logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 3: 039506(2018) https://doi.org/10.1360/SSPMA2017-00250

On the detection of shock breakouts of core-collapse supernovae with the Einstein Probe satellite

More info
  • ReceivedSep 15, 2017
  • AcceptedOct 12, 2017
  • PublishedJan 12, 2018
PACS numbers

Abstract

The shock breakout process and its characteristics for various core-collapse supernovae types are described, after a brief introduction of main observational facts and theoretical hypotheses of core-collapse supernovae. A radiation-dominated shock is formed and transports outwards inside the progenitor star during a core-collapse-induced explosion, while the high-temperature radiation field is trapped behind the shock front that has a finite width corresponding to an optical depth of about 10−20. When the shock reaches close to the progenitor surface, the trapped radiation begins to leak out, mainly in the form of ultraviolet and soft X-ray photons, giving rise to a sudden huge brightening of the star which must be the first electromagnetic signal of a core-collapse supernova. The duration of a shock breakout is very short, ranging from about 10 s for the explosion of a compact Wolf-Rayet star to about 1000 s for that of an extended red supergiant. Because of this, only few questionable candidates have been discovered so far including a serendipitous detection of SN 2008D with an X-ray telescope onboard the Swift satellite. The Einstein Probe satellite will run an all-sky survey of high sensitivity and high cadence in the soft X-ray band with its wide-field telescope of a Lobster-eye type, which is very suitable for the detection of ephemeral supernova shock breakouts. Using some typical theoretical values of shock breakouts, including durations, spectrum temperatures, and peak luminosities, it is predicted that each year the satellite will be able to routinely obtain dozens of light curves of shock breakouts for type II-P supernovae, i.e., explosions of red supergiants. But the rate drops to less than few detections per year for the explosions of blue supergiants and those of Wolf-Rayet stars in total due to compactness of such stars. The shock breakout sample to be built by the Einstein Probe satellite can be used to constrain the progenitors, in particular their radii, pre-explosion mass losses, and explosion mechanisms of core-collapse supernovae.


Funded by

中国科学院战略性先导科技专项(XDA15052100)


Acknowledgment

感谢中国科学院国家天文台赵冬华博士和刘柱博士提供WXT能谱响应函数.


References

[1] Woosley S E, Heger A, Weaver T A. The evolution and explosion of massive stars. Rev Mod Phys, 2002, 74: 1015-1071 CrossRef ADS Google Scholar

[2] Arnett D. Supernova and Nucleosynthesis. Princeton: Princeton University Press, 1996. Google Scholar

[3] Deng J S. Supernova explosions of massive stars (in Chinese). In: 10000 Selected Problems in Sciences: Astronomy. Beijing: Science Press, 2010. 311–314 [邓劲松. 大质量恒星的超新星爆发. 见: 10000个科学难题: 天文学卷. 北京: 科学出版社, 2010. 311–314]. Google Scholar

[4] Colgate S A. Prompt gamma rays and X rays from supernovae. Can J Phys, 1968, 46: S476-S480 CrossRef ADS Google Scholar

[5] Grassberg E K, Imshennik V S, Nadyozhin D K. On the theory of the light curves of supernovae. Astrophys Space Sci, 1971, 10: 28-51 CrossRef ADS Google Scholar

[6] Arnett W D. Supernova light curves and presupernova models. Astrophys J, 1971, 163: 11-16 CrossRef ADS Google Scholar

[7] Falk S W, Arnett W D. Radiation dynamics, envelope ejection, and supernova light curves. Astrophys J Suppl Ser, 1977, 33: 515-562 CrossRef ADS Google Scholar

[8] Ensman L, Burrows A. Shock breakout in SN 1987A. Astrophys J, 1987, 393: 742-755 CrossRef ADS Google Scholar

[9] Tolstov A G, Blinnikov S I, Nadyozhin D K. Coupling of matter and radiation at supernova shock breakout. Mon Not R Astron Soc, 2013, 429: 3181-3199 CrossRef ADS arXiv Google Scholar

[10] Matzner C D, McKee C F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys J, 1999, 510: 379-403 CrossRef ADS Google Scholar

[11] Calzavara A J, Matzner C D. Supernova properties from shock breakout X-rays. Mon Not R Astron Soc, 2004, 351: 694-706 CrossRef ADS Google Scholar

[12] Klein R I, Chevalier R A. X-ray bursts from Type II supernovae. Astrophys J, 1978, 223: L109-L112 CrossRef ADS Google Scholar

[13] Falk S W. Shock steepening and prompt thermal emission in supernovae. Astrophys J, 1978, 225: L133-L136 CrossRef ADS Google Scholar

[14] Blinnikov S, Lundqvist P, Bartunov O, et al. Radiation hydrodynamics of SN 1987A. I. Global analysis of the light curve for the first 4 months. Astrophys J, 2000, 532: 1132-1149 CrossRef ADS Google Scholar

[15] Mazzali P A, Deng J, Nomoto K, et al. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature, 2006, 442: 1018-1020 CrossRef PubMed ADS Google Scholar

[16] Campana S, Mangano V, Blustin A J, et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature, 2006, 442: 1008-1010 CrossRef PubMed ADS Google Scholar

[17] Wang X Y, Li Z, Waxman E, et al. Nonthermal gamma-ray/X-ray flashes from shock breakout in gamma-ray burst-associated supernovae. Astrophys J, 2007, 664: 1026-1032 CrossRef ADS Google Scholar

[18] Katz B, Budnik R, Waxman E. Fast radiation mediated shocks and supernova shock breakouts. Astrophys J, 2010, 716: 781-791 CrossRef ADS arXiv Google Scholar

