logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 3: 039503(2018) https://doi.org/10.1360/SSPMA2017-00268

Massive black holes and tidal disruption events at the center of galaxies

More info
  • ReceivedSep 20, 2017
  • AcceptedNov 30, 2017
  • PublishedJan 30, 2018
PACS numbers

Abstract

When a star enters the tidal radius of a massive black hole (BH) at the center of a galaxy, the tidal force will rip the star apart. The BH may accrete the debris of the star and produce energetic flare. This phenomenon is now commonly known as Tidal Disruption Event (TDE). The characteristics of its spectra as well as variability are dependent on the properties of the central BH and the disrupted star, so that we can study their parameters, accretion process and jet, and the property of circumnuclear environment by confirming and systematically studying the BH in quiescent galaxies. TDE may also provide important clues on the existence of intermediate BH as well as supermassive BH binary. However, the study of TDE is hindered by relatively small sample size (especially in X-ray band) and low quality of data due to the low incident rate. The Einstein Probe (EP), which covers the 0.5–4 keV soft X-ray energy band, has a large field of view as well as high sensitivity, making it perfect to detect TDE. We expect that EP will detect several tens to about one hundred TDE every year, of which around 10 or even more are TDE with relativistic jet. This will result in a homogeneously selected completely TDE sample, which is important for investigating the statistical property of TDE. It makes it possible to investigate the existence and statistical property of BH, explore the growth and evolution of BH, discovery the intermediate BH as well as supermassive BH binaries.


Funded by

中国科学院空间科学战略性先导科技专项(编号:,XDA15052100)

北京大学“985工程”建设项目“星团环境对双黑洞形成演化过程的干扰及其对引力波探测的影响”


References

[1] Lidskii V V, Ozernoi L M. Tidal triggering of stellar flares by a massive black hole. Soviet Astron Lett, 1979, 5: 16–19. Google Scholar

[2] Rees M J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature, 1988, 333: 523-528 CrossRef ADS Google Scholar

[3] Ferrarese L, Merritt D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys J, 2000, 539: L9-L12 CrossRef ADS Google Scholar

[4] Magorrian J, Tremaine S, Richstone D, et al. The demography of massive dark objects in galaxy centers. Astron J, 1998, 115: 2285-2305 CrossRef ADS Google Scholar

[5] Liu F K, Li S, Chen X. Interruption of tidal-disruption flares by supermassive black hole binaries. Astrophys J, 2009, 706: L133-L137 CrossRef ADS arXiv Google Scholar

[6] Stone N, Loeb A. Tidal disruption flares of stars from moderately recoiled black holes. Mon Not R Astron Soc, 2012, 422: 1933-1947 CrossRef ADS arXiv Google Scholar

[7] Reis R C, Miller J M, Reynolds M T, et al. A 200-second quasi-periodicity after the tidal disruption of a star by a dormant black hole. Science, 2012, 337: 949-951 CrossRef PubMed ADS arXiv Google Scholar

[8] Lei W H, Zhang B, Gao H. Frame dragging, disk warping, jet precessing, and dipped X-ray light curve of Sw J1644+57. Astrophys J, 2013, 762: 98 CrossRef ADS arXiv Google Scholar

[9] Brenneman L W, Reynolds C S. Constraining black hole spin via X-ray spectroscopy. Astrophys J, 2006, 652: 1028-1043 CrossRef ADS Google Scholar

[10] Kesden M. Black-hole spin dependence in the light curves of tidal disruption events. Phys Rev D, 2012, 86: 064026 CrossRef ADS arXiv Google Scholar

[11] Wang T G, Zhou H Y, Komossa S, et al. Extreme coronal line emitters: Tidal disruption of stars by massive black holes in galactic nuclei?. Astrophys J, 2012, 749: 115 CrossRef ADS arXiv Google Scholar

[12] Yang C W, Wang T G, Ferland G, et al. Long-term spectral evolution of tidal disruption candidates selected by strong coronal lines. Astrophys J, 2013, 774: 46 CrossRef ADS arXiv Google Scholar

