logo

SCIENTIA SINICA Informationis, Volume 49, Issue 6: 649-662(2019) https://doi.org/10.1360/N112018-00345

Advances in narrow linewidth diode lasers

More info
  • ReceivedDec 31, 2018
  • AcceptedFeb 18, 2019
  • PublishedJun 6, 2019

Abstract

The era of smart travel has arrived, and the need for high precision lidar detection technology is increasing. With the advantages of high resolution, a strong anti-active jamming ability, small volume, light weight, and low cost, new solid-state lidars can meet the requirements of intelligent cars in the future. A narrow linewidth diode laser is an ideal light source of solid-state lidars. The progress and development of narrow linewidth diode laser techniques can greatly improve the application of solid-state lidars. In this paper, the technology and development is described in detail. In addition, the design ideas, key fabrication technologies, and optical characteristics of various narrow linewidth diode lasers are analyzed and discussed. Finally, the developments of narrow linewidth diode lasers are proposed.


Funded by

国家重点研发计划项目(2017YFB0405100,2016YFE0126800)

中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC006)

国家自然科学基金重点项目(61727822,61674148,11604328,51672264)

吉林省科技厅项目(20160520017JH,20170623024TC)


References

[1] Bjelica M, Witzigmann B. Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth. Opt Quant Electron, 2016, 48: 110 CrossRef Google Scholar

[2] Virtanen H, Uusitalo T, Karjalainen M. Narrow-Linewidth 780-nm DFB Lasers Fabricated Using Nanoimprint Lithography. IEEE Photon Technol Lett, 2018, 30: 51-54 CrossRef ADS Google Scholar

[3] Lewoczko-Adamczyk W, Pyrlik C, H¨ager J. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt Express, 2015, 23: 9705-9709 CrossRef PubMed ADS Google Scholar

[4] Liu J G, Wang S L, Chen W. Narrow linewidth distributed-feedback laser with low relative intensity noise. In: Proceedings of the 14th International Conference on Optical Communications and Networks, Nanjing, 2015. 1--3. Google Scholar

[5] Zhao Y, Li Y, Wang Q. 100-Hz Linewidth Diode Laser With External Optical Feedback. IEEE Photon Technol Lett, 2012, 24: 1795-1798 CrossRef ADS Google Scholar

[6] Jia P, Qin L, Chen Y. Broad-stripe single longitudinal mode laser based on metal slots. Optics Commun, 2016, 365: 215-219 CrossRef ADS Google Scholar

[7] Chen Y, Jia P, Zhang J. Gain-coupled distributed feedback laser based on periodic surface anode canals. Appl Opt, 2015, 54: 8863-8866 CrossRef PubMed ADS Google Scholar

[8] Klehr A, Schwertfeger S, Wenzel H, et al. Dynamics of high power gain switched DFB RW laser under high current pulse excitation on a nanosecond time scale. In: Proceedings of International Society for Optics and Photonics (SPIE OPTO), San Francisco, 2013. 86401N-1-86401N-9. Google Scholar

[9] Hai Y N, Zou Y G, Tian K. Research progress of horizontal cavity surface emitting semiconductor lasers. Chin Opt, 2017, 10: 194-206 CrossRef Google Scholar

[10] Kogelnik H, Shank C V. Erratum: Stimulated Emission in a Periodic Structure. Appl Phys Lett, 1971, 18: 408 CrossRef ADS Google Scholar

[11] Nakamura M, Yariv A, Yen H W. Optically pumped GaAs surface laser with corrugation feedback. Appl Phys Lett, 1973, 22: 515-516 CrossRef ADS Google Scholar

[12] Klehr A, Bugge F, Erbert G, et al. High-power broad-area 808nm DFB lasers for pumping solid state laser. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers V, San Jose, 2006. 61330F-1-61330F-10. Google Scholar

[13] Nguyen T P, Schiemangk M, Spie?berger S. Optimization of 780 nm DFB diode lasers for high-power narrow linewidth emission. Appl Phys B, 2012, 108: 767-771 CrossRef ADS Google Scholar

