logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 3: 039505(2018) https://doi.org/10.1360/SSPMA2017-00248

High redshift gamma-ray bursts as a probe of the early universe and first stars

More info
  • ReceivedSep 15, 2017
  • AcceptedOct 24, 2017
  • PublishedJan 23, 2018
PACS numbers

Abstract

Gamma-ray bursts (GRBs) are the most violent explosions in the universe. Thanks totheir extreme brightness, GRBs can be detected up to the edge of the visible universe.As bright beacons in the deep universe, high-redshift GRBs have been considered as an ideal tool toexplore the properties of the early universe: including the dark energy and cosmological parameters,star formation rate, first stars, the reionization and metal enrichment history of the universe.So the detection of high-$z$ GRBs has important scientific significance. Compared to currentmissions, Einstein Probe has a higher sensitivity and a wider field-of-view, operating the softX-ray band (0.5–4 keV), which would be suitable for the detection of high-$z$ GRBs. With itsobservational mode and ability, we compute the expected detection rate of high-$z$ GRBs byEinstein Probe by means of a observational tested population synthesis model of Swift GRBs.Our results show that the detection rates are expected to be about 20 events $\rm~yr^{-1}$ $\rm~sr^{-1}$for $z>6$ bursts, 6 events $\rm~yr^{-1}$ $\rm~sr^{-1}$ for $z>8$ bursts, and 1 events $\rm~yr^{-1}$$\rm~sr^{-1}$ for $z>12$ bursts, respectively. Over the 3 yr lifetime of the mission,Einstein Probe will able to detect about 65 GRBs at $z>6$, including $\sim20$ GRBs at $z>8$ and$\sim3$ GRBs at $z>12$. In sum, Einstein Probe would significantly improve the detection of high-$z$GRBs, and these abundant observational information would probably reveal some scientific mysteries ofthe early universe.


Funded by

中国科学院青年创新促进会(2011231)

国家重点基础研究发展计划(2014CB845800)

国家自然科学基金(11673068)

中国科学院前沿科学重点研究项目(QYZDB-SSW- SYS005)

中国科学院先导科技专项(XDB23040000)

广西相对论天体物理重点实验室基金

江苏省自然科学基金(BK20161096)


References

[1] Kouveliotou C, Meegan C A, Fishman G J. Identification of two classes of gamma-ray bursts. Astrophys J, 1993, 413: L101-L104 CrossRef ADS Google Scholar

[2] Cucchiara A, Levan A J, Fox D B. A Photometric Redshift of $z~\sim9.4$ for GRB 090429B. Astrophys J, 2011, 736: 7 CrossRef ADS arXiv Google Scholar

[3] Amati L, Frontera F, Tavani M. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron Astrophys, 2002, 390: 81-89 CrossRef ADS Google Scholar

[4] Ghirlanda G, Ghisellini G, Lazzati D. , Ghisellini, G., Lazzati, D. The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their $\nu~F_{\nu}$ Spectrum. Astrophys J, 2004, 616: 331-338 CrossRef ADS Google Scholar

[5] Yonetoku D, Murakami T, Nakamura T. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys J, 2004, 609: 935-951 CrossRef ADS Google Scholar

[6] Liang E, Zhang B. Model-independent Multivariable Gamma-Ray Burst Luminosity Indicator and Its Possible Cosmological Implications. Astrophys J, 2005, 633: 611-623 CrossRef ADS Google Scholar

[7] Hjorth J, Sollerman J, M?ller P. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.. Nature, 2003, 423: 847-850 CrossRef PubMed ADS Google Scholar

[8] Stanek K Z, Matheson T, Garnavich P M. Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. Astrophys J, 2003, 591: L17-L20 CrossRef ADS Google Scholar

[9] Ciardi B, Loeb A. Expected Number and Flux Distribution of Gamma-Ray Burst Afterglows with High Redshifts. Astrophys J, 2000, 540: 687-696 CrossRef ADS Google Scholar

[10] Gou L J, Meszaros P, Abel T. Detectability of Long Gamma-Ray Burst Afterglows from Very High Redshifts. Astrophys J, 2004, 604: 508-520 CrossRef ADS Google Scholar

