logo

Chinese Science Bulletin, Volume 61, Issue 25: 2834-2842(2016) https://doi.org/10.1360/N972016-00536

Aletai: The longest meteorite strewn field on Earth

More info
  • ReceivedApr 26, 2016
  • AcceptedJun 13, 2016
  • PublishedAug 16, 2016

Abstract

In general, the long axis of a meteorite strewn field ranges from several to tens of kilometers, such as Chelyabinsk (20 km) and Jilin (70 km). It is mainly affected by the angle and velocity of a meteoroid approaching Earth’s atmosphere, the altitude of airburst, and the physical properties of the meteoroid (shape, density and structure). An extensive long axis of a meteorite strewn field has important implications for the celestial dynamics of its parent asteroid.


Funded by

国家自然科学基金(41273079)

国家自然科学基金(41573059)

紫金山天文台小行星基金会和澳门科学技术发展基金(039/2013/A2)


Acknowledgment

UCLA的Wasson J T教授帮助完成了中子活化分析, 紫金山天文台王英副研究员、李少林、吴蕴华在实验操作中给予了大量帮助, 谈建云帮助制作了样品, 作者在此致以衷心的感谢.


References

[1] Buchwald V F. Handbook of Iron Meteorites. Berkeley and Los Angeles California: University of California Press. 1975, Google Scholar

[2] 陈 永亨, 孙 用均. 新疆铁陨石多样品的微量元素分布及其在地球化学中的意义. 地球化学, 1986, 3: 271-277 Google Scholar

[3] 陈 永亨, 王 道德. 新疆铁陨石的物质组成和微量元素特征. 地质评论, 1996, 42: 54-63 Google Scholar

[4] Xu L, Miao B, Lin Y, et al. Ulasitai: A new iron meteorite likely paired with Armanty (IIIE). Meteoritics Planet Sci, 2008, 43: 1263-1273 CrossRef ADS Google Scholar

[5] Wasson J T, Ouyang X, Wang J. Chemical classification of iron meteorites: XI. Multi-element studies of 38 new irons and the high abundance of ungrouped irons from Antarctica. Geochim Cosmochim Acta, 1989, 53: 735-744 Google Scholar

[6] Yang J, Goldstein J I. Metallographic cooling rates of the IIIAB iron meteorites. Geochim Cosmochim Acta, 2006, 70: 3197-3215 CrossRef ADS Google Scholar

[7] 毛 艳华. 陨石金相冷却速率测定及母体热历史研究. 博士学位论文. 广州: 中国科学院广州地球化学研究所. 1998, Google Scholar

[8] Scott E R D, Wasson J T. Classification and properties of iron meteorites. Rev Geophys, 1975, 13: 527-546 CrossRef ADS Google Scholar

[9] Kracher A, Willis J, Wasson J T. Chemical classification of iron meteorites-IX. A new group (IIF), revision of IAB and IIICD, and data on 57 additional irons. Geochim Cosmochim Acta, 1980, 44: 773-787 Google Scholar

[10] Scott E R D, Wasson J T. Two more chemical groups of iron meteorites, IIIE and IIIF. Meteoritics, 1973, 8: 70-71 Google Scholar

[11] Wasson J T, Ouyang X, Wang D. Compositional Study of a Suite of Samples from the 28-t Armanty (Xinjiang) Iron Meteorite. Meteoritics, 1988, 23: 365-369 CrossRef Google Scholar

  • Figure 1

    (Color online) The pictures of iron meteorite. (a) Armanty, weighing 28 t, which is the largest iron meteorite in China, found in Qinghe city of Aletai region in 1898; (b) Ulasitai, found in 2004, weighing 430 kg (photo from Xu et al.[4]); (c) Wuxilike, a new iron meteorite found in Kelan Canyon of Aletai region in 2011, weighing 5 t; (d) the specimen of Wuxilike

  • Figure 2

    A map showing the finding sites of three iron meteorites in Xinjiang. The finding sites are along a southeast to northwest direction. The ellipse region is the possible strewn field of the Aletai meteorite shower

  • Figure 3

    Mineral petrology characteristics of iron meteorites. (a) Plessite, consisting of numerous spheroids; taenite (Tae) is in bright gray; kamacite (Kam) is in gray and haxonite (Hax) is in dark gray. (b) Acicular kamacite in taenite matrix. (c) Schreibersite (Sch) distributed in kamacite of Wuxilike. (d) The dark gray lamellae of daubréelite (Dau) and the light gray lamellae of troilite (Tr) constitute polysynthetic twin in the boundary of kamacite and schreibersite in Wuxilike; some magnetite (Mag) occurs near the cracks. (e), (f) Haxonite in the Wuxilike iron meteorite, inlaying with kamacite and taenite