[14] Brox O, Bugge F, Mogilatenko A, et al. Small linewidths 76x nm DFB-laser diodes with optimised two-step epitaxial gratings. In: Proceedings of SPIE - The International Society for Optical Engineering, Brussels, 2014. 9134. Google Scholar

[15] Cayron C, Tran M, Robert Y, et al. Very narrow linewidth of high power DFB laser diode for Cs pumping. In: Proceedings of 2011 Conference on Lasers and Electro-optics Europe, Munich, 2011. 1--2. Google Scholar

[16] Cayron C, Tran M, Robert Y, et al. High power distributed feedback and Fabry-Perot Al-free laser diodes at 780 nm for rubidium pumping. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers X, San Francisco, 2011. 79530A-1-79530A-9. Google Scholar

[17] Matthey R, Gruet F, Affolderbach C, et al. Development and spectral characterisation of ridge DFB laser diodes for Cs optical pumping at 894 nm. In: Proceedings of 2016 European Frequency and Time Forum (EFTF), Univ York, 2016. 1--4. Google Scholar

[18] Spiebberger S, Schiemangk M, Wicht A. Narrow Linewidth DFB Lasers Emitting Near a Wavelength of 1064 nm. J Lightwave Technol, 2010, 28: 2611-2616 CrossRef ADS Google Scholar

[19] Faugeron M, Tran M, Parillaud O. High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth. IEEE Photon Technol Lett, 2013, 25: 7-10 CrossRef ADS Google Scholar

[20] Hou C C, Chen H M, Zhang J C. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 2017, 7: 17170 CrossRef PubMed ADS Google Scholar

[21] Dumitrescu M, Telkkala J, Karinen J, et al. Narrow-linewidth distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings fabricated using nanoimprint lithography. In: Proceedings of Conference on Novel In-plane Semiconductor Lasers X, San Francisco, 2011. 79530B-1-79530B-13. Google Scholar

[22] Hou L P, Haji M, Akbar J. Narrow linewidth laterally coupled 1.55 $\mu$m AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier.. Opt Lett, 2012, 37: 4525-4527 CrossRef PubMed ADS Google Scholar

[23] Dridi K, Benhsaien A, Akrout A, et al. Narrow-linewidth three-electrode regrowth-free semiconductor DFB lasers with uniform surface grating. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 864009-1-864009-7. Google Scholar

[24] Dridi K, Benhsaien A, Zhang J. Narrow Linewidth 1550 nm Corrugated Ridge Waveguide DFB Lasers. IEEE Photon Technol Lett, 2014, 26: 1192-1195 CrossRef ADS Google Scholar

[25] Dridi K, Benhsaien A, Zhang J. Narrow linewidth two-electrode 1560 nm laterally coupled distributed feedback lasers with third-order surface etched gratings. Opt Express, 2014, 22: 19087-19097 CrossRef PubMed ADS Google Scholar

[26] Duan J, Huang H, Lu Z G. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl Phys Lett, 2018, 112: 121102 CrossRef ADS Google Scholar

[27] Shi J X, Qin L, Liu Y. Emission characteristics of surface second-order metal grating distributed feedback semiconductor lasers. Chin Sci Bull, 2012, 57: 2083-2086 CrossRef ADS Google Scholar

[28] Yu H Y, Pan J Q, Shao Y B. 1.82-μm distributed feedback lasers with InGaAs/InGaAsP multiple-quantum wells for a H2O sensing system. Chin Opt Lett, 2013, 11: 031404-31407 CrossRef ADS Google Scholar

[29] Zhai T, Tan S Y, Lu D. High Power 1060 nm Distributed Feedback Semiconductor Laser. Chin Phys Lett, 2014, 31: 024203 CrossRef ADS Google Scholar

[30] Guo F, Zhang R, Lu D. 1.3-μm multi-wavelength DFB laser array fabricated by mocvd selective area growth. Optics Commun, 2014, 331: 165-168 CrossRef ADS Google Scholar

[31] Spießberger S, Schiemangk M, Wicht A. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz. Appl Phys B, 2011, 104: 813-818 CrossRef ADS Google Scholar

