logo

Chinese Science Bulletin, Volume 64, Issue 4: 456-473(2019) https://doi.org/10.1360/N972018-00723

Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction

More info
  • ReceivedJul 19, 2018
  • AcceptedSep 21, 2018
  • PublishedDec 13, 2018

Abstract

Intertidal zones are located in the transitional area of sea and land and are important to biodiversity protection, social and economic development, and global environmental changes. However, due to the irregular dynamics of the tides and the regular local time of satellite transit, it is challenging to monitor the extent of intertidal zones using only satellite remote-sensing methods. Until now, there has been no complete dataset of China's coastal intertidal zones and knowledge about their distribution is limited. In the work described in this paper, we first used 156 Landsat Thematic Mapper/Operational Land Imager images covering the entire coastal area of China in 1995 and 2015 to extract the instantaneous shoreline water boundaries. Then, by combining the tidal level information at the transit of the satellite, we simulated the average high- and low-tide lines and determined the spatial and temporal distribution of intertidal zones by the geographic information system method. At the same time, the land-use types across the intertidal zones were manually interpreted based on high-resolution images from Google Earth. On this basis, the spatial and temporal characteristics of intertidal zone changes across China's coastal areas and their driving factors were researched. The results follow. (1) In 2015, the total area of the intertidal zone in China was approximately 14070 km2, of which Fujian Province (18%) was the most distributed in the intertidal zone, followed by Liaoning Province (15%), Shandong Province (14%), Jiangsu Province (12%), and Guangdong Province (11%); the smallest area was distributed in Hainan Province (2%). (2) From 1995 to 2015, the national intertidal zone area decreased by 1375 km2, approximately 8.9%. The intertidal zone area of different provinces and cities showed different increasing and decreasing trends. The largest reduction of intertidal zones was in Zhejiang Province, with an area decrease of 1189 km2. The intertidal zone area of Jiangsu Province was greatly reduced, by which its first position of having the most intertidal zone area of China in 1995 decreased to the fourth in 2015. The intertidal zones in Fujian Province exhibited the greatest increase, reaching 453 km2. The area of intertidal zones between the ports of Shanghai Luchao and Zhejiang Jintang exhibited the greatest decrease, reaching 56.5%. The area of intertidal zones between Fujian Shui'ao and Anhaiwan estuaries increased the most, reaching 37.28%, an area of 445.59 km2. (3) The trend of development and utilization of intertidal zones continues to increase. In 1995, the coastal intertidal zone area occupied was 3490 km2, and by 2015, it had reached 4581 km2. The type of development and utilization of intertidal zones changed from agricultural sea (41.8%) to marine aquaculture; the proportion of urban construction occupied also reached 13%. At the same time, the intertidal zone area in the cofferdam (under construction/unknown use) continued to grow, from 18.1% in 1995 to 29% in 2015. The intertidal zone showing the greatest level of development and utilization among the coastal provinces is Jiangsu Province, with an occupied area of 1646 km2, accounting for 35.9% of the developed and utilized national intertidal zone, with the main types of utilization being agricultural sea and mariculture. The other provinces that developed intertidal zones are Guangdong (13.7%), Shandong (12.5%), Liaoning (10.9%), and Shanghai (10.3%). The main development and utilization types of intertidal zones are urban construction and mariculture, with a large number of intertidal zones presently under development. (4) The "squeezing effect" caused by the combination of artificial and natural factors have caused the reduction of intertidal zones in China. Human development mainly includes marine aquaculture, industrial development, port expansion, urban construction, and reclamation. And the actual high-tide line has moved towards the sea by artificial intertidal zone development. The velocity is even higher than that of low-tide line, resulting in the reduction of intertidal zones. Natural factors mainly include rising sea level and other factors, such as changes in the sediment concentration of rivers entering the sea and coastal hydrodynamic forces, which are also important factors affecting the change of coastal intertidal zones. These factors contribute to the drift of some intertidal zones towards the sea and the expansion of the area. The contradiction between economic development and coastal ecological environmental protection is still outstanding.


Funded by

中国科学院战略性先导科技专项(XDA19030203)

国家自然科学基金(41271423)


Acknowledgment

感谢审稿专家给出的专业和建设性的意见和建议. 本文16经由国家测绘地理信息局审阅, 审图号为GB2018(6143).


