logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 50, Issue 5: 052007(2020) https://doi.org/10.1360/SSPMA-2019-0237

Recent progress in nuclear data measurement for ADS

More info
  • ReceivedJul 4, 2019
  • AcceptedAug 9, 2019
  • PublishedOct 31, 2019
PACS numbers

Abstract

Recent progress in nuclear data measurement for ADS at IMP is reviewed briefly. Based on the Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR), the nuclear data terminal was established, which mainly includes neutron time-of-flight spectrometer, light charged particles spectrometer and water-bath neutron activation setup. A number of experiments have been conducted in the nuclear data terminal.The experiments of 400 MeV/u $^{16}$O bombarded on tungsten target and lead target, 296 MeV deutron bombarded on lead target and thick beryllium target, 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target using the water-bath neutron activation method were performed in the nuclear data terminal.The nuclear data of neutron yields, energy or time spectrum, double differential cross section and so on have been investigated.On the other hand, based on the neutronics integral experimental setup at China Institute of Atomic Energy, benchmarking of evaluated nuclear data libraries was performed on ADS relevant materials gallium, graphite, silicon carbine, tungsten, uranium samples and so on.ENDF/B-VII.1, CENDL-3.1, JENDL-4.0, JEFF-3.2 and TENDL-2015 libraries were validated.


Funded by

国家自然科学基金委员会-中国科学院大科学装置科学研究联合基金(U1832205)

国家自然科学基金(11875298,11605257)


Acknowledgment

感谢中国科学院近代物理研究所HIRFL团队对加速器运行工作的辛勤付出; 感谢中国原子能科学研究院核数据重点实验室300 kV高压倍加器装置实验团队的努力工作和大力支持.


References

[1] Nifenecker H, Meplan O, David S. Accelerator driven subcritical reactors. Institute of physics publishing, Bristol and Philadelphia, IOP Publishing Ltd., 2003. Google Scholar

[2] Xiao G Q, Xu H S, Wang S C. HIAF and CiADS National Research Facilities: Progress and Prospect (in Chinese). Nucl Phys Rev, 2017, 34: 275--283. Google Scholar

[3] Ikeda Y. Nucear data relevant to accelerator driven system. J Nucl Sci Tech, Supplement 2. 2002, 48: 4--12. Google Scholar

[4] Chen Z Q. Recent progress in nuclear data measurement for ADS at IMP. NUCL SCI TECH, 2017, 28: 184 CrossRef Google Scholar

[5] Zhang S Y L T, Chen Z Q, Liu J L, et al. Development and the first test experiment of experimental setup for measuring of ADS nuclear data (in Chinese). Atomic Energy Sci Tech, 2014, 48: 45--49. Google Scholar

[6] Liu T J. The Present status and development of neutron nuclear data evaluation. Atomic Energy Sci Tech, 1995, 29: 321. Google Scholar

[7] Koning A J, Delaroche J P, Bersillon O. Nuclear data for accelerator driven systems: Nuclear models, experiments and data libraries. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 1998, 414: 49-67 CrossRef ADS Google Scholar

[8] Zhang X, Zhang Y, Ma F. Neutron production for 250 MeV protons bombarding on thick grain-made tungsten target. Eur Phys J A, 2015, 51: 106 CrossRef ADS Google Scholar

[9] Chen L, Ma F, Zhanga X Y. Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons. Nucl Instruments Methods Phys Res Sect B-Beam Interactions Mater Atoms, 2015, 342: 87-90 CrossRef ADS Google Scholar

[10] Ju Y Q, Zhang X Y, Ma F. The production of residual radionuclides by a 250 MeV proton beam. J Phys G-Nucl Part Phys, 2015, 42: 125102 CrossRef ADS Google Scholar

[11] Han R, Wada R, Chen Z. Fast neutron scattering on Gallium target at 14.8 MeV. Nucl Phys A, 2015, 936: 17-28 CrossRef ADS arXiv Google Scholar

[12] Han R, Chen Z Q, Nie Y B, et al. Measurement and analysis of leakage neutron spectrum from Gallium sample (in Chinese). Atomic Energy Sci Tech, 2018, 52: 1200--1205. Google Scholar

