logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 49, Issue 8: 084512(2019) https://doi.org/10.1360/SSPMA-2019-0026

Mission design for multi-target and multi-mode rendezvous missions to small bodies

More info
  • ReceivedJan 25, 2019
  • AcceptedMay 17, 2019
  • PublishedJun 17, 2019
PACS numbers

Abstract

Multi-target exploration to small bodies has the advantages of reducing mission cost and increasing scientific return. It will be widely used in the future small body exploration missions. This paper investigates the problem of perturbation sensitivity, complicated constraints and changeable thrust, which may be faced in the multi-target exploration mission. The Earth quasi-satellite sampling return and main-belt comet rendezvous missions are studied. First, based on the mission constraints, the mission design schedule and relevant constraints are given. Then, the multi-impulse asteroid sampling return trajectory is investigated in the elliptical three body model. Considering the gravitational perturbation of Earth, the integral trajectory design consist of Earth escape phase, interplanetary transfer phase, and Earth reentry phase is proposed. The trajectory design is divided into two parts. The optimal preliminary transfer opportunity is firstly searched in two-body problem and is transferred to the elliptical three body model. The differential correction scheme is applied to correct the error caused by Earth gravity perturbation. The trajectory for the Earth quasi-satellite 2016HO3 is designed. Finally, considering the engineering constraints, the first-order necessary condition of the changeable low-thrust trajectory are derived, where both the thrust and special impulse change with the distance to Sun. By introducing the B-plane parameters, the initial states determination under the constraint of the gravity assist is developed. Based on the homotopy method, the low-thrust optimal trajectory after Mars gravity assist to the main belt comet 133P are designed and compared with constant low thrust trajectory. The proposed multi-target exploration scheme and the orbit design method can provide a reference for future small bodies exploration missions in China.


Funded by

国家自然科学基金(11572038,11772050)

长江学者奖励计划(青年项目)


References

[1] de la Fuente Marcos C, de la Fuente Marcos R. Asteroid (469219) 2016HO3, the smallest and closest Earth quasi-satellite. Mon Not R Astron Soc, 2016, 462: 3441-3456 CrossRef ADS arXiv Google Scholar

[2] Jewitt D, Ishiguro M, Weaver H, et al. Hubble space telescope investigation of main-belt comet 133p/elst-pizarro. Astronom J, 2014, 147: 117 CrossRef ADS arXiv Google Scholar

[3] Hulkower N D, Lau C O, Bender D F. Optimum two-impulse transfers for preliminary interplanetary trajectory design. J Guidance Control Dyn, 2015, 7: 458-461 CrossRef ADS Google Scholar

[4] Qiao D, Cui H, Cui P. Evaluating accessibility of near-Earth asteroids via Earth gravity assists. J Guidance Control Dyn, 2006, 29: 502-505 CrossRef ADS Google Scholar

[5] Cui P Y, Qiao D, Cui H T, et al. Target selection and transfer trajectories design for exploring asteroid mission. Sci China Technol Sci, 2010, 53: 1150-1158 CrossRef Google Scholar

[6] Chen Y, Baoyin H X, Li J F. Design and optimization of a trajectory for Moon departure near Earth asteroid exploration. Sci China-Phys Mech Astron, 2011, 54: 748-755 CrossRef ADS Google Scholar

[7] Wang Y M, Qiao D, Cui P Y. Trajectory design for the transfer from the Lissajous orbit of Sun-Earth system to asteroids. AMM, 2013, 390: 478-484 CrossRef Google Scholar

[8] Bulirsch R, Callies R. Optimal trajectories for a multiple rendezvous mission to asteroids. Acta Astronaut, 1992, 26: 587-597 CrossRef ADS Google Scholar

[9] Chen Y, Baoyin H X, Li J F. Target analysis and low-thrust trajectory design of Chinese asteroid exploration mission (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 1104–1111 [陈杨, 宝音贺西, 李俊峰. 我国小行星探测目标分析与电推进轨道设计. 中国科学: 物理学 力学 天文学, 2011, 41: 1104–1111]. Google Scholar