References

[1] Gu Y. Study on dynamic monitoring of intertidal terrain by remote sensing (in Chinese). Doctor Dissertation. Nanjing: Nanjing Normal University, 2013. 1–101 [顾燕. 潮间带地形遥感动态监测体系研究. 博士学位论文. 南京: 南京师范大学, 2013. 1–101]. Google Scholar

[2] Murray N, Phinn S, Clemens R, et al. Continental scale mapping of tidal flats across East Asia using the landsat archive. Remote Sens, 2012, 4: 3417-3426 CrossRef ADS Google Scholar

[3] Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat Observations. Remote Sens Environ, 2017, 195: 153-169 CrossRef ADS Google Scholar

[4] Zhang W K. A study on exploitation and utilization of tideland resourcces in Fujian Province (in Chinese). Resour Sci, 2001, 23: 29–32 [张文开. 福建省潮间带滩涂资源的开发利用研究. 资源科学, 2001, 23: 29–32]. Google Scholar

[5] Xu J S. Advantages and directions of comprehensive development and utilization in Bohai gulf coastal zone (in Chinese). Ocean Dev Manage, 1987, 4: 16–19 [徐家声. 渤海湾海岸带综合开发利用的优势及方向. 海洋开发与管理, 1987, 4: 16–19]. Google Scholar

[6] Cai F, Su X Z, Liu J H, et al. Coastal erosion problem and countermeasures in China under the background of global climate change (in Chinese). Prog Nat Sci, 2008, 18: 1093–1103 [蔡锋, 苏贤泽, 刘建辉, 等. 全球气候变化背景下我国海岸侵蚀问题及防范对策. 自然科学进展, 2008, 18: 1093–1103]. Google Scholar

[7] Murray N J, Clemens R S, Phinn S R, et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front Ecol Environ, 2014, 12: 267-272 CrossRef Google Scholar

[8] Sun W L, Sun Z G, Tian L P, et al. Variation and prediction of different marsh landscapes in intertidal zone of the Yellow River Delta (in Chinese). Acta Ecol Sin, 2017, 37: 215–225 [孙万龙, 孙志高, 田莉萍, 等. 黄河三角洲潮间带不同类型湿地景观格局变化与趋势预测. 生态学报, 2017, 37: 215–225]. Google Scholar

[9] National Coastal Zone and Coastal Resources Comprehensive Survey Concise Procedures Compilation Group. National Coastal Zone and Coastal Resources Comprehensive Survey Concise Procedures (in Chinese). Beijing: China Ocean Press, 1986 [全国海岸带和海涂资源综合调查简明规程编写组. 全国海岸带和海涂资源综合调查简明规程. 北京: 海洋出版社, 1986]. Google Scholar

[10] Yao Y C, Ren C Y, Wang Z M, et al. Monitoring of salt ponds and aquaculture ponds in the coastal zone of China in 1985 and 2010 (in Chinese). Wetl Sci, 2016, 14: 874–882 [姚云长, 任春颖, 王宗明, 等. 1985和2010年中国沿海盐田和养殖池遥感监测. 湿地科学, 2016, 14: 874–882]. Google Scholar

[11] Cracknell A P. Remote sensing techniques in estuaries and coastal zones an update. Int J Remote Sens, 1999, 20: 485-496 CrossRef Google Scholar

[12] Green E P, Mumby P J, Edwards A J, et al. A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manage, 1996, 24: 1-40 CrossRef Google Scholar

[13] Xia Y Q, Li H L. Environmental & hydrogeological factors of tidal marsh (in Chinese). J Yangtze River Sci Res Inst, 2010, 27: 35–49 [夏玉强, 李海龙. 影响潮间带湿地的环境水文因素. 长江科学院院报, 2010, 27: 35–49]. Google Scholar

[14] Liu B, Zhao D Y, Ning G F, et al. Comparative study of Landsat 8 images waterline extraction method (in Chinese). Geomat Spat Inf Technol, 2016, 39: 28–32 [刘冰, 赵得意, 宁国法, 等. Landsat 8影像水边线提取方法比较研究. 测绘与空间地理信息, 2016, 39: 28–32]. Google Scholar

[15] Huang L, Zhang C Y. Preliminary study of waterline extraction methods at Xiamen Bay based on LandSATTM (in Chinese). Sci J Earth Sci, 2013, 3: 133–139 [黄路, 张彩云. 基于LandSAT TM的厦门湾水边线提取方法初探. 地球科学期刊, 2013, 3: 133–139]. Google Scholar