[11] Dai Z G, Liang E W, Xu D. G., Liang, E. W., Xu, D. Constraining $\Omega_{M}$ and Dark Energy with Gamma-Ray Bursts. Astrophys J, 2004, 612: L101-L104 CrossRef ADS Google Scholar

[12] Ghirlanda G, Ghisellini G, Lazzati D. Gamma-Ray Bursts: New Rulers to Measure the Universe. Astrophys J, 2004, 613: L13-L16 CrossRef ADS Google Scholar

[13] Schaefer B E. Gamma-Ray Burst Hubble Diagram to z=4.5. Astrophys J, 2003, 583: L67-L70 CrossRef ADS Google Scholar

[14] Schaefer B E. The Hubble Diagram to Redshift >6 from 69 Gamma?Ray Bursts. Astrophys J, 2007, 660: 16-46 CrossRef ADS Google Scholar

[15] Daigne F, Rossi E M, Mochkovitch R. The redshift distribution of Swift gamma-ray bursts: evidence for evolution. Mon Not R Astron Soc, 2006, 372: 1034-1042 CrossRef ADS Google Scholar

[16] Guetta D, Piran T. Do long duration gamma ray bursts follow star formation?. J Cosmol Astropart Phys, 2007, 2007: 003-003 CrossRef ADS Google Scholar

[17] Kistler M D, Yüksel H, Beacom J F. An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate. Astrophys J, 2008, 673: L119-L122 CrossRef ADS arXiv Google Scholar

[18] Wang F Y. The high-redshift star formation rate derived from gamma-ray bursts: possible origin and cosmic reionization. Astron Astrophys, 2013, 556: A90 CrossRef ADS arXiv Google Scholar

[19] Wei J J, Wu X F, Melia F. Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. Mon Not R Astron Soc, 2014, 439: 3329-3341 CrossRef ADS arXiv Google Scholar

[20] Langer N, Norman C A. On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution. Astrophys J, 2006, 638: L63-L66 CrossRef ADS Google Scholar

[21] Li L X. Star formation history up to z = 7.4: implications for gamma-ray bursts and cosmic metallicity evolution. Mon Not R Astron Soc, 2008, 388: 1487-1500 CrossRef ADS arXiv Google Scholar

[22] Cong-yi X, Da-ming W. The Effect of the Initial Mass Function of Stars on the Burst Rate of GRBs. Chin Astron Astrophys, 2009, 33: 151-157 CrossRef ADS Google Scholar

[23] Wang F Y, Dai Z G. An Evolving Stellar Initial Mass Function and the Gamma-ray Burst Redshift Distribution. Astrophys J, 2011, 727: L34 CrossRef ADS arXiv Google Scholar

[24] Virgili F J, Zhang B, Nagamine K. Gamma-ray burst rate: high-redshift excess and its possible origins. Mon Not R Astron Soc, 2011, 417: 3025-3034 CrossRef ADS arXiv Google Scholar

[25] Salvaterra R, Campana S, Vergani S D. A Complete Sample of Bright Swift Long Gamma-Ray Bursts. I. Sample Presentation, Luminosity Function and Evolution. Astrophys J, 2012, 749: 68 CrossRef ADS arXiv Google Scholar

[26] Ciardi B, Ferrara A. The First Cosmic Structures and Their Effects. Space Sci Rev, 2005, 116: 625-705 CrossRef ADS Google Scholar

[27] Bromm V, Yoshida N. The First Galaxies. Annu Rev Astron Astrophys, 2011, 49: 373-407 CrossRef ADS arXiv Google Scholar

[28] Hosokawa T, Omukai K, Yoshida N. Protostellar Feedback Halts the Growth of the First Stars in the Universe. Science, 2011, 334: 1250-1253 CrossRef PubMed ADS arXiv Google Scholar

[29] Hirano S, Hosokawa T, Yoshida N. One Hundred First Stars: Protostellar Evolution and the Final Masses. Astrophys J, 2014, 781: 60 CrossRef ADS arXiv Google Scholar

[30] Bromm V, Loeb A. High-Redshift Gamma-Ray Bursts from Population III Progenitors. Astrophys J, 2006, 642: 382-388 CrossRef ADS Google Scholar

