SCIENTIA SINICA Informationis, Volume 49, Issue 8: 949-962(2019) https://doi.org/10.1360/N112019-00045

Concepts and trends of information communication networks

More info
  • ReceivedFeb 26, 2019
  • AcceptedApr 19, 2019
  • PublishedAug 2, 2019


This paper discusses the history, fundamental theory and current concepts, and latest trends of information communication networks. The important challenges faced by such networks are analyzed and the performance gains of collaborative multi-dimensional resource management and control are explored. The coupling relationships among data, network, and intelligence, as well as the key technologies that pave the way to future information communication networks with full spectrum, space, and intelligence are also discussed.

Funded by



[1] Shen Z, Papasakellariou A, Montojo J. Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Commun Mag, 2012, 50: 122-130 CrossRef Google Scholar

[2] Olwal T O, Djouani K, Kurien A M. A Survey of Resource Management Toward 5G Radio Access Networks. IEEE Commun Surv Tutorials, 2016, 18: 1656-1686 CrossRef Google Scholar

[3] Ayyash M, Elgala H, Khreishah A. Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges. IEEE Commun Mag, 2016, 54: 64-71 CrossRef Google Scholar

[4] Soomro A, Cavalcanti D. Opportunities and challenges in using WPAN and WLAN technologies in medical environments [Accepted from Open Call]. IEEE Commun Mag, 2007, 45: 114-122 CrossRef Google Scholar

[5] Elsaadany M, Ali A, Hamouda W. Cellular LTE-A Technologies for the Future Internet-of-Things: Physical Layer Features and Challenges. IEEE Commun Surv Tutorials, 2017, 19: 2544-2572 CrossRef Google Scholar

[6] Shannon C E, Weaver W. The Mathematical Theory of Communication. Urbana-Champaign: the University of Illinois Press, 1949. Google Scholar

[7] Barabasi A L, Albert R. Emergence of Scaling in Random Networks. Science, 1999, 286: 509-512 CrossRef ADS Google Scholar

[8] Zhou S, Mondragon R J. The Rich-Club Phenomenon in the Internet Topology. IEEE Commun Lett, 2004, 8: 180-182 CrossRef Google Scholar

[9] Mohammadi S M, Daldorff L K S, Bergman J E S. Orbital Angular Momentum in Radio-A System Study. IEEE Trans Antennas Propagat, 2010, 58: 565-572 CrossRef ADS Google Scholar

[10] Mohammadi S M, Daldorff L K S, Forozesh K. Orbital angular momentum in radio: Measurement methods. Radio Sci, 2010, 45: RS4007 CrossRef ADS Google Scholar

[11] Mahmouli F E, Walker S D. 4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel. IEEE Wireless Commun Lett, 2013, 2: 223-226 CrossRef Google Scholar

[12] Mair A, Vaziri A, Weihs G. Entanglement of the orbital angular momentum states of photons.. Nature, 2001, 412: 313-316 CrossRef PubMed Google Scholar

[13] Leach J, Padgett M J, Barnett S M. Measuring the Orbital Angular Momentum of a Single Photon. Phys Rev Lett, 2002, 88: 257901 CrossRef PubMed ADS Google Scholar

[14] Tamburini F, Mari E, Thidé B. Experimental verification of photon angular momentum and vorticity with radio techniques. Appl Phys Lett, 2011, 99: 204102 CrossRef ADS Google Scholar

[15] Lu X H, Huang H Q, Zhao C L, et al. Optical vortex beams and optical vortices. Laser Optoelectron Prog, 2008, 45: 50--56. Google Scholar

[16] Allen L, Padgett M, Babiker M. The orbital angular momentum of light. Prog Opt, 1999, 39: 291--372. Google Scholar

[17] Allen L, Barnett S M, Padgett M J. Optical Angular Momentum. London: Institute of Physics Publishing, 2003. Google Scholar

[18] Shore K A. Twisted Photons: Application of Light with Orbital Angular Momentum. Contemporary Phys, 2011, 52: 495 CrossRef Google Scholar

[19] Molina-Terriza G, Torres J P, Torner L. Twisted photons. Nat Phys, 2007, 3: 305-310 CrossRef ADS Google Scholar

[20] Wang J, Yang J-Y, Fazal I M, et al. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes. In: Proceedings of IEEE Photonic Society 24th Annual Meeting, 2011. 587--588. Google Scholar

[21] Thidé B, Then H, Sj?holm J. Utilization of Photon Orbital Angular Momentum in the Low-Frequency Radio Domain. Phys Rev Lett, 2007, 99: 087701 CrossRef PubMed ADS arXiv Google Scholar

[22] Allen L, Beijersbergen M W, Spreeuw R J C. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 1992, 45: 8185-8189 CrossRef ADS Google Scholar

[23] Tamburini F, Mari E, Sponselli A, et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys, 2012, 14: 03300. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号