logo

SCIENTIA SINICA Chimica, Volume 49, Issue 6: 832-843(2019) https://doi.org/10.1360/SSC-2019-0005

Applications of pillararene NACs in adsorption and separation

More info
  • ReceivedJan 21, 2019
  • AcceptedMar 4, 2019
  • PublishedApr 12, 2019

Abstract

This review describes a novel kind of materials for adsorption and separation, nonporous adaptive crystals (NACs), which are firstly mentioned and defined by us. Compared with traditional porous materials, NACs of pillararenes can be synthesized easily, have good chemical, humid and thermal stabilities, are soluble in many common organic solvents, and can be reused many times. Here, we focus on the discussion of pillararene-based NACs for adsorption and separation and the crystal structure transformations from the initial nonporous crystalline state to new guest-loaded structures during the adsorption and separation processes. Single-crystal X-ray diffraction, powder X-ray diffraction, gas chromatography and solution NMR are the main techniques to investigate the adsorption and separation processes and the structural transformations. It is expected that this kind of materials will show practical applications in the chemical industry.


Funded by

国家自然科学基金(21434005,91527301)


References

[1] Sholl DS, Lively RP. Nature, 2016, 532: 435-437 CrossRef PubMed ADS Google Scholar

[2] Cooper AI. ACS Cent Sci, 2017, 3: 544-553 CrossRef Google Scholar

[3] Yu M, Noble RD, Falconer JL. Acc Chem Res, 2011, 44: 1196-1206 CrossRef PubMed Google Scholar

[4] Kim D, Jeon MY, Stottrup BL, Tsapatsis M. Angew Chem Int Ed, 2018, 57: 480-485 CrossRef PubMed Google Scholar

[5] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Science, 2002, 295: 469-472 CrossRef PubMed ADS Google Scholar

[6] Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Hitora Y, Takada K, Matsunaga S, Rissanen K, Fujita M. Nature, 2013, 495: 461-466 CrossRef PubMed ADS Google Scholar

[7] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040−2042. Google Scholar

[8] Li JR, Sculley J, Zhou HC. Chem Rev, 2012, 112: 869-932 CrossRef PubMed Google Scholar

[9] Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR. Chem Rev, 2012, 112: 724-781 CrossRef PubMed Google Scholar

[10] Kitagawa S, Kitaura R, Noro S. Angew Chem Int Ed, 2004, 43: 2334-2375 CrossRef PubMed Google Scholar

[11] Trewin A, Cooper AI. Angew Chem Int Ed, 2010, 49: 1533-1535 CrossRef PubMed Google Scholar

[12] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem Rev, 2012, 112: 3959-4015 CrossRef PubMed Google Scholar

[13] Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI. Energy Environ Sci, 2011, 4: 4239-4245 CrossRef Google Scholar

[14] Sakaushi K, Antonietti M. Acc Chem Res, 2015, 48: 1591-1600 CrossRef PubMed Google Scholar

[15] Van Humbeck JF, McDonald TM, Jing X, Wiers BM, Zhu G, Long JR. J Am Chem Soc, 2014, 136: 2432-2440 CrossRef PubMed Google Scholar

[16] Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB. Science, 2013, 339: 303-307 CrossRef PubMed ADS Google Scholar

[17] Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Science, 2005, 310: 1166-1170 CrossRef PubMed ADS Google Scholar

[18] El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM. Science, 2007, 316: 268-272 CrossRef PubMed ADS Google Scholar

[19] Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010-6022 CrossRef PubMed Google Scholar

[20] Slater AG, Cooper AI. Science, 2015, 348: 988–998. Google Scholar

[21] Furukawa H, Yaghi OM. J Am Chem Soc, 2009, 131: 8875-8883 CrossRef PubMed Google Scholar

[22] Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. J Am Chem Soc, 2008, 130: 5022-5023 CrossRef PubMed Google Scholar

[23] Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc Chem Res, 2012, 45: 1294-1308 CrossRef PubMed Google Scholar

[24] Ogoshi T, Yamagishi TA, Nakamoto Y. Chem Rev, 2016, 116: 7937-8002 CrossRef PubMed Google Scholar