[16] Ryu J, Won J, Min K. Waterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, Korea. Remote Sens Environ, 2002, 83: 442-456 CrossRef ADS Google Scholar

[17] Ma X F, Zhao D Z, Xing X G, et al. Means of withdrawing coastline by remote sensing (in Chinese). Mar Environ Sci, 2007, 26: 185–189 [马小峰, 赵冬至, 邢小罡, 等. 海岸线卫星遥感提取方法研究. 海洋环境科学, 2007, 26: 185–189]. Google Scholar

[18] Wu T, Hou X Y. Tendency of coastline variations on Mainland China since 1940s (in Chinese). Ecol Sci, 2017, 36: 80–88 [毋亭, 侯西勇. 1940s以来中国大陆岸线变化的趋势分析. 生态科学, 2017, 36: 80–88]. Google Scholar

[19] Wang X D, Fang C, Kang H, et al. Remote sensing monitoring of the Caofeidian tidal zone evolution (in Chinese). Mar Sci Bull, 2014, 33: 559–565 [王小丹, 方成, 康慧, 等. 曹妃甸地区潮间带演变的遥感监测. 海洋通报, 2014, 33: 559–565]. Google Scholar

[20] Xu N, Gong P. Significant coastline changes in China during 1995−2015 tracked by Landsat data. Sci Bull, 2018, 63: 883–886. Google Scholar

[21] Chen Y, Dong J Y, Xiao X M, et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci Rep, 2016, 6: 1–10. Google Scholar

[22] Wang J W, Niu Z G. Remote-sensing analysis of Yancheng intertidal zones based on tidal correction (in Chinese). Acta Oceanol Sin, 2017, 39: 149–160 [王靖雯, 牛振国. 基于潮位校正的盐城滨海潮间带遥感监测及变化分析. 海洋学报, 2017, 39: 149–160]. Google Scholar

[23] Zhang Y, Zhang J L, Li X M, et al. Stability of continental coastline in China since 1990 (in Chinese). Sci Geogr Sin, 2015, 35: 1288–1293 [张云, 张建丽, 李雪铭, 等. 1990年以来中国大陆海岸线稳定性研究. 地理科学, 2015, 35: 1288–1293]. Google Scholar

[24] Institute of Marine Science and Technology Information. Volume 1 of Tide Tables 1995 (Yalu River Mouth-Yangtze River Mouth) (in Chinese). Beijing: China Ocean Press, 1994 [海洋科技情报研究所. 1995潮汐表第一册(鸭绿江口-长江口). 北京: 海洋出版社, 1994]. Google Scholar

[25] Institute of Marine Science and Technology Information. Volume 2 of Tide Tables 1995 (Yangtze River Mouth-Taiwan Straits) (in Chinese). Beijing: China Ocean Press, 1994 [海洋科技情报研究所. 1995潮汐表第二册(长江口-台湾海峡). 北京: 海洋出版社, 1994]. Google Scholar

[26] Institute of Marine Science and Technology Information. Volume 3 of Tide Tables 1995 (Taiwan Straits-Beibu Gulf) (in Chinese). Beijing: China Ocean Press, 1994 [海洋科技情报研究所. 1995潮汐表第三册(台湾海峡-北部湾). 北京: 海洋出版社, 1994]. Google Scholar

[27] National Marine Information Center. Volume 1 of Tide Tables 2015 (Yalu River Mouth-Yangtze River Mouth) (in Chinese). Beijing: China Ocean Press, 2014 [国家海洋信息中心. 2015潮汐表第一册(鸭绿江口-长江口). 北京: 海洋出版社, 2014]. Google Scholar

[28] National Marine Information Center. Volume 2 of Tide Tables 2015 (Yangtze River Mouth-Taiwan Straits) (in Chinese). Beijing: China Ocean Press, 2014 [国家海洋信息中心. 2015潮汐表第二册(长江口-台湾海峡). 北京: 海洋出版社, 2014]. Google Scholar

[29] National Marine Information Center. Volume 3 of Tide Tables 2015 (Taiwan Straits-Beibu Gulf) (in Chinese). Beijing: China Ocean Press, 2014 [国家海洋信息中心. 2015潮汐表第一册(台湾海峡-北部湾). 北京: 海洋出版社, 2014]. Google Scholar