[32] Coleman J J, Dias N L, Reddy U, et al. Narrow spectral linewidth surface grating DBR diode lasers. In: Proceedings of the 23rd IEEE International Semiconductor Laser Conference (ISLC), San Diego, 2012. 173--174. Google Scholar

[33] Decker J, Crump P, Fricke J. Narrow Stripe Broad Area Lasers With High Order Distributed Feedback Surface Gratings. IEEE Photon Technol Lett, 2014, 26: 829-832 CrossRef ADS Google Scholar

[34] Feise D, Blume G, Pohl J, et al. Sub-MHz linewidth of 633 nm diode lasers with internal surface DBR gratings. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 86400A-1-86400A-9. Google Scholar

[35] Paschke K, Pohl J, Feise D, et al. Properties of 62x nm red-emitting single-mode diode lasers. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XIII, San Francisco, 2014. 90020A-1-90020A-8. Google Scholar

[36] Virtanen H, Aho A T, Viheriala J. Spectral Characteristics of Narrow-Linewidth High-Power 1180 nm DBR Laser With Surface Gratings. IEEE Photon Technol Lett, 2017, 29: 114-117 CrossRef ADS Google Scholar

[37] Lee T P, Burrus C A, Wilt D P. Measured spectral linewidth of variable-gap cleaved-coupled-cavity lasers. Electron Lett, 1985, 21: 53-54 CrossRef Google Scholar

[38] Gruet F, Bandi T, Mileti G, et al. Development and spectral characterisation of Discrete Mode Laser Diodes (DMLDs) emitting at 780 nm for Rubidium atomic clocks. In: Proceedings of 2011 Conference on Lasers and Electro-optics Europe, Munich, 2011. 1--2. Google Scholar

[39] O'Carroll J, Phelan R, Kelly B, et al. Wide temperature range 0$^{\circ}$C $< T<85^{\circ}$C narrow linewidth discrete mode laser diodes for coherent communications applications. Opt Express, 2011, 19: 90--95. Google Scholar

[40] Phelan R, Gleeson M R, Byrne D C. InGaP/AlGaInP Quantum Well Discrete Mode Laser Diode Emitting at 689 nm. IEEE Photon Technol Lett, 2018, 30: 235-237 CrossRef ADS Google Scholar

[41] Abdullaev A, Lu Q, Guo W H. Linewidth Characterization of Integrable Slotted Single-Mode Lasers. IEEE Photon Technol Lett, 2014, 26: 2225-2228 CrossRef ADS Google Scholar

[42] Yang H, Yang M, Zhao Y. Butterfly Packaged Ultra-Narrow Linewidth Single Frequency Teardrop Laser Diode. IEEE Photon Technol Lett, 2017, 29: 1537-1539 CrossRef ADS Google Scholar

[43] Lu Q, Guo W, Nawrocka M. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19: B140 CrossRef PubMed ADS Google Scholar

[44] Zou L, Wang L, Yu T T, et al. Wavelength tunable laser based on distributed reflectors with deep submicron slots. In: Proceedings of Conference on Photonics North, Montreal, 2012. 84120O1-84120O5. Google Scholar

[45] Wang Y, Yang Y, Zhang S. Narrow Linewidth Single-Mode Slotted Fabry-Pérot Laser Using Deep Etched Trenches. IEEE Photon Technol Lett, 2012, 24: 1233-1235 CrossRef ADS Google Scholar

[46] Yu T, Zou L, Wang L. Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography. Opt Express, 2012, 20: 16291-16299 CrossRef ADS Google Scholar

[47] Mroziewicz B. External cavity wavelength tunable semiconductor lasers — a review. Opto-Electron Rev, 2008, 16: 347-366 CrossRef ADS Google Scholar

[48] Britzger M, Khalaidovski A, Hemb B. External-cavity diode laser in second-order Littrow configuration. Opt Lett, 2012, 37: 3117-3119 CrossRef PubMed ADS Google Scholar

[49] Shin D K, Henson B M, Khakimov R I. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0 - 1.1 μm.. Opt Express, 2016, 24: 27403-27414 CrossRef PubMed ADS arXiv Google Scholar

[50] Bayrakli I. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser. Appl Opt, 2016, 55: 2463-2466 CrossRef PubMed ADS Google Scholar

