logo

Chinese Science Bulletin, Volume 63, Issue 17: 1711-1721(2018) https://doi.org/10.1360/N972017-01144

Forage-livestock status in farms and ranches of ecological grass-animal husbandry construction and allocation model of grain-warp-feed in Hulunbuir Agricultural Reclamation Group

More info
  • ReceivedJan 16, 2018
  • AcceptedApr 23, 2018
  • PublishedMay 17, 2018

Abstract

In order to increase of husbandry production and to have a sustainable development of pastures, it is important to accelerate the construction of ecological grass-animal husbandry, to promote the grassland ecological carrying capacity and to reach the equilibrium in the grassland-livestock balance. We chose twenty-four farms and ranches in Hulunbuir Agricultural Reclamation Group as study area, satellite imagery from 500-m MODIS, 30-m Landsat, and 4-m GF-2 are used together with annual report data of farms and ranches. We mapped the spatial distribution and the status of degradation of grassland and we computed the net primary productivity (NPP) of farms and ranches in Hulunbuir Agricultural Reclamation Group, using remote sensing images as input data in a Vegetation Photosynthesis Model (VPM). We then analyzed the carrying capacity of grassland and its over-grazing degree and proposed the construction of artificial grassland mode of ecological grass-animal husbandry in farms and ranches. We found that about 66.16% of natural grassland has been subject to serious degradation in different degrees in the twenty-four farms and ranches, mainly manifested in the decline of grassland vegetation productivity and coverage. The grassland fragmentation area was about 1.55% of the total grassland area. Based on remote sensing the result that annual average grassland yield was about 34.07×104 t, ranging from 27.43×104 t in 2001 to 48.89×104 t in 2013 of farms and ranches in Hulunbuir Agricultural Reclamation Group. The actual grazing capacity was 164.19×104 sheep units while the theoretical grazing capacity was only 86.83×104 sheep units in Hulunbuir Agricultural Reclamation Group in 2015. The forage gap was 42.35×104 t and overload rate reached 89% without the consideration of the silage grass and purchased forage. The cultivated land area is 3.95×103 km2 in Hulunbuir Agricultural Reclamation Group. Converting 10% of the cultivated land area into artificial grassland could provide grass yield amounting to 5.86×103 km2 of the natural grassland, which would meet with the forage demand of livestock in Hulunbuir Agricultural Reclamation Group. The implementation of the Grain-Warp-Feed and the Grass-Crop rotation production mode, and the establishment of artificial grassland on cultivated land can improve the grassland quality, grassland-livestock balance, and reduce grassland degradation, which is critical to promoting the ability of the sustainable development of husbandry and ecological protection in pastures. As a measure of agricultural supply side reform, the strategy of transforming grain into forage aims to achieve effective allocation of resources.


Funded by

中国科学院科技服务网络计划(STS计划)

中国科学院重点部署项目(KFZD-SW-101-1)


References

[1] Fang J Y, Li L H, Jiang G M, et al. Understanding “Grass industry and animal husbandry” correctly to promote sustainable development (in Chinese). Chin Anim Husband Vert Med, 2015, 7: 7–26. Google Scholar

[2] Jia Y L. On the concepts and practices concerning grassland-livestock balance (in Chinese). Acta Agrest Sin, 2005, 13: 265–268[贾幼陵. 关于草畜平衡的几个理论和实践问题. 草地学报, 2005, 13: 265–268]. Google Scholar

[3] Ren J Z, Xu G, Li X L, et al. Trajectory and prospect of China’s prataculture (in Chinese). Chin Sci Bull, 2016, 61: 178–192 [任继周, 胥刚, 李向林, 等. 中国草业科学的发展轨迹与展望. 科学通报, 2016, 61: 178–192]. Google Scholar

[4] Li Q F. Series of studies on balance control between animal demanding and feed availability (1)—Discussions and comments on the currently practiced animal-feed balance control system (in Chinese). Pratacult Sci, 2011, 28: 1869–1972 [李青丰. 草畜平衡管理系列研究(1)——现行草畜平衡管理制度刍议. 草业科学, 2011, 28: 1869–1972]. Google Scholar