[31] Campisi M A, Maio U, Salvaterra R. Population III stars and the long gamma-ray burst rate. Mon Not R Astron Soc, 2011, 416: 2760-2767 CrossRef ADS arXiv Google Scholar

[32] Wang F Y, Bromm V, Greif T H. Probing Pre-galactic Metal Enrichment with High-redshift Gamma-Ray Bursts. Astrophys J, 2012, 760: 27 CrossRef ADS arXiv Google Scholar

[33] Bromm V, Ferrara A, Coppi P S. The fragmentation of pre-enriched primordial objects. Mon Not R Astron Soc, 2001, 328: 969-976 CrossRef ADS Google Scholar

[34] Schneider R, Ferrara A, Natarajan P. First Stars, Very Massive Black Holes, and Metals. Astrophys J, 2002, 571: 30-39 CrossRef ADS Google Scholar

[35] Bromm V, Loeb A. The Expected Redshift Distribution of Gamma-Ray Bursts. Astrophys J, 2002, 575: 111-116 CrossRef ADS Google Scholar

[36] Wyithe J S B, Loeb A. Reionization of Hydrogen and Helium by Early Stars and Quasars. Astrophys J, 2003, 586: 693-708 CrossRef ADS Google Scholar

[37] Qian Y Z, Wasserburg G J. A Model for Abundances in Metal-poor Stars. Astrophys J, 2001, 559: 925-941 CrossRef ADS Google Scholar

[38] Oh S P. Probing the dark ages with metal absorption lines. Mon Not R Astron Soc, 2002, 336: 1021-1029 CrossRef ADS Google Scholar

[39] Fan X, Carilli C L, Keating B. Observational Constraints on Cosmic Reionization. Annu Rev Astron Astrophys, 2006, 44: 415-462 CrossRef ADS Google Scholar

[40] Furlanetto S R, Loeb A. Metal Absorption Lines as Probes of the Intergalactic Medium Prior to the Reionization Epoch. Astrophys J, 2003, 588: 18-34 CrossRef ADS Google Scholar

[41] Kawai N, Kosugi G, Aoki K. An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.. Nature, 2006, 440: 184-186 CrossRef PubMed ADS Google Scholar

[42] Salvaterra R, Valle M D, Campana S. GRB 090423 at a redshift of z approximately 8.1.. Nature, 2009, 461: 1258-1260 CrossRef PubMed ADS arXiv Google Scholar

[43] Gunn, J. E., Peterson, B. A. On the density of neutral hydrogen in intergalactic space. The Astrophysical Journal, 1965, 142: 1633--1641. Google Scholar

[44] Barkana R, Loeb A. In the beginning: the first sources of light and the reionization of the universe. Phys Rep, 2001, 349: 125-238 CrossRef ADS Google Scholar

[45] Robertson B E, Ellis R S, Dunlop J S. Early star-forming galaxies and the reionization of the Universe. Nature, 2010, 468: 49-55 CrossRef PubMed ADS arXiv Google Scholar

[46] Totani T, Kawai N, Kosugi G. Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3$^{*}$. Publ Astron Soc Jpn, 2006, 58: 485-498 CrossRef ADS Google Scholar

[47] Totani T, Aoki K, Hattori T. Probing intergalactic neutral hydrogen by the Lyman alpha red damping wing of gamma-ray burst 130606A afterglow spectrum at z = 5.913. Publications Astron Soc Jpn, 2014, 66: 63-63 CrossRef ADS arXiv Google Scholar

[48] Chornock R, Berger E, Fox D B. GRB 130606A as a Probe of the Intergalactic Medium and the Interstellar Medium in a Star-forming Galaxy in the First Gyr after the Big Bang. Astrophys J, 2013, 774: 26 CrossRef ADS arXiv Google Scholar

[49] Chornock R, Berger E, Fox D B, et al. GRB 140515A at z=6.33: Constraints on the end of reionization from a gamma-ray burst in a low hydrogen column density environment,. arXiv Google Scholar

[50] Hartoog O E, Malesani D, Fynbo J P U. Astron Astrophys, 2015, 580: A139 CrossRef ADS arXiv Google Scholar

[51] de Souza R S, Mesinger A, Ferrara A. Constraints on warm dark matter models from high-redshift long gamma-ray bursts. Mon Not R Astron Soc, 2013, 432: 3218-3227 CrossRef ADS arXiv Google Scholar