[30] Zhang X K, Zhang X, Yang B H, et al. Coastline extraction using remote sensing based on coastal type and tidal correction (in Chinese). Remote Sens Land Resour, 2013, 25: 91–97 [张旭凯, 张霞, 杨邦会, 等. 结合海岸类型和潮位校正的海岸线遥感提取. 国土资源遥感, 2013, 25: 91–97]. Google Scholar

[31] Hou X Y, Wu T, Hou W, et al. Characteristics of coastline changes in mainland China since the early 1940s (in Chinese). Sci China Earth Sci, 2016, 46: 1065–1075 [侯西勇, 毋亭, 侯婉, 等. 20世纪40年代初以来中国大陆海岸线变化特征. 中国科学: 地球科学, 2016, 46: 1065–1075]. Google Scholar

[32] Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image (in Chinese). Remote Sens Inf, 2012, 27: 77–82 [毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析. 遥感信息, 2012, 27: 77–82]. Google Scholar

[33] Zhang C C, Dou X N, Zhang N, et al. Comparative study of the remote sensing image classification method based on water area estimation (in Chinese). Meteorol Environ Sci, 2008, 31: 24–28 [张成才, 窦小楠, 张楠, 等. 遥感影像分类方法在水体面积估算中的比较研究. 气象与环境科学, 2008, 31: 24–28]. Google Scholar

[34] Ghoggali N, Melgani F. Automatic Ground-Truth Validation With Genetic Algorithms for Multispectral Image Classification. IEEE Trans Geosci Remote Sens, 2009, 47: 2172-2181 CrossRef ADS Google Scholar

[35] Shao W Y, Li G Q, Wang L. Changes of tidal flat and coastline in the northern Shandong Peninsula in recent 30 years (in Chinese). J Appl Oceanogr, 2017, 36: 512–518 [邵晚悦, 李国庆, 王乐. 近30年来山东半岛北部滩涂及海岸线变化. 应用海洋学学报, 2017, 36: 512–518]. Google Scholar

[36] Wu S S, Zhang Z L, Chen M. Changes of coastal wetlands and analysis of its driving reasons along south coast of the Laizhou Bay (in Chinese). Wetl Sci, 2009, 7: 373–378 [吴珊珊, 张祖陆, 陈敏. 莱州湾南岸滨海湿地变化及其原因分析. 湿地科学, 2009, 7: 373–378]. Google Scholar

[37] Zhang X L, Zhang C H, Xu Z J. Landscape pattern change and its cumulative environmental effects of coastal wetlands in southern Laizhou Bay (in Chinese). Chin J Ecol, 2009, 28: 2437–2443 [张绪良, 张朝晖, 徐宗军. 莱州湾南岸滨海湿地的景观格局变化及累积环境效应. 生态学杂志, 2009, 28: 2437–2443]. Google Scholar

[38] Cui B S, Xie T, Wang Q, et al. Impact of Large-scale reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework (in Chinese). Bull Chin Acad Sci, 2017, 32: 418–425 [崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策. 中国科学院院刊, 2017, 32: 418–425]. Google Scholar

[39] Xu J Y, Zhang Z X, Zhao X L, et al. Remote sensing monitoring method of land reclamation (in Chinese). Bull Surv Map, 2014, 5: 60–75 [徐进勇, 张增祥, 赵晓丽, 等. 围填海遥感监测方法研究. 测绘通报, 2014, 5: 60–75]. Google Scholar

[40] Hou X Y, Xu X L. Spatial patterns of land use in coastal zones of China in the early 21st century (in Chinese). Geogr Res, 2011, 30: 1370–1379 [侯西勇, 徐新良. 21世纪初中国海岸带土地利用空间格局特征. 地理研究, 2011, 30: 1370–1379]. Google Scholar

[41] Gao Z Q, Liu X Y, Ning J C, et al. Analysis on changes in coastline and reclamation area and its causes based on 30-year satellite data in China (in Chinese). Trans Chin Soc Agric Eng, 2014, 30: 140–147 [高志强, 刘向阳, 宁吉才, 等. 基于遥感的近30 a中国海岸线和围填海面积变化及成因分析. 农业工程学报, 2014, 30: 140–147]. Google Scholar

[42] Meng W, Hu B, He M, et al. Temporal-spatial variations and driving factors analysis of coastal reclamation in China. Estuar Coast Shelf Sci, 2017, 191: 39-49 CrossRef ADS Google Scholar