[5] Hao D Y, Liu Z L, Wang W, et al. Research on the restoring succession of the degenerated grassland in Inner Mongolia—A mathematical model for plant community succession (in Chinese). Acta Phytoecol Sin, 1997, 21: 503–511 [郝敦元, 刘钟龄, 王炜, 等. 内蒙古草原退化群落恢复演替的研究——群落演替的数学模型. 植物生态学报, 1997, 21: 503–511]. Google Scholar

[6] Xu M Y. A review of grassland carrying capacity: Perspective and dilemma for research in China on “forage-livestock balance” (in Chinese). Acta Pratacult Sin, 2014, 23: 321–329 [徐敏云. 草地载畜量研究进展: 中国草畜平衡研究困境与展望. 草业学报, 2014, 23: 321–329]. Google Scholar

[7] Cao Z, Min Q W, Liu M C, et al. Ecosystem-service-based ecological carrying capacity: Concept, content, assessment model and application (in Chinese). J Nat Resour, 2015, 30: 1–11 [曹智, 闵庆文, 刘某承, 等. 基于生态系统服务的生态承载力: 概念、内涵与评估模型及应用. 自然资源学报, 2015, 30: 1–11]. Google Scholar

[8] Niu Z E, Yan H M, Huang M, et al. Agricultural productivity estimation with MODIS-OLI fusion data (in Chinese). J Nat Resour, 2016: 875–885 [牛忠恩, 闫慧敏, 黄玫, 等. 基于MODIS_OLI遥感数据融合技术的农田生产力估算. 自然资源学报, 2016, 31: 875–885]. Google Scholar

[9] Zhang Y L, Qi W, Zhou C P, et al. Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009 (in Chinese). Acta Geogr Sin, 2013, 69: 1197–1127 [张镱锂, 祁威, 周才平, 等. 青藏高原高寒草地净初级生产力(NPP)时空分异. 地理学报, 2013, 69: 1197–1127]. Google Scholar

[10] 0 Wu S S, Yao Z J, Jiang L G, et al. The spatial-temporal variations and hydrological effects of vegetation NPP based on MODIS in the source region of the Yangtze River (in Chinese). J Nat Resour, 2016, 31: 39–51 [吴珊珊, 姚治君, 姜丽光, 等. 基于MODIS的长江源植被NPP时空变化特征及其水文效应. 自然资源学报, 2016, 31: 39–51]. Google Scholar

[11] Li G, Wang D L, Xin X P, et al. Analyses on grassland carrying capacity and livestock-feeds balance in Xilinhot (in Chinese). Pratacult Sci, 2009, 26: 87–93 [李刚, 王道龙, 辛晓平, 等. 锡林浩特草地载畜量及草畜平衡分析. 草业科学, 2009, 26: 87–93]. Google Scholar

[12] Zhang L X, Fan J W, Shao Q Q, et al. Changes in grassland yield and grazing pressure in Three Rivers Headwater region before and after the implementation of the eco-restoration project (in Chinese). Acta Pratacult Sin, 2014, 23: 116–123 [张良侠, 樊江文, 邵全琴, 等. 生态工程前后三江源草地产草量与载畜压力的变化分析. 草业学报, 2014, 23: 116–123]. Google Scholar

[13] Liu J Y, Shao Q Q, Fan J W. The integrated assessment indicator system of grassland ecosystem in the Three-River Headwaters region (in Chinese). Geogr Res, 2009, 28: 273–283 [刘纪远, 邵全琴, 樊江文. 三江源区草地生态系统综合评估指标体系. 地理研究, 2009, 28: 273–283]. Google Scholar

[14] Liu X Y, Feng Q S, Liang T G, et al. Spatial-temporal dynamic balance between livestock carrying capacity and productivity of rangeland in Gannan of Gansu Province, China (in Chinese). Grassl China, 2010, 32: 99–106 [刘兴元, 冯琦胜, 梁天刚, 等. 甘南牧区草地生产力与载畜时空动态平衡研究. 中国草地学报, 2010, 32: 99–106]. Google Scholar

[15] Liu J, Liu M, Tian H, et al. Spatial and temporal patterns of China's cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens Environ, 1990, 98: 442-456 CrossRef ADS Google Scholar

[16] Liu J, Xu X, Shao Q. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J Geogr Sci, 2008, 18: 259-273 CrossRef Google Scholar