[25] Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. Angew Chem Int Ed, 2009, 48: 9721-9723 CrossRef PubMed Google Scholar

[26] Wang K, Tan LL, Chen DX, Song N, Xi G, Zhang SXA, Li C, Yang YW. Org Biomol Chem, 2012, 10: 9405-9409 CrossRef PubMed Google Scholar

[27] Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. J Am Chem Soc, 2013, 135: 10542-10549 CrossRef PubMed Google Scholar

[28] Ke C, Strutt NL, Li H, Hou X, Hartlieb KJ, McGonigal PR, Ma Z, Iehl J, Stern CL, Cheng C, Zhu Z, Vermeulen NA, Meade TJ, Botros YY, Stoddart JF. J Am Chem Soc, 2013, 135: 17019-17030 CrossRef PubMed Google Scholar

[29] Jie K, Zhou Y, Yao Y, Shi B, Huang F. J Am Chem Soc, 2015, 137: 10472-10475 CrossRef PubMed Google Scholar

[30] Ogoshi T, Takashima S, Yamagishi T. J Am Chem Soc, 2015, 137: 10962-10964 CrossRef PubMed Google Scholar

[31] Li SH, Zhang HY, Xu X, Liu Y. Nat Commun, 2015, 6: 7590-7596 CrossRef PubMed ADS Google Scholar

[32] Zhang Z, Zhao Q, Yuan J, Antonietti M, Huang F. Chem Commun, 2014, 50: 2595-2597 CrossRef PubMed Google Scholar

[33] Tan LL, Li H, Tao Y, Zhang SXA, Wang B, Yang YW. Adv Mater, 2014, 26: 7027-7031 CrossRef PubMed Google Scholar

[34] Ogoshi T, Sueto R, Yoshikoshi K, Yamagishi T. Chem Commun, 2014, 50: 15209-15211 CrossRef PubMed Google Scholar

[35] Talapaneni SN, Kim D, Barin G, Buyukcakir O, Je SH, Coskun A. Chem Mater, 2016, 28: 4460-4466 CrossRef Google Scholar

[36] Jie K, Zhou Y, Li E, Huang F. Acc Chem Res, 2018, 51: 2064-2072 CrossRef PubMed Google Scholar

[37] Zhang Z, Xia B, Han C, Yu Y, Huang F. Org Lett, 2010, 12: 3285-3287 CrossRef PubMed Google Scholar

[38] Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma JJ, Fukuhara G, Mori T, Inoue Y, Yang C. Angew Chem Int Ed, 2017, 56: 6869-6873 CrossRef PubMed Google Scholar

[39] Si W, Chen L, Hu XB, Tang G, Chen Z, Hou JL, Li ZT. Angew Chem Int Ed, 2011, 50: 12564-12568 CrossRef PubMed Google Scholar

[40] Zhou J, Chen M, Diao G. Chem Commun, 2014, 50: 11954-11956 CrossRef PubMed Google Scholar

[41] Zhang H, Zhao Y. Chem Eur J, 2013, 19: 16862-16879 CrossRef PubMed Google Scholar

[42] Li C. Chem Commun, 2014, 50: 12420-12433 CrossRef PubMed Google Scholar

[43] Yang K, Pei Y, Wen J, Pei Z. Chem Commun, 2016, 52: 9316-9326 CrossRef PubMed Google Scholar

[44] Ma Y, Zhang Z, Ji X, Han C, He J, Abliz Z, Chen W, Huang F. Eur J Org Chem, 2011, 2011(27): 5331-5335 CrossRef Google Scholar

[45] Lan S, Zhan S, Ding J, Ma J, Ma D. J Mater Chem A, 2017, 5: 2514-2518 CrossRef Google Scholar

[46] Hu WB, Hu WJ, Liu YA, Li JS, Jiang B, Wen K. Org Lett, 2015, 17: 2940-2943 CrossRef PubMed Google Scholar

[47] Yuan B, Xu JF, Sun CL, Nicolas H, Schönhoff M, Yang QZ, Zhang X. ACS Appl Mater Interfaces, 2016, 8: 3679-3685 CrossRef Google Scholar