[13] Jiang N, Dou L, Wang T, et al. The WISE detection of an infrared echo in tidal disruption event ASASSN-14li. Astrophys J, 2016, 828: L14-L19 CrossRef ADS arXiv Google Scholar

[14] Bade N, Komossa S, Dahlem M. Detection of an extremely soft X-ray outburst in the HII-like nucleus of NGC 5905. Astron Astrophys, 1996, 309: L35–L38. Google Scholar

[15] Komossa S, Bade N. The giant X-ray outbursts in NGC 5905 and IC 3599: Follow-up observations and outburst scenarios. Astron Astrophys, 1999, 343:775–787. Google Scholar

[16] Komossa S, Greiner J. Discovery of a giant and luminous X-ray outburst from the optically inactive galaxy pair RX J1242.6-1119. Astron Astrophys, 1999, 349: L45–L48. Google Scholar

[17] Grupe D, Thomas H C, Leighly K M. RX J1624.9+7554: A new X-ray transient AGN. Astron Astrophys, 1999, 350: L31–L34. Google Scholar

[18] Greiner J, Schwarz R, Zharikov S, et al. RX J1420.4+5334—Another tidal disruption event? Astron Astrophys, 2000, 362: L25–L28. Google Scholar

[19] Cappelluti N, Ajello M, Rebusco P, et al. A candidate tidal disruption event in the galaxy cluster Abell 3571. Astron Astrophys, 2009, 495: L9-L12 CrossRef ADS arXiv Google Scholar

[20] Maksym W P, Lin D, Irwin J A. RBS 1032: A tidal disruption event in another dwarf galaxy?. Astrophys J, 2014, 792: L29 CrossRef ADS arXiv Google Scholar

[21] Komossa S. The extremes of (X-ray) variability among galaxies: Flares from stars tidally disrupted by supermassive black holes. Proc IAU, 2004, 2004: 45-48 CrossRef ADS Google Scholar

[22] Komossa S. Tidal disruption of stars by supermassive black holes: Status of observations. J High Energ Astrophys, 2015, 7: 148-157 CrossRef ADS arXiv Google Scholar

[23] Esquej P, Saxton R D, Freyberg M J, et al. Candidate tidal disruption events from the XMM-Newton slew survey. Astron Astrophys, 2007, 462: L49-L52 CrossRef ADS Google Scholar

[24] Esquej P, Saxton R D, Komossa S, et al. Evolution of tidal disruption candidates discovered by XMM-Newton. Astron Astrophys, 2008, 489: 543-554 CrossRef ADS arXiv Google Scholar

[25] Maksym W P, Ulmer M P, Eracleous M. A tidal disruption flare in A1689 from an archival X-ray survey of galaxy clusters. Astrophys J, 2010, 722: 1035-1050 CrossRef ADS arXiv Google Scholar

[26] Lin D, Carrasco E R, Grupe D, et al. Discovery of an ultrasoft X-ray transient source in the 2XMM catalog: A tidal disruption event candidate. Astrophys J, 2011, 738: 52 CrossRef ADS arXiv Google Scholar

[27] Saxton R D, Read A M, Esquej P, et al. A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5. Astron Astrophys, 2012, 541: A106 CrossRef ADS arXiv Google Scholar

[28] Maksym W P, Ulmer M P, Eracleous M C, et al. A tidal flare candidate in Abell 1795. Mon Not R Astron Soc, 2013, 435: 1904-1927 CrossRef ADS arXiv Google Scholar

[29] Lin D, Maksym P W, Irwin J A, et al. An ultrasoft X-ray flare from 3XMM J152130.7+074916: A tidal disruption event candidate. Astrophys J, 2015, 811: 43-52 CrossRef ADS arXiv Google Scholar

[30] Mainetti D, Campana S, Colpi M. XMMSL1J063045.9-603110: A tidal disruption event fallen into the back burner. Astron Astrophys, 2016, 592: A41 CrossRef ADS arXiv Google Scholar

[31] Saxton R D, Read A M, Komossa S, et al. XMMSL1 J074008.2-853927: A tidal disruption event with thermal and non-thermal components. Astron Astrophys, 2017, 598: A29 CrossRef ADS arXiv Google Scholar