[13] Luo F, Han R, Chen Z. Measurement of leakage neutron spectra from graphite cylinders irradiated with D-T neutrons for validation of evaluated nuclear data.. Appl Radiat Isotopes, 2016, 116: 185-189 CrossRef PubMed Google Scholar

[14] Luo F, Han R, Nie Y. Measurement of leakage neutron spectra from silicon carbide cylinders with D?CT neutrons and validation of evaluated nuclear data. Fusion Eng Des, 2016, 112: 355-359 CrossRef Google Scholar

[15] Luo F, Han R, Chen Z. Appl Radiat Isotopes, 2018, 137: 123-128 CrossRef PubMed Google Scholar

[16] Luo F, Han R, Chen Z. Benchmark test of JEFF-3.2, FENDL-3.0 and TENDL-2015 with TOF experiments for graphite, silicon carbide, uranium and multiple-slab samples. Nucl Eng Des, 2018, 331: 342-347 CrossRef Google Scholar

[17] Zhang S, Chen Z, Nie Y. Measurement of leakage neutron spectra for Tungsten with D-T neutrons and validation of evaluated nuclear data. Fusion Eng Des, 2015, 92: 41-45 CrossRef Google Scholar

[18] Zhang S, Nie Y B, Ren J. Benchmarking of JEFF-3.2, FENDL-3.0 and TENDL-2014 evaluated data for tungsten with 14.8 MeV neutrons. NUCL SCI TECH, 2017, 28: 27 CrossRef Google Scholar

[19] Han R, Chen Z, Nie Y. Neutron transport and benchmark on granular tungsten samples with 14.8?MeV neutrons. Fusion Eng Des, 2018, 135: 116-120 CrossRef Google Scholar

[20] Sun Q., Chen Z., Han R., Nie Y., Zhang S., Luo F., Shi F., Tian G., Lin W., Ren P., Song L., Ruan X., Ren J.. Fusion Eng. Des., 2017, 125: 9-17 CrossRef Google Scholar

[21] Nie Y, Bao J, Ruan X. Benchmarking of evaluated nuclear data for uranium by a 14.8MeV neutron leakage spectra experiment with slab sample. Ann Nucl Energy, 2010, 37: 1456-1460 CrossRef Google Scholar

[22] Nie Y, Ren J, Ruan X. The benchmark experiment on slab beryllium with D?CT neutrons for validation of evaluated nuclear data. Fusion Eng Des, 2016, 105: 8-14 CrossRef Google Scholar

[23] Schlegel D. TARGET User's Manual, laborbericht PTB-6.42-05-2. Braunschweig, 2005. Google Scholar

[24] Dietze G, Klein H. NRESP4 and NEFF4 Monte Carlo code for the calculation of neutron response functions and detection efficiencies for NE213 scintillation detectors. Braunschweig: Physikalisch-Technische Bundesanstalt, 1982. PTB-ND-22. Google Scholar

[25] Han-Xiong H, Xi-Chao R, Guo-Chang C. DETECTORS AND EXPERIMENTAL METHODS: Measurement of the response function and the detection efficiency of an organic liquid scintillator for neutrons between 1 and 30 MeV. Chin Phys C, 2009, 33: 677-681 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) A schematic view of nuclear data measurement facility.

  • Figure 2

    (Color online) Neutron double-differential cross section of 400 MeV/u $^{16}$O bombarded on a tungsten and lead target.

  • Figure 3

    (Color online) Angle distribution of light charge particle p, d, t, $^4$He for 400 MeV/u $^{16}$O bombarded on a tungsten and lead target.

  • Figure 4

    (Color online) Neutron double-differential cross section of 296 MeV deuteron bombarded on a lead target.

  • Figure 5

    (Color online) Water-bath neutron activation measurement setup.

  • Figure 6

    (Color online) A schematic view of the experimental arrangement.

  • Figure 7

    (Color online) A schematic view of the experimental arrangement for ADS target and reactor system.

  • Figure 8

    Block diagram of the electronic circuit for the present experiment. PA: preamplifier, 590: amplifier, 567: time-to-amplitude converter, 2160A: pulse shape discrimination module, 935: constant fraction discriminator, VT120: fast timing preamplifier, 142B: preamplifier, 572: amplifier, 551: timing single-channel analyzer, C257: scaler.