[51] Bayrakli I. Investigation of double-mode operation and fast fine tuning properties of a grating-coupled external cavity diode laser configuration. Optics Laser Tech, 2017, 87: 7-10 CrossRef ADS Google Scholar

[52] Wei F, Sun Y, Chen D. Tunable External Cavity Diode Laser with a PLZT Electro-Optic Ceramic Deflector. IEEE Photon Technol Lett, 2011, 23: 296-298 CrossRef Google Scholar

[53] Chen W L, Yuan J, Qi X H, et al. Design of 780 nm external cavity semiconductor laser and higher harmonic frequency stabilization. Chinese Journal of Lasers, 2007, 34: 895-900. Google Scholar

[54] Ding D, Lv X Q, Chen X Y. Tunable high-power blue external cavity semiconductor laser. Optics Laser Tech, 2017, 94: 1-5 CrossRef ADS Google Scholar

[55] Li B, Gao J, Yu A. 500 mW tunable external cavity diode laser with narrow line-width emission in blue-violet region. Optics Laser Tech, 2017, 96: 176-179 CrossRef ADS Google Scholar

[56] Chen D J, Fang Z J, Cai H W. Polarization Characteristics of an External Cavity Diode Laser With Littman-Metcalf Configuration. IEEE Photon Technol Lett, 2009, 21: 984-986 CrossRef ADS Google Scholar

[57] Hieta T, Vainio M, Moser C. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Optics Commun, 2009, 282: 3119-3123 CrossRef ADS Google Scholar

[58] Luvsandamdin E, Spießberger S, Schiemangk M. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl Phys B, 2013, 111: 255-260 CrossRef ADS Google Scholar

[59] Christopher H, Arar B, Bawamia A, et al. Narrow linewidth micro-integrated high power diode laser module for deployment in space. In: Proceedings of IEEE International Conference on Space Optical Systems and Applications, Kinawa, 2017. 150--153. Google Scholar

[60] Numata K, Camp J, Krainak M A. Performance of planar-waveguide external cavity laser for precision measurements. Opt Express, 2010, 18: 22781-22788 CrossRef PubMed ADS Google Scholar

[61] Zhao Y, Peng Y, Yang T. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback. Opt Lett, 2011, 36: 34-36 CrossRef PubMed ADS Google Scholar

[62] Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated externalcavitysemiconductor lasers. IEEE J Sel Topics Quantum Electron, 2015, 21: 1--9. Google Scholar

[63] Stern B, Ji X, Dutt A. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett, 2017, 42: 4541-4544 CrossRef PubMed ADS Google Scholar

[64] Cendejas R A, Phillips M C, Myers T L. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector. Opt Express, 2010, 18: 26037-26045 CrossRef PubMed ADS Google Scholar

[65] Aoyama K, Yoshioka R, Yokota N. Optical Negative Feedback for Linewidth Reduction of Semiconductor Lasers. IEEE Photon Technol Lett, 2015, 27: 340-343 CrossRef ADS Google Scholar

[66] Aoyama K, Yokota N, Yasaka H. 3-kHz Spectral Linewidth Laser Assembly With Coherent Optical Negative Feedback. IEEE Photon Technol Lett, 2018, 30: 277-280 CrossRef ADS Google Scholar

[67] Wei F, Yang F, Zhang X. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Opt Express, 2016, 24: 17406-17415 CrossRef PubMed ADS Google Scholar

[68] Zhang L, Wei F, Sun G. Thermal Tunable Narrow Linewidth External Cavity Laser With Thermal Enhanced FBG. IEEE Photon Technol Lett, 2017, 29: 385-388 CrossRef ADS Google Scholar

[69] Yu L, Lu D, Pan B. Widely Tunable Narrow-Linewidth Lasers Using Self-Injection DBR Lasers. IEEE Photon Technol Lett, 2015, 27: 50-53 CrossRef ADS Google Scholar

[70] Li Z S, Lu D, He Y M, et al. Improving the performance of narrow linewidth semiconductor laser through self-injection locking. In: Proceedings of the 30th Annual Conference of the IEEE-Photonics-Society (IPC), Orlando, 2017. 655--656. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1