[43] Chinese Academy of Sciences. China Subject Development Strategy, Coastal Marine Science (in Chinese). Beijing: Science Press, 2016 [中国科学院. 中国学科发展战略·海岸海洋科学. 北京: 科学出版社, 2016]. Google Scholar

[44] Jie D M, Zhang J Q, Wang L K. Research on the stability for north shoreline of Liaodong Bay (in Chinese). In: Risk Analysis and Crisis Response from the Chinese Perspective—The Fourth Annual Conference Article Collection of China Disaster Prevention Association Risk Analysis Committee. Changchun: Atlantis Press, 2010. 764–769 [介冬梅, 张景奇, 王刘奎. 辽东湾北岸岸线稳定性研究. 见: "中国视角的风险分析和危机反应"——中国灾害防御协会风险分析专业委员会第四届年会论文集. 长春: Atlantis出版社, 2010. 764–769]. Google Scholar

[45] Yu D H, Jiang A N, Song Z P. Distribution and development of coast erosion in Liaodong Peninsula (in Chinese). Bull Soil Water Conserv, 2014, 34: 34–37 [于德海, 姜谙男, 宋站平. 辽东半岛海岸侵蚀分布规律及其发育特征. 水土保持通报, 2014, 34: 34–37]. Google Scholar

[46] Zhang X R. Research on determination method and evolution trend of Shuangtaizi Estuary coastline (in Chinese). Master Dissertation. Changchun: Changchun Institute of Technology, 2015. 1–54 [仉新日. 双台子河口海岸线确定方法及其演变趋势研究. 长春: 长春工程学院, 2015. 1–54]. Google Scholar

[47] Chen J, Huang F M, Chen F. Characteristics and protection measurement of coastal erosion of Fujian Province, China (in Chinese). In: Symposium on Submarine Science and Strategy. Beijing: China Ocean Press, 2015. 28–35 [陈坚, 黄发明, 陈峰. 福建省海岸侵蚀状况与对策. 见: 海底科学战略研讨会论文集. 北京: 中国海洋出版社, 2015. 28–35]. Google Scholar

[48] Cai A Z, Cai X. Diffusion and modern sedimentation of seaward-transporting discharges in the estuary of Jiulongjiang River, Fujian Province (in Chinese). Mar Geol Quat Geol, 1991, 11: 57–67 [蔡爱智, 蔡雄. 福建九龙江口入海泥沙的扩散和河口湾的现代沉积. 海洋地质与第四纪地质, 1991, 11: 57–67]. Google Scholar

[49] Huang Y Q. Numerical simulation of sediment deposition and coastline evolution in Quanzhou Bay (in Chinese). Master Dissertation. Quanzhou: Huaqiao University, 2015. 1–93 [黄逸群. 泉州湾泥沙淤积数值模拟及海岸线演变规律研究. 泉州: 华侨大学, 2015. 1–93]. Google Scholar

[50] Yu J, Cao Y. Sediment deposition after regulation and reclaiming of Qiantang Estuary (in Chinese). J Sediment Res, 2006, 1: 17–24 [余炯, 曹颖. 治江缩窄后钱塘江河口泥沙淤积和成因探讨. 泥沙研究, 2006, 1: 17–24]. Google Scholar

[51] Liu Y W, Yang S L, Luo X X. Separation estimate of beach erosion and deposition on intertidal wetland because of sea level rise and normal deposition (in Chinese). Shanghai Land Resour, 2011, 32: 23–52 [刘英文, 杨世伦, 罗向欣. 海平面上升的淹没效应和岸滩冲淤对潮间带湿地面积影响的分离估算. 上海国土资源, 2011, 32: 23–52]. Google Scholar

  • Figure 1

    (Color online) China's coastal segments of study area. Table 1 is for the meaning of the segment code

  • Figure 2

    Flow chart of intertidal zone extraction

  • Figure 3

    (Color online) Tidal correction schematic diagram[22]

  • Figure 4

    Different waterline samples. (a) Bedrock waterlines; (b) sandy waterlines; (c) muddy waterlines; (d) water lines of aquaculture pond and salt pond barrier

  • Figure 5

    Intertidal area and its proportion of each province in coastal China

  • Figure 6

    (Color online) The intertidal distribution map of China in 1995 (a) and 2015 (b)

  • Figure 7

    Intertidal area and its changes of each coastal segments in China

  • Figure 8

    (Color online) Changes of intertidal zone of typical coastal segments

  • Figure 9

    Land use type proportion (a) and areal change (b) in China's coastal intertidal zones in 2015