  • Figure 9

    (Color online) The measured neutron leakage spectrum for polyethylene sample compared with MCNP simulated resultswith ENDF/B-VII.1, CENDL-3.1, JEFF-3.2, JENDL-4.0 and TENDL-2015 libraries.

  • Figure 10

    (Color online) Neutron leakage spectrum for Gallium sample.

  • Figure 11

    (Color online) Neutron leakage spectrum for Graphite sample.

  • Figure 12

    (Color online) Neutron leakage spectrum for Silicon carbide sample.

  • Figure 13

    (Color online) Neutron leakage spectrum for Tungsten block sample.

  • Figure 14

    (Color online) Characteristics of the unit cell (a) and accumulation structure (b) for the SC, CHPOP, BCC and FCC lattices.And the corresponding maximum packing efficiency is given [19].

  • Figure 15

    (Color online) The leakage neutron spectra simulated by MCNP code using Block (solid), FCC (dashed), BCC (dot), CHPOP (dot-dashed) and SC (dot-dot-dashed) geometry arrangements [19].

  • Figure 16

    (Color online) The leakage neutron spectra simulated by MCNP code using the same filling factor of 52$%$ for FCC (dashed), BCC (dot), CHPOP (dot-dashed) and SC (dot-dot-dashed) lattices arrangements [19].

  • Figure 17

    (Color online) Neutron leakage spectrum for Tungsten granular sample [19].

  • Figure 18

    (Color online) Neutron leakage spectrum for Uranium block sample.

  • Figure 19

    (Color online) Neutron leakage spectrum for multiple-slab (1) sample.

  • Figure 20

    (Color online) Neutron leakage spectrum for multiple-slab (2) sample.

  • Table 1   The isotopes or elements, data of which need to be evaluated or validated for ADS
    类别 核素/元素
    靶材料 $^{209}$Bi, $^{208,207,206,204}$Pb, $^{nat}$Pb, $^{186,184,183,182}$W, $^{nat}$W
    $^{181}$Ta, $^{nat}$Ta, Zr, Sn, Hg, U, Pu, F, Cl, Na, Fe, Al
    Po产物 $^{209}$Bi(p,xn)$^{207,208,209}$Po, $^{209}$Bi(n,$\gamma$)$^{210}$Bi$\dashrightarrow^{210}$Po
    锕系 $^{237,238}$Np, $^{241,242,242m,243}$Am, $^{242,243,244,245,246,248}$Cm
    长寿命FP $^{79}$Se, $^{93}$Zr, $^{99}$Tc, $^{107}$Pd, $^{126}$Sn, $^{129}$I, $^{135}$Cs
    燃料 $^{238,~235}$U, $^{239,238}$Pu, $^{14,15}$N, O, F, Al
    Th循环 $^{232}$Th, $^{231,232,233}$Pa, $^{233,234}$Pa
    结构材料 Zn, Cu, Ni, Co, Fe, Mn, Cr, Ti, Ca, Ar, Al, Mg
    Na, O, N, C, B, Be, He, $^{3}$T
    屏蔽材料 O, Si, P, Ca, Ti, Fe
  • Table 2   Experimental measurement sample parameters
    序号 样品 尺寸 (cm) 角度 ($^{\circ}$)
    1 聚乙烯 $\Phi13\times6$ $60$
    2 $\Phi13\times3.2,~\Phi13\times6.4$ $60$, $120$
    3 石墨 $\Phi13\times2,~\Phi13\times20$ $60$, $120$
    4 碳化硅 $\Phi13\times2,~\Phi13\times20$ $60$, $120$
    5 $10\times10\times3.5,~10\times10\times7$ $60$, $120$
    6 钨球 直径1 mm,容器壁厚1 mm $60$
    颗粒 腔内尺寸$10\times10\times7.2$
    7 $10\times10\times2,~10\times10\times5$ $60$, $120$
    $10\times10\times11$
    8 W+U W:$10\times10\times3.5$, U:$10\times10\times2$ $60$
    9 W+U+C C:$10\times10\times2$ $60$
    10 W+U+C+CH$_{2}$ CH$_{2}$:$10\times10\times2$ $60$
    11 U+C U:$10\times10\times5$, C:$10\times10\times10$ $60$
    12 U+C+CH$_{2}$ CH$_{2}$:$10\times10\times10$ $60$

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1