[17] Yan H, Fu Y, Xiao X, et al. Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture EcoSyst Environ, 2009, 129: 391-400 CrossRef Google Scholar

[18] Wang Z, Xiao X, Yan X. Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agric For Meteor, 2010, 150: 1160-1167 CrossRef ADS Google Scholar

[19] Wang Y R, Sun F, Cui W D. A literature study on the effective allocation of farming and animal husbandry resources under the background of “food change feed” (in Chinese). Spec Zone Econ, 2017, (9): 97–101 [王怡然, 孙芳, 崔文典. “粮改饲”背景下农牧业资源有效配置文献研究. 特区经济, 2017, (9): 97–101]. Google Scholar

[20] Zhou Z M. Cropping mode with grain-warp-feed (in Chinese). New Rural Technol, 2015, (7): 4–6 [周志明. “粮经饲”三元种植模式. 农村新技术, 2015, (7): 4–6]. Google Scholar

[21] Xue S T, Yang G W, Chi X X, et al. Survey of production status of forage and animal husbandry in Tenihe farmland and its surroundings in Hulun Buir (in Chinese). Grassland Pratacult, 2017, 29: 1–9 [薛淑婷, 杨高文, 迟晓雪, 等. 呼伦贝尔特泥河农场及周边地区草牧业生产现状调查. 草原与草业, 2017, 29: 1–9]. Google Scholar

[22] Fang J Y, Pan Q M, Gao S Q, et al. “Small vs. Large Area” Principle: Protecting and restoring a large area of natural grassland by establishing a small area of cultivated pasture (in Chinese). Pratacult Sci, 2016, 33: 1913–1916 [方精云, 潘庆民, 高树琴, 等. “以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 2016, 33: 1913–1916]. Google Scholar

[23] Yongfei B, Zhu Y, Qingchuan Y, et al. Mechanisms regulating the productivity and stability of artificial grasslands in China: Issues, progress, and prospects (in Chinese). Chin Sci Bull, 2018, 63: 511-520 CrossRef Google Scholar

[24] Fang J Y, Bai Y F, Li L H, et al. Scientific basis and practical ways for sustainable development of China’s pasture regions (in Chinese). Chin Sci Bull, 2016, 61: 155–164 [方精云, 白永飞, 李凌浩, 等. 我国草原牧区可持续发展的科学基础与实践. 科学通报, 2016, 61: 155–164]. Google Scholar

  • Figure 1

    (Color online) Spatial distribution of farms and ranches in Hulunbuir Agricultural Reclamation Group

  • Figure 2

    Grassland area of farms and ranches in Hulunbuir Agricultural Reclamation Group

  • Figure 3

    The spatial distribution of hay yield of farms and ranches in Hulunbuir Agricultural Reclamation Group in 2015

  • Figure 4

    Statistics of grazing capacity of farms and ranches in Hulunbuir Agricultural Reclamation Group

  • Table 1   Statistics of hay yield of farms and ranches in HulunBuir Agricultural Reclamation Group (Unit: Ten thousand ton)