[19] Nakar E, Sari R. Relativistic shock breakouts—A variety of gamma-ray flares: From low-luminosity gamma-ray bursts to type ia supernovae. Astrophys J, 2012, 747: 88 CrossRef ADS arXiv Google Scholar

[20] Soderberg A M, Berger E, Page K L, et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature, 2008, 453: 469-474 CrossRef PubMed ADS arXiv Google Scholar

[21] Chevalier R A, Fransson C. Shock breakout emission from a Type Ib/c supernova: XRT 080109/SN 2008D. Astrophys J, 2008, 683: L135-L138 CrossRef ADS arXiv Google Scholar

[22] Mazzali P A, Valenti S, Della V M, et al. The metamorphosis of supernova SN 2008D/XRF 080109: A link between supernovae and GRBs/hypernovae. Science, 2008, 321: 1185-1188 CrossRef PubMed ADS arXiv Google Scholar

[23] Li L X. The X-ray transient 080109 in NGC 2770: An X-ray flash associated with a normal core-collapse supernova. Mon Not R Astron Soc, 2008, 388: 603-610 CrossRef ADS arXiv Google Scholar

[24] Schawinski K, Justham S, Wolf C, et al. Supernova shock breakout from a red supergiant. Science, 2008, 321: 223-226 CrossRef PubMed ADS arXiv Google Scholar

[25] Gezari S, Dessart L, Basa S, et al. Probing shock breakout with serendipitous GALEX detections of two SNLS Type II-P supernovae. Astrophys J, 2008, 683: L131-L134 CrossRef ADS arXiv Google Scholar

[26] Ofek E O, Rabinak I, Neill J D, et al. Supernova PTF 09UJ: A possible shock breakout from a dense circumstellar wind. Astrophys J, 2010, 724: 1396-1401 CrossRef ADS arXiv Google Scholar

[27] Gezari S, Jones D O, Sanders N E, et al. GALEX detection of shock breakout in type IIP supernova PS1-13arp: Implications for the progenitor star wind. Astrophys J, 2015, 804: 28 CrossRef ADS arXiv Google Scholar

[28] Tanaka M, Tominaga N, Morokuma T, et al. Rapidly rising transients from the subaru hyper suprime-cam transient survey. Astrophys J, 2016, 819: 5 CrossRef ADS arXiv Google Scholar

[29] Smartt S J. Progenitors of core-collapse supernovae. Annu Rev Astron Astrophys, 2009, 47: 63-106 CrossRef ADS arXiv Google Scholar

[30] Suzuki A, Shigeyama T. Probing explosion geometry of core-collapse supernovae with light curves of the shock breakout. Astrophys J, 2010, 717: L154-L158 CrossRef ADS arXiv Google Scholar

[31] Suzuki A, Maeda K, Shigeyama T. 2D radiation-hydrodynamic simulations of supernova shock breakout in bipolar explosions of a blue supergiant progenitor. Astrophys J, 2016, 825: 92 CrossRef ADS arXiv Google Scholar

[32] Kistler M D, Haxton W C, Yüksel H. Tomography of massive stars from core collapse to supernova shock breakout. Astrophys J, 2013, 778: 81 CrossRef ADS arXiv Google Scholar

[33] Waxman E, Loeb A. TeV neutrinos and GeV photons from shock breakout in supernovae. Phys Rev Lett, 2001, 87: 071101 CrossRef PubMed ADS Google Scholar

[34] Wang X Y, Mészáros P. GeV photons from the upscattering of supernova shock breakout X-rays by an outside gamma-ray burst jet. Astrophys J, 2006, 643: L95-L98 CrossRef ADS Google Scholar

[35] Kashiyama K, Murase K, Horiuchi S, et al. High-energy neutrino and gamma-ray transients from trans-relativistic supernova shock breakouts. Astrophys J, 2013, 769: L6 CrossRef ADS arXiv Google Scholar

[36] Giacinti G, Bell A R. Collisionless shocks and TeV neutrinos before Supernova shock breakout from an optically thick wind. Mon Not R Astron Soc, 2015, 449: 3693-3699 CrossRef ADS arXiv Google Scholar

[37] Priedhorsky W C, Peele A G, Nugent K A. An X-ray all-sky monitor with extraordinary sensitivity. Mon Not R Astron Soc, 1996, 279: 733-750 CrossRef ADS Google Scholar

[38] Sagiv I, Gal-Yam A, Ofek E O, et al. Science with a wide-field UV transient explorer. Astron J, 2014, 147: 79 CrossRef ADS arXiv Google Scholar

[39] Nakar E, Sari R. Early supernovae light curves following the shock breakout. Astrophys J, 2010, 725: 904-921 CrossRef ADS arXiv Google Scholar

[40] Sapir N, Katz B, Waxman E. Non-relativistic radiation mediated shock breakouts. iii. spectral properties of supernova shock breakout. Astrophys J, 2013, 774: 79 CrossRef ADS arXiv Google Scholar

[41] Li W, Chornock R, Leaman J, et al. Nearby supernova rates from the Lick Observatory Supernova Search—III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Mon Not R Astron Soc, 2011, 412: 1473-1507 CrossRef ADS arXiv Google Scholar

  • Table 1   Predicted detection numbers per year of the Einstein Probe satellite of shock breakouts for various core-collapse supernovae types

    超新星类型

    NH=1021 cm2

    NH=1021.7 cm2

    II-P

    ~100

    ~7–50

    87A型

    ≤4

    ≤0.7

    Ib/Ic

    ≤0.03

    08D型

    ≤1

    ≤0.6

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1