[52] Greiner J, Krühler T, Fynbo J P U. GRB 080913 at Redshift 6.7. Astrophys J, 2009, 693: 1610-1620 CrossRef ADS arXiv Google Scholar

[53] Laskar, T., Berger, E., Tanvir, N., et al. GRB 120521C at $z\sim6$ and the properties of high-redshift $\gamma$-ray bursts. The Astrophysical Journal, 2014, 781: 1. Google Scholar

[54] Tanvir, N. R. The highest redshift gamma-ray bursts,. arXiv Google Scholar

[55] Salvaterra R. High redshift Gamma-Ray Bursts. J High Energ Astrophys, 2015, 7: 35-43 CrossRef ADS arXiv Google Scholar

[56] Melandri A, Covino S, Rogantini D. Optical and X-ray rest-frame light curves of the BAT6 sample. Astron Astrophys, 2014, 565: A72 CrossRef ADS arXiv Google Scholar

[57] Salvaterra R, Campana S, Chincarini G. Gamma-ray bursts from the early Universe: predictions for present-day and future instruments. Mon Not R Astron Soc, 2008, 385: 189-194 CrossRef ADS arXiv Google Scholar

[58] Ghirlanda G, Salvaterra R, Ghisellini G. Accessing the population of high-redshift Gamma Ray Bursts. Mon Not R Astron Soc, 2015, 448: 2514-2524 CrossRef ADS arXiv Google Scholar

[59] Hopkins A M, Beacom J F. On the Normalization of the Cosmic Star Formation History. Astrophys J, 2006, 651: 142-154 CrossRef ADS Google Scholar

[60] Band D, Matteson J, Ford L. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys J, 1993, 413: 281-292 CrossRef ADS Google Scholar

[61] Kaneko Y, Preece R D, Briggs M S. The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts. ASTROPHYS J SUPPL S, 2006, 166: 298-340 CrossRef ADS Google Scholar

[62] Nava L, Ghirlanda G, Ghisellini G. Spectral properties of 438 GRBs detected by Fermi/GBM. Astron Astrophys, 2011, 530: A21 CrossRef ADS arXiv Google Scholar

[63] Goldstein A, Burgess J M, Preece R D. The Fermi GBM Gamma-Ray Burst Spectral Catalog: The First Two Years. Astrophys J Suppl Ser, 2012, 199: 19 CrossRef ADS arXiv Google Scholar

[64] Nava L, Salvaterra R, Ghirlanda G. A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations. Mon Not R Astron Soc, 2012, 421: 1256-1264 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a)–(d) Comparison of the properties of $z>6$ bursts (red squares and lines) with those obtained from the bright Swift/BAT sample (black points and lines) [55].

  • Figure 2

    (Color online) Peak flux distribution of high redshift bursts ($z>6$) as measured in the 15–150 keV Swift/BAT band. The solid (dotted) step represents the distribution of bursts with spectroscopic (spectroscopic and photometric) redshift. The shaded regions show model predictions, taking into account the uncertainties in the determination of the evolution of the GRB luminosity function (or density). Dark (light) color corresponds to the density (luminosity) evolution model. The dashed line is obtained assuming no evolution and clearly underestimates the number of high-$z$ observations at all peak fluxes [55].

  • Figure 3

    (Color online) Required sensitivity, in terms of minimum peak flux $P_{\Delta~E}$ that can be detected in a given energy band $\Delta~E$, and field-of-view (FOV) to detect 10 GRB yr$^{-1}$ with $z>8$. Different lines represent different energy bands as labeled in the plot. See ref. [58]for the details of the calculation. Adopted from ref. [55].

  • Figure 4

    (Color online) Same as Figure 3, required sensitivity that can be detected in a given energy band $\Delta~E$, and FOV to detect 10 GRB yr$^{-1}$ with $z>8$. See ref. [58]for the details of the calculation.

  • Figure 5

    (Color online) Light curve of GRB 090423 as observed by Swift/BAT (redcrosses), Swift/XRT (blue plus) and in the NIR (cyan points). Adopted from ref. [42].

  • Figure 6

    (Color online) Light curves of GRB 090423 as simulated by EP/WXT at different redshifts.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1