    农牧场

    平年产草量

    欠年产草量

    丰年产草量

    平年−欠年

    产草量

    丰年−平年

    产草量

    大河湾农场

    0

    0

    0

    0

    0

    哈达图农牧场

    4.36

    3.27

    7.52

    1.09

    3.16

    拉布大林农牧场

    3.68

    2.92

    6.32

    0.76

    2.64

    免渡河农场

    0.16

    0.14

    0.19

    0.02

    0.03

    莫拐农场

    0.82

    0.67

    0.92

    0.15

    0.10

    那吉屯农场

    0.65

    0.55

    0.67

    0.10

    0.02

    格尼河农场

    0.10

    0.09

    0.12

    0.01

    0.02

    三河种马场

    2.10

    1.68

    2.95

    0.42

    0.85

    上库力农场

    5.33

    4.70

    7.22

    0.63

    1.89

    苏沁农牧场

    4.36

    2.96

    6.45

    1.40

    2.09

    陶海牧场

    0.51

    0.43

    0.72

    0.08

    0.21

    特泥河农牧场

    6.86

    5.35

    9.40

    1.51

    2.54

    谢尔塔拉农牧场

    1.46

    1.15

    2.30

    0.31

    0.84

    牙克石农场

    0.56

    0.48

    0.64

    0.08

    0.08

    扎兰屯马场

    0.18

    0.16

    0.20

    0.02

    0.02

    东方红农场

    0.07

    0.07

    0.07

    0

    0

    甘河农场

    0.26

    0.26

    0.29

    0

    0.03

    巴彦农场

    0.14

    0.13

    0.14

    0.01

    0

    绰尔河农场

    0

    0

    0

    0

    0

    诺敏河农场

    0.16

    0.15

    0.17

    0.01

    0.01

    欧肯河农场

    0.34

    0.34

    0.38

    0

    0.04

    宜里农场

    0.21

    0.21

    0.23

    0

    0.02

    扎兰河农场

    0.40

    0.37

    0.44

    0.03

    0.04

    绰尔河、免渡河、苏沁和谢尔塔拉农牧场的可利用草场面积数据缺失, 这里根据草原面积进行估算

  • Table 2   Statistics of carrying capacity of farms and ranches in Hulunbuir Agricultural Reclamation Group (Unit: Ten thousand sheep-unit)

    农牧场

    平年承载力

    欠年承载力

    丰年承载力

    巴彦农场

    0.69

    0.55

    0.88

    绰尔河农场

    0.01

    0.00

    0.01

    大河湾农场

    0.00

    0.00

    0.00

    东方红农场

    0.42

    0.33

    0.53

    甘河农场

    0.66

    0.52

    0.84

    格尼河农场

    0.21

    0.17

    0.27

    古里农场

    2.71

    2.14

    3.44

    哈达图农牧场

    17.69

    14.00

    22.48

    拉布大林农牧场

    10.00

    7.92

    12.71

    免渡河农场

    0.24

    0.19

    0.30

    莫拐农场

    1.23

    0.97

    1.56

    那吉屯农场

    1.09

    0.86

    1.39

    诺敏河农场

    0.34

    0.27

    0.43

    欧肯河农场

    1.59

    1.26

    2.02

    三河种马场

    20.73

    16.41

    26.34

    上库力农场

    15.89

    12.58

    20.20

    苏沁农牧场

    11.63

    9.21

    14.78

    陶海牧场

    1.30

    1.03

    1.65

    特泥河农牧场

    13.31

    10.54

    16.92

    谢尔塔拉农牧场

    5.39

    4.27

    6.85

    牙克石农场

    1.11

    0.88

    1.42

    宜里农场

    0.55

    0.43

    0.70

    扎兰河农场

    1.74

    1.38

    2.21

    扎兰屯马场

    0.41

    0.33

    0.53

    总计

    108.94

    86.25

    138.45

  • Table 3   Statistics of planning area for artificial grassland of farms and ranches in Hulunbuir Agricultural Reclamation Group (Unit: km)

    农牧场

    人工草地面积(10%)

    人工草地面积(20%)

    人工草地面积(30%)

    巴彦农场

    6.54

    14.02

    23.10

    绰尔河农场

    3.74

    14.42

    26.91

    大河湾农场

    9.48

    11.02

    11.22

    东方红农场

    17.96

    30.98

    39.73

    甘河农场

    6.61

    34.38

    58.89

    格尼河农场

    35.79

    48.74

    54.82

    古里农场

    1.54

    5.54

    11.08

    哈达图农牧场

    33.98

    59.42

    82.66

    拉布大林农牧场

    30.91

    79.59

    120.11

    免渡河农场

    3.27

    6.21

    9.61

    莫拐农场

    2.80

    9.95

    17.56

    那吉屯农场

    14.35

    16.76

    19.30

    诺敏河农场

    3.41

    30.11

    52.95

    欧肯河农场

    4.27

    13.62

    39.53

    三河种马场

    67.23

    121.78

    160.11

    上库力农场

    5.94

    14.82

    34.52

    苏沁农牧场

    40.19

    85.46

    106.03

    陶海牧场

    4.54

    4.67

    6.68

    特泥河农牧场

    15.96

    41.60

    67.50

    谢尔塔拉农牧场

    64.23

    78.25

    85.66

    牙克石农场

    6.28

    17.43

    39.99

    宜里农场

    2.80

    17.49

    70.31

    扎兰河农场

    0.27

    11.08

    22.30

    扎兰屯马场

    9.35

    15.82

    20.16

    总计

    391.52

    783.11

    1180.84

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1