  • Figure 4

    Estimation of the cooling rate of Wuxilike

  • Figure 5

    The relationship of Wuxilike, Ulasitai, Armanty, and IIIAB, IIIE iron meteorites on trace elements versus Ni diagram. 1, Measured neutron activation method in UCLA; 2, from Xu et al.[4], Ni, Co analyzed by ICP-AES, other elements analyzed by ICP-MS

  • Table 1   Chemical compositions (wt%) of kamacite and taenite

    元素

    镍纹石

    铁纹石

    条带中心

    条带边缘

    合纹石中

    合纹石中

    条带

    Haxonite附近

    Fe

    84.83

    72.36

    54.28

    57.35

    60.56

    81.32

    61.15

    86.68

    94.13

    93.32

    90.56

    92.05

    92.56

    Ni

    14.52

    26.06

    45.17

    41.89

    38.32

    18.15

    38.43

    12.29

    4.76

    5.00

    6.86

    6.65

    5.36

    P

    0.00

    0.00

    0.02

    0.00

    0.00

    0.00

    0.00

    0.01

    0.00

    0.01

    0.05

    0.03

    0.00

    Co

    0.46

    0.34

    0.16

    0.16

    0.19

    0.48

    0.19

    0.53

    0.68

    0.70

    0.75

    0.69

    1.02

    Cu

    0.04

    0.00

    0.08

    0.13

    0.12

    0.03

    0.07

    0.00

    0.00

    0.01

    0.00

    0.01

    0.00

    总和

    99.85

    98.76

    99.71

    99.53

    99.19

    99.98

    99.84

    99.51

    99.57

    99.04

    98.22

    99.43

    98.94

  • Table 2   Chemical compositions (wt%) of accessory phases

    元素

    陨磷铁镍石

    陨硫铁

    陨硫铬铁矿

    Haxonite

    板状

    杆状

    Ni

    21.00

    19.89

    47.87

    44.23

    0.3

    0.09

    0.28

    0.15

    4.77

    4.86

    Fe

    63.21

    63.23

    36.32

    39.05

    59.41

    60.25

    18.23

    18.48

    87.41

    87.90

    S

    0.08

    0.000

    0.02

    0.06

    36.57

    36.21

    43.43

    43.79

    0.00

    0.01

    P

    15.18

    15.31

    14.98

    15.28

    0.00

    0.00

    0.04

    0.00

    0.00

    0.00

    Cu

    0.00

    0.00

    0.10

    0.04

    0.00

    0.00

    0.01

    0.04

    0.00

    0.00

    Co

    0.30

    0.30

    0.12

    0.10

    0.07

    0.04

    0.31

    0.03

    0.33

    0.30

    Cr

    0.00

    0.00

    0.00

    0.00

    0.69

    0.68

    34.62

    35.12

    0.01

    0.01

    总和

    99.77

    98.75

    99.41

    98.76

    97.04

    97.27

    96.92

    97.61

    92.51

    93.08

  • Table 3   Bulk compositions of Wuxilike, Armanty and Ulasitai

    样品

    Cr

    (μg/g)

    Co

    (mg/g)

    Ni

    (mg/g)

    Cu

    (μg/g)

    Ga

    (μg/g)

    As

    (μg/g)

    W

    (μg/g)

    Ir

    (μg/g)

    Pt

    (μg/g)

    Au

    (μg/g)

    乌希里克*

    45

    5.20

    98.0

    105

    17.0

    15.8

    0.26

    0.234

    2.6

    1.86

    新疆铁陨石*

    46

    5.15

    97.7

    108

    16.9

    14.4

    0.28

    0.228

    2.4

    1.81

    乌拉斯台**

    33.3

    5.4

    100.3

    85.8

    15.3

    11.7

    0.40

    0.22

    1.75

    1.76

    新疆铁陨石**

    30.8

    5.5

    106.2

    126.2

    16.5

    15.3

    0.36

    0.26

    1.96

    2.00

    *, UCLA中子活化方法测得; **, 数据来源于Xu等人[4]; Ni和Co用ICP-AES方法分析, 其他元素用ICP-MS方法测得

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号