  • Figure 10

    Land use types of intertidal zone of each province in China in 2015

  • Figure 11

    China's coastal sea level change since 2000. Source: China Sea Level Bulletin 2000−2015

  • Table 1   Table 1 Coastal segments in the coastal zone of China

    代码

    岸段/验潮站

    代码

    岸段/验潮站

    代码

    岸段/验潮站

    1

    辽宁鸭绿江口-辽宁庄河港/丹东新港

    19

    江苏新淮河口-江苏扁担港/滨海港

    37

    福建水澳-福建安海湾口/深沪港

    2

    辽宁庄河港-辽宁旅顺港/大连

    20

    江苏扁担港-江苏射阳河口/射阳河口

    38

    福建安海湾口-福建西溪口/石井

    3

    辽宁旅顺港-辽宁葫芦山湾口/金县

    21

    江苏射阳河口-江苏新洋港/新洋港

    39

    福建西溪口-福建赤兰溪口/厦门

    4

    辽宁葫芦山湾口-辽宁辽河口/鲅鱼圈

    22

    江苏新洋港-江苏晚庄港/新洋港

    40

    福建赤兰溪口-广东乌坎港/汕头

    5

    辽宁辽河口-辽宁大凌河口/老北河口

    23

    江苏晚庄港-江苏吃饭港/陈家坞

    41

    广东乌坎港-广东渡头河口/汕尾

    6

    辽宁大凌河口-辽宁烟台河口/锦州港

    24

    江苏吃饭港-江苏新开港/弶港

    42

    广东渡头河口-广东珠江口/香港

    7

    辽宁烟台河口-辽宁狗河口/团山角

    25

    江苏新开港-上海长江入海口/吕四

    43

    广东珠江口-广东那龙河口/澳门

    8

    辽宁狗河口-河北饮马河口/芷锚湾

    26

    上海长江入海口-上海芦潮港/中浚

    44

    广东那龙河口-广东博茂港/西葛

    9

    河北饮马河口-河北陡河口/京唐港

    27

    上海芦潮港-浙江海盐塘口/金山嘴

    45

    广东博茂港-广东老港/湛江

    10

    河北陡河口-河北北排河口/塘沽

    28

    浙江海盐塘口-浙江北排江口/澉浦

    46

    广东老港-广东蛋场港/流沙

    11

    河北北排河口-山东黄河入海口/东风港

    29

    浙江北排江口-浙江金塘港/镇海

    47

    广东蛋场港-广东安铺港/下泊

    12

    山东黄河入海口-山东黄水河口/龙口

    30

    浙江金塘港-浙江大嵩江口/崎头角

    48

    广东安铺港-广西北海港/铁山港

    13

    山东黄水河口-山东威海港/烟台

    31

    浙江大嵩江口-浙江中央港/西泽

    49

    广西北海港-广西北仑河口/企沙

    14

    山东威海港-山东车道河口/成山角

    32

    浙江中央港-浙江洞港/旗门港

    50

    海南海南湾口-海南东方港/三亚

    15

    山东车道河口-山东辛家港/石岛

    33

    浙江洞港-浙江桐丽河口/海门

    51

    海南东方港-海南湾口/新盈

    16

    山东辛家港-山东潮河口/青岛

    34

    浙江桐丽河口-浙江温州湾口/东门村

    52

    台湾永安港-台湾红毛港/基隆

    17

    山东潮河口-江苏灌河口/岚山港

    35

    浙江温州湾口-浙江大门港/瑞安

    53

    台湾红毛港-台湾永安港/高雄

    18

    江苏灌河口-江苏新淮河口/燕尾

    36

    浙江大门港-福建水澳/三沙

  • Table 2   Table 2 List of Landsat images in the coastal zone of China

    年份

    传感器

    行列号

    1995

    Landsat 5 TM

    118032 118038 118039 118040 118041 118042 119033 119034 119041 119042 119043 120032 120033 120034 120035 120044 121032 121033 121034 121044 122033 122044 122045 123045 124045 125045 119037 120036 119032 119035 119044 121045 123046 123047 124046 124047 117043 117044 117045 118043 118044

    2015

    Landsat 8 OLI

    118032 118038 118039 118040 118041 118042 119033 119034 119042 120032 120033 121032 121033 122033 120034 120035 121034 119037 120036 119043 120044 121044 122044 122045 123045 124045 125045 123046 123047 124046 124047 125047 117043 117044 117045 118043 118044

