logo

Chinese Science Bulletin, Volume 60, Issue 33: 3230-3238(2015) https://doi.org/10.1360/N972015-00950

Particle size effect and structure-function relationship of Ni-based steam reforming catalysts

More info
  • ReceivedAug 19, 2015
  • AcceptedNov 5, 2015

Abstract

This paper describes the structure-function relationship between the particle size and the activity and stability of Ni based steam reforming catalysts. Based on a modified Stöber method, the particle size of Ni@SiO2 core-shell catalysts can be finely controlled. By exploring Ni@SiO2 core-shell catalysts with different Ni particle sizes, it is found that the turnover frequency (TOF) of ethanol increase with increasing Ni particle size, reaching a maximum after Ni particles are larger than 30 nm. The particle size of Ni also affects the stability of the catalyst. With larger Ni particle size, a more pronounced coking is observed, jeopardizing the stability of the catalyst. Our study shows that an appropriate Ni particle size is critical to the activity and stability of steam reforming catalysts.


Funded by

国家自然科学基金(21222604)

教育部高等学校博士学科点专项科研基金(博导类(20120032110024)

国家自然科学基金(21376169)


Supplement

补充材料

图S1 Ni@SiO2催化剂N2吸附等温线

图S2 Ni@SiO2催化剂孔分布曲线图

图S3 NiO@SiO2催化剂的TEM图

图S4 反应后Ni@SiO2催化剂的TEM图

图S5 Ni@SiO2催化剂TG, DTG曲线分析图

图S6 反应后Ni@SiO2催化剂拉曼光谱图

表S1 反应后Ni@SiO2催化剂物化性质

表S2 拉曼光谱分析表

本文以上补充材料见网络版csb.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Momirlan M, Veziroglu T N. Current status of hydrogen energy. Renewable Sustainable Energy Rev, 2002, 6: 141-179 CrossRef Google Scholar

[2] Davidson S D, Zhang H, Sun J, et al. Supported metal catalysts for alcohol/sugar alcohol steam reforming. Dalton Trans, 2014, 43: 11782 CrossRef PubMed Google Scholar

[3] Zanchet D, Santos J B O, Damyanova S, et al. Toward Understanding Metal-Catalyzed Ethanol Reforming. ACS Catal, 2015, 5: 3841-3863 CrossRef Google Scholar

[4] Li S, Gong J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem Soc Rev, 2014, 43: 7245-7256 CrossRef PubMed Google Scholar

[5] Lopez N. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catalysis, 2004, 223: 232-235 CrossRef Google Scholar

[6] Bezemer G L, Bitter J H, Kuipers H P C E, et al. Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. J Am Chem Soc, 2006, 128: 3956-3964 CrossRef PubMed Google Scholar

[7] da Silva A L M, den Breejen J P, Mattos L V, et al. Cobalt particle size effects on catalytic performance for ethanol steam reforming – Smaller is better. J Catalysis, 2014, 318: 67-74 CrossRef Google Scholar

[8] Kim J H, Suh D J, Park T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl Catalysis A-General, 2000, 197: 191-200 CrossRef Google Scholar

[9] Frusteri F, Freni S, Chiodo V, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl Catalysis A-General, 2004, 270: 1-7 CrossRef Google Scholar

[10] Baudouin D, Rodemerck U, Krumeich F, et al. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. J Catalysis, 2013, 297: 27-34 CrossRef Google Scholar

[11] Fajardo H V, Probst L F D. Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts. Appl Catalysis A-General, 2006, 306: 134-141 CrossRef Google Scholar

[12] Bengaard H S, Nørskov J K, Sehested J, et al. Steam Reforming and Graphite Formation on Ni Catalysts. J Catalysis, 2002, 209: 365-384 CrossRef Google Scholar

  • 图1

    (网络版彩色)(a) NiO@SiO2的TPR谱图; (b) Ni@SiO2催化剂的XRD谱图

  • 图2

    Ni@SiO2催化剂的TEM图. (a) Ni@SiO2-300; (b) Ni@SiO2-400; (c) Ni@SiO2-500; (d) Ni@SiO2-550; (e) Ni@SiO2-600

  • 图 3

    (网络版彩色)Ni@SiO2乙醇蒸汽重整活性测试结果. 反应条件: 常压, 乙醇进料空速5 (g h)/mol, 乙醇在进料中含量4.2%. (a) Ni@SiO2- 300; (b) Ni@SiO2-400; (c) Ni@SiO2-500; (d) Ni@SiO2-550; (e) Ni@SiO2-600; (f) Ni@SiO2催化剂350℃下转化率和选择性对比图

  • 图 4

    (网络版彩色)Ni@SiO2催化剂稳定性测试. 反应条件: 常压, 600℃, 乙醇进料空速4.1 (g h)/mol, 乙醇在进料中含量4.1%. (a) Ni@SiO2- 300; (b) Ni@SiO2-400; (c) Ni@SiO2-500; (d) Ni@SiO2-550; (e) Ni@SiO2-600; (f) Ni@SiO2催化剂反应后的XRD谱图

  • 图 5

    (网络版彩色)Ni@SiO2乙醇蒸汽重整性能与镍尺度关系图. (a) TOF; (b) H2生成速率; (c) TOF与N2吸附量关系; (d) 积碳性质

  • 表1   Ni@SiO2催化剂物化性质

    样品

    BET表面积

    (m2/g)

    平均孔径(Å)

    孔容

    (cm3/g)

    NiO粒(nm)a)

    Ni粒径(nm)b)

    晶粒大小

    (nm)c)

    SH(m2/g)d)

    N2吸附

    (mL/kg)e)

    Ni@SiO2-300

    218

    79.1

    0.33

    6.4±2.2

    6.8±1.7

    6.5

    3.78

    132.6

    Ni@SiO2-400

    231

    95.4

    0.21

    13.0±3.6

    13.5±4.0

    20.3

    0.85

    152.7

    Ni@SiO2-500

    228

    104.1

    0.15

    24.7±8.9

    22.7±6.9

    26.8

    0.68

    169.1

    Ni@SiO2-550

    246

    94.6

    0.31

    32.6±8.1

    32.6±9.6

    29.1

    0.46

    159.5

    Ni@SiO2-600

    120

    183.1

    0.23

    38.0±8.5

    40.0±13.4

    44.0

    0.38

    157.3

    a), b) 从TEM中随机抽取50个颗粒确定. c) Ni晶粒大小根据谢乐方程由XRD中Ni (111)晶面确定. d) 活性Ni表面积由H2化学吸附确定. e) N2吸附量由N2静态吸附确定

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1