[48] Luo L, Nie G, Tian D, Deng H, Jiang L, Li H. Angew Chem Int Ed, 2016, 55: 12713-12716 CrossRef PubMed Google Scholar

[49] Wu J, Tian J, Rui L, Zhang W. Chem Commun, 2018, 54: 7629-7632 CrossRef PubMed Google Scholar

[50] Chang J, Zhao Q, Kang L, Li H, Xie M, Liao X. Macromolecules, 2016, 49: 2814-2820 CrossRef ADS Google Scholar

[51] Kuang XJ, Wajahat A, Gong WT, Dhinakaran MK, Li XH, Ning GL. Soft Matter, 2017, 13: 4074-4079 CrossRef PubMed ADS Google Scholar

[52] Li ZY, Zhang Y, Zhang CW, Chen LJ, Wang C, Tan H, Yu Y, Li X, Yang HB. J Am Chem Soc, 2014, 136: 8577-8589 CrossRef PubMed Google Scholar

[53] Yuan X, Jia Y, Cai Y, Feng W, Li Y, Li X, Yuan L. Chem Commun, 2017, 53: 2838-2841 CrossRef PubMed Google Scholar

[54] Wang JH, Feng HT, Zheng YS. Chem Commun, 2014, 50: 11407-11410 CrossRef PubMed Google Scholar

[55] Zhu Z, Hong M, Guo D, Shi J, Tao Z, Chen J. J Am Chem Soc, 2014, 136: 16461-16464 CrossRef PubMed Google Scholar

[56] Jiang L, Huang X, Chen D, Yan H, Li X, Du X. Angew Chem Int Ed, 2017, 56: 2655-2659 CrossRef PubMed Google Scholar

[57] Jie K, Liu M, Zhou Y, Little MA, Pulido A, Chong SY, Stephenson A, Hughes AR, Sakakibara F, Ogoshi T, Blanc F, Day GM, Huang F, Cooper AI. J Am Chem Soc, 2018, 140: 6921-6930 CrossRef PubMed Google Scholar

[58] Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F. Angew Chem Int Ed, 2011, 50: 1397-1401 CrossRef PubMed Google Scholar

[59] Ogoshi T, Sueto R, Yoshikoshi K, Sakata Y, Akine S, Yamagishi T. Angew Chem Int Ed, 2015, 54: 9849-9852 CrossRef PubMed Google Scholar

[60] Hartmann M, Kunz S, Himsl D, Tangermann O, Ernst S, Wagener A. Langmuir, 2008, 24: 8634-8642 CrossRef PubMed Google Scholar

[61] Jie K, Zhou Y, Li E, Zhao R, Liu M, Huang F. J Am Chem Soc, 2018, 140: 3190-3193 CrossRef PubMed Google Scholar

[62] Ogoshi T, Sueto R, Hamada Y, Doitomi K, Hirao H, Sakata Y, Akine S, Kakuta T, Yamagishi TA. Chem Commun, 2017, 53: 8577-8580 CrossRef PubMed Google Scholar

[63] Ogoshi T, Shimada Y, Sakata Y, Akine S, Yamagishi TA. J Am Chem Soc, 2017, 139: 5664-5667 CrossRef PubMed Google Scholar

[64] Li E, Jie K, Zhou Y, Zhao R, Zhang B, Wang Q, Liu J, Huang F. ACS Appl Mater Interfaces, 2018, 10: 23147-23153 CrossRef Google Scholar

[65] Jie K, Liu M, Zhou Y, Little MA, Bonakala S, Chong SY, Stephenson A, Chen L, Huang F, Cooper AI. J Am Chem Soc, 2017, 139: 2908-2911 CrossRef PubMed Google Scholar

[66] Guenter S, Rieth R, Rowbottom KT. Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed. New York: John Wiley & Sons, Inc, 2006. Google Scholar

[67] Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock CEA, Denayer JFM, De Vos DE. J Am Chem Soc, 2010, 132: 15277-15285 CrossRef PubMed Google Scholar

[68] Minceva M, Rodrigues AE. AIChE J, 2007, 53: 138-149 CrossRef Google Scholar

[69] Mohameed HA, Jdayil BA, Takrouri K. Chem Eng Processing-Process Intensification, 2007, 46: 25-36 CrossRef Google Scholar