  • Table 3   Table 3 Land use types of intertidal zones in China

    类型

    定义

    类型

    定义

    围海养殖

    以水产养殖为主

    城镇建设

    以城镇住宅和交通利用为主

    围海

    沿海修筑围堤的全封闭水域

    港口建设

    以港口储存和运输为主

    工业填海

    用于工业企业生产活动为主

    农业填海

    以耕地、园地等农业利用活动为主

    围堰

    人工建筑围起的半封闭水域

    盐场用海

    用于盐田及其取水口所使用的海域

    在建/未知用途

    处于在建状态的未知用途开发

    旅游用海

    以休闲度假和观光旅游用途为主

  • Table 4   Table 4 Changes of intertidal zone of each coastal segment in 1995 and 2015 in China (unit: km2)

    代码a)

    1995年面积

    1995~2015年

    面积变化

    年变化率(%)

    代码a)

    1995年面积

    1995~2015年

    面积变化

    年变化率(%)

    1

    432

    23

    0.26

    28

    438

    -213

    -2.43

    2

    117

    72

    3.05

    29

    367

    -240

    -3.27

    3

    253

    -120

    -2.38

    30

    14

    28

    10.24

    4

    109

    85

    3.87

    31

    134

    -17

    -0.62

    5

    426

    238

    2.80

    32

    568

    -304

    -2.68

    6

    316

    53

    0.83

    33

    543

    -144

    -1.33

    7

    17

    60

    17.11

    34

    320

    -248

    -3.88

    8

    10

    12

    6.14

    35

    270

    -33

    -0.61

    9

    484

    -160

    -1.66

    36

    525

    4

    0.04

    10

    247

    -34

    -0.69

    37

    1195

    445

    1.86

    11

    791

    -456

    -2.88

    38

    56

    77

    6.89

    12

    504

    262

    2.60

    39

    107

    21

    0.96

    13

    56

    122

    10.94

    40

    337

    -88

    -1.30

    14

    32

    -2

    -0.38

    41

    64

    46

    3.64

    15

    419

    -159

    -1.90

    42

    270

    118

    2.18

    16

    608

    -250

    -2.06

    43

    508

    -112

    -1.11

    17

    72

    134

    9.37

    44

    64

    -5

    -0.38

    18

    114

    -19

    -0.83

    45

    87

    168

    9.72

    19

    34

    6

    0.93

    46

    108

    12

    0.54

    20

    57

    -25

    -2.20

    47

    25

    34

    6.78

    21

    49

    -14

    -1.49

    48

    267

    110

    2.07

    22

    190

    -66

    -1.73

    49

    306

    134

    2.19

    23

    426

    -283

    -3.32

    50

    48

    97

    10.09

    24

    666

    -327

    -2.45

    51

    100

    2

    0.12

    25

    1372

    -320

    -1.17

    52

    75

    -4

    -0.25

    26

    468

    99

    1.05

    53

    297

    -143

    -2.41

    27

    85

    -50

    -2.93

    总计

    15445

    -1375

    -0.45

    a) 代码所代表的岸段见表1

  • Table 5   Table 5 Changes of the average low/high-tide lines of each typical segment

    潮间带面积

    变化(km2)

    岸段名称

    高低潮线推移

    变化a)(m)

    潮间带面积

    变化(km2)

    岸段名称

    高低潮线推移

    变化a)(m)

    238

    辽宁辽河口-辽宁大凌河口

    5396/2679

    -327

    江苏吃饭港-江苏新开港

    -3270/6806

    60

    辽宁烟台河口-辽宁狗河口

    1325/137

    -320

    江苏新开港-上海长江入海口

    1095/1673

    -456

    河北北排河口-山东黄河入海口

    -2584/779

    -502

    上海芦潮港-浙江金塘港

    -1318/3960

    262

    山东黄河入海口-山东黄水河口

    679/-1845

    28

    浙江金塘港-浙江大嵩江口

    617/-109

    -25

    江苏扁担港-射阳河口

    -552/-346

    -248

    浙江桐丽河口-浙江温州湾口

    -1254/990

    -14

    江苏射阳河口-新洋港

    -1305/-932

    445

    福建水澳-福建安海湾口

    1075/350

    a) "/"两侧的数值分别代表平均低潮线和高潮线的推移距离. 负值为向陆推移, 正值为向海推移

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1