Frisch P C, Bzowski M, Livadiotis G. Decades-Long Changes of the Interstellar Wind Through Our Solar System. Science, 2013, 341: 1080-1082 CrossRef PubMed ADS Google Scholar

[46] McComas D J, Dayeh M A, Funsten H O. The Heliotail Revealed by the Interstellar Boundary Explorer. Astrophys J, 2013, 771: 77 CrossRef ADS Google Scholar

[47] Dialynas K, Krimigis S M, Mitchell D G. The bubble-like shape of the heliosphere observed by Voyager and Cassini. Nat astron, 2017, 1: 0115 CrossRef ADS Google Scholar

[48] McComas D J, Alexashov D, Bzowski M. The heliosphere's interstellar interaction: no bow shock.. Science, 2012, 336: 1291-1293 CrossRef PubMed ADS Google Scholar

[49] Izmodenov V V, Alexashov D B. A Model for the Tail Region of the Heliospheric Interface. Astron Lett, 2003, 29: 58-63 CrossRef ADS Google Scholar

[50] Linsky J L, Wood B E. The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause. Astrophys J, 1996, 463: 254-270 CrossRef ADS Google Scholar

[51] Gayley K G, Zank G P, Pauls H L. One? versus Two?§hock Heliosphere: Constraining Models with Goddard High Resolution Spectrograph Lyα Spectra toward α Centauri. Astrophys J, 1997, 487: 259-270 CrossRef ADS Google Scholar

[52] Desai M I, Allegrini F A, Bzowski M. Energetic Neutral Atoms Measured by the Interstellar Boundary Explorer (IBEX): Evidence for Multiple Heliosheath Populations. Astrophys J, 2014, 780: 98 CrossRef ADS Google Scholar

[53] Cui P Y, Qiao D, Cui G T. Orbit Design and Optimization for Deep Space Exploration. Beijing: Science Press, 2013. Google Scholar

[54] Ji J H, Jiang Y, Wang S. New Horizons spacecraft successful flew by Pluto and its moons. Chin Sci Bull (Chin Ver), 2015, 60: 2349-2354 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1