[10] Chen Y, Baoyin H, Li J. Accessibility of main-belt asteroids via gravity assists. J Guidance Control Dyn, 2014, 37: 623-632 CrossRef ADS Google Scholar

[11] Yang H, Li J, Baoyin H. Low-cost transfer between asteroids with distant orbits using multiple gravity assists. Adv Space Res, 2015, 56: 837-847 CrossRef ADS Google Scholar

[12] Bertrand R, Epenoy R. New smoothing techniques for solving bang-bang optimal control problems——Numerical results and statistical interpretation. Optim Control Appl Meth, 2002, 23: 171-197 CrossRef Google Scholar

[13] Jiang F, Tang G, Li J. Improving low-thrust trajectory optimization by adjoint estimation with shape-based path. J Guidance Control Dyn, 2017, 40: 3282-3289 CrossRef ADS Google Scholar

[14] Li J F, Baoyin H X, Jiang F H. Dynamics and Control of Interplanetary Flight. Beijing: Tsinghua University Press, 2014. 204–205 [李俊峰, 宝音贺西, 蒋方华. 深空探测动力学与控制. 北京: 清华大学出版社, 2014, 204–205]. Google Scholar

  • Figure 1

    (Color online) Asteroid 2016HO3 in the Sun-Earth rotating frame.

  • Figure 2

    (Color online) Uncorrected Earth-asteroid transfer trajectory in the rotating frame.

  • Figure 3

    (Color online) Corrected Earth-asteroid transfer trajectory in the rotating frame.

  • Figure 4

    (Color online) Asteroid return trajectory in the rotating frame.

  • Figure 5

    (Color online) The trajectory of asteroid 2016HO3 sample return mission in the inertial frame.

  • Figure 6

    (Color online) Specific impulse and thrust with distance.

  • Figure 7

    (Color online) Low-thrust transfer trajectory to main belt comet 133P with variable thrust.

  • Figure 8

    (Color online) Distance between the spacecraft and sun.

  • Figure 9

    (Color online) Change of thrust.

  • Figure 10

    (Color online) Change of thrust directions for variable thrust transfer.

  • Figure 11

    (Color online) Low-thrust transfer trajectory to main belt comet 133P with constant thrust.

  • Table 1   Orbit parameters of asteroid 2016HO3 and comet 133P

    参数

    2016HO3

    133P

    半长轴a或近日距q (AU)

    1.001050

    2.650102

    偏心率e

    0.104041

    0.161060

    轨道倾角i (°)

    7.772

    1.387

    升交点赤经Ω (°)

    66.466

    160.150

    近日点幅角ω (°)

    307.110

    132.009

    平近点角M (°)或近日点时刻

    134.460

    2013/02/8.1534

  • Table 2   Sample return opportunities for 2016HO3

    发射时间

    返回时间

    采样返回周期

    总速度增量 (m/s)

    2021/11/30

    2024/12/04

    3.01年

    1631

    2022/05/29

    2024/11/29

    2.51年

    1307

    2024/11/30

    2026/12/04

    2.01年

    1563

  • Table 3   Detailed information about the asteroid sample return trajectory in 2022

    地球发射

    深空机动 (km/s)

    到达速度增量 (km/s)

    小行星返回

    出发速度增量(km/s)

    120 km速度(km/s)

    总时间 (年)

    初始质量(kg)

    深空机动

    小行星到达

    小行星探测

    地球到达

    返回地球剩余质量 (kg)

    2022/6/1

    0.372

    0.465

    2024/5/26

    0.487

    11.811

    2.51

    2000

    2022/10/10

    2023/5/22

    352

    2024/11/29

    1334.4

  • Table 4   Orbital parameters of low-thrust transfer trajectory to comet 133P

    参数

    数值

    探测器初始质量 (kg)

    1277.4

    到达剩余质量 (kg)

    849.9

    消耗燃料质量 (kg)

    428.3

    火星借力时间

    2026/04/01

    主带彗星交会时间

    2032/05/29

    火星借力飞越半径 (km)

    4663.2

    发动机累计工作时间 (h)

    12701

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1