[70] Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther Iii GW, Lu Z, Jonsson M, Kloo L. Angew Chem Int Ed, 2011, 50: 11598-11620 CrossRef PubMed Google Scholar

[71] Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, von Glasow R, Gómez Martín JC, McFiggans G, Saunders RW. Chem Rev, 2012, 112: 1773-1804 CrossRef PubMed Google Scholar

[72] Jie K, Zhou Y, Li E, Li Z, Zhao R, Huang F. J Am Chem Soc, 2017, 139: 15320-15323 CrossRef PubMed Google Scholar

[73] Redlich O, Gable CM, Dunlop AK, Millar RW. J Am Chem Soc, 1950, 72: 4153-4160 CrossRef Google Scholar

[74] Ogoshi T, Saito K, Sueto R, Kojima R, Hamada Y, Akine S, Moeljadi AMP, Hirao H, Kakuta T, Yamagishi TA. Angew Chem Int Ed, 2018, 57: 1592-1595 CrossRef PubMed Google Scholar

[75] Jie K, Zhou Y, Li E, Zhao R, Huang F. Angew Chem Int Ed, 2018, 57: 12845-12849 CrossRef PubMed Google Scholar

[76] Li E, Jie K, Zhou Y, Zhao R, Huang F. J Am Chem Soc, 2018, 140: 15070-15079 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic representation of (a) macromolecular-level porous materials such as zeolites, MOFs and COFs and (b) molecular-level porous materials such as POCs; (c) chemical structures and cartoon representations of pillararenes used in the construction of NACs [20,36] (color online).

  • Figure 2

    Single crystal structure of EtP5α [57] (color online).

  • Figure 3

    Schematic representation of the adsorption of linear and branched alkanes with a gate-opening behavior using EtP5α crystals [59] (color online).

  • Figure 4

    (a) Structural representation of the transformation from EtP5α to 1-Pe@EtP5 upon uptake of 1-Pe/2-Pe vapor mixture and the release of 1-Pe by heating [61]. (b) Vapor sorption isotherms of EtP5α toward linear pentenes. Solid symbols: adsorption; open symbols: desorption (color online).

  • Figure 5

    (a) Schematic representation of the procedure to obtain alkane-loaded EtP5 crystals. Alkane-loaded host-guest complex crystals were prepared by immersion of EtP5α in bulk n-alkanes followed by filtration of the resulting crystals. (b) Single-crystal structures of C6@EtP5, C7@EtP5, C8@EtP5, and C16@EtP5 [62] (color online).

  • Figure 6

    Schematic representation of alkane-shape-selective vapochromic behavior of EtP4Q1. In the X-ray structures, C=gray, O=red; H atoms are omitted for clarity [55] (color online).

  • Figure 7

    Photographs showing color changes when 20 mg of EtP4Q1α crystals were exposed to different aliphatic aldehydes for 12 h [64] (color online).

  • Figure 8

    Single crystal structures of EtP6α (a) and EtP6β (b) [57,65] (color online).

  • Figure 9

    Schematic representation of the styrene purification procedure using EtP6 NACs and the reversible transformations between EtP6β and St@EtP6 [65] (color online).

  • Figure 10

    Scheme summarizing the interconversions of various pillar-[6]arene-xylene host-guest crystal structures in solution and the solid state [57] (color online).

  • Figure 11

    Schematic representation of the structural transformations upon uptake of iodine in EtP6β crystals, release of iodine in cyclohexane from I2@EtP6, and removal of cyclohexane from Cy@EtP6 [72] (color online).

  • Figure 12

    Schematic representation of the separation of branched alkanes from linear alkanes using EtP6β crystals [74] (color online).

  • Figure 13

    Representation of the separation processes and mechanisms: (i) separation of Tol from an MCH/Tol mixture using EtP5α; (ii) separation of MCH from an MCH/Tol mixture using EtP6β [75] (color online).

  • Figure 14

    Schematic representation of the post-synthetic modification in EtP4Q1 by capturing butylamine vapor [76] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1