[32] Lin D, Guillochon J, Komossa S, et al. A likely decade-long sustained tidal disruption event. Nat astron, 2017, 1: 0033 CrossRef ADS arXiv Google Scholar

[33] Burrows D N, Kennea J A, Ghisellini G, et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature, 2011, 476: 421-424 CrossRef PubMed ADS arXiv Google Scholar

[34] Zauderer B A, Berger E, Soderberg A M, et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature, 2011, 476: 425-428 CrossRef PubMed ADS arXiv Google Scholar

[35] Bradley Cenko S, Krimm H A, Horesh A, et al. Swift J2058.4+0516: Discovery of a possible second relativistic tidal disruption flare?. Astrophys J, 2012, 753: 77 CrossRef ADS arXiv Google Scholar

[36] Brown G C, Levan A J, Stanway E R, et al. Swift J1112.2−8238: A candidate relativistic tidal disruption flare. Mon Not R Astron Soc, 2015, 452: 4297-4306 CrossRef ADS arXiv Google Scholar

[37] Auchettl K, Guillochon J, Ramirez-Ruiz E. New physical insights about tidal disruption events from a comprehensive observational inventory at X-ray wavelengths. Astrophys J, 2017, 838: 149-226 CrossRef ADS arXiv Google Scholar

[38] Holoien T W S, Kochanek C S, Prieto J L, et al. Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Mon Not R Astron Soc, 2016, 455: 2918-2935 CrossRef ADS arXiv Google Scholar

[39] Hung T, Gezari S, Blagorodnova N, et al. Revisiting optical tidal disruption events with iPTF16axa. Astrophys J, 2017, 842: 29 CrossRef ADS arXiv Google Scholar

[40] Komossa S, Zhou H, Wang T, et al. Discovery of superstrong, fading, iron line emission and double-peaked balmer lines of the galaxy SDSS J095209.56+214313.3: The light echo of a huge flare. Astrophys J, 2008, 678: L13-L16 CrossRef ADS arXiv Google Scholar

[41] Wang T G, Zhou H Y, Wang L F, et al. Transient superstrong coronal lines and broad bumps in the galaxy SDSS J074820.67+471214.3. Astrophys J, 2011, 740: 85-94 CrossRef ADS arXiv Google Scholar

[42] van Velzen S, Farrar G R, Gezari S, et al. Optical discovery of probable stellar tidal disruption flares. Astrophys J, 2011, 741: 73-97 CrossRef ADS arXiv Google Scholar

[43] Holoien T W S, Prieto J L, Bersier D, et al. ASASSN-14ae: A tidal disruption event at 200 Mpc. Mon Not R Astron Soc, 2014, 445: 3263-3277 CrossRef ADS arXiv Google Scholar

[44] Gezari S, Heckman T, Cenko S B, et al. Luminous thermal flares from quiescent supermassive black holes. Astrophys J, 2009, 698: 1367-1379 CrossRef ADS arXiv Google Scholar

[45] Chornock R, Berger E, Gezari S, et al. The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event. Astrophys J, 2014, 780: 44 CrossRef ADS arXiv Google Scholar

[46] van Velzen S, Anderson G E, Stone N C, et al. A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. Science, 2016, 351: 62-65 CrossRef PubMed ADS arXiv Google Scholar

[47] Alexander K D, Berger E, Guillochon J, et al. Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. Astrophys J, 2016, 819: L25-35 CrossRef ADS arXiv Google Scholar

[48] Liu F K, Li S, Komossa S. A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5. Astrophys J, 2013, 786: 103 CrossRef ADS arXiv Google Scholar

[49] Yang C, Wang T, Ferland G J, et al. The carbon and nitrogen abundance ratio in the broad line region of tidal disruption events. Astrophys J, 2017, 846: 150 CrossRef Google Scholar

[50] Yuan W M. Special Topic of Einstein Probe: Exploring the dynamic X-ray universe (in Chinese). Sci Sin-Phys Mech Astron, 2018, 48: 039501 [袁为民. 探索变幻多姿的X射线宇宙专题编者按. 中国科学: 物理学 力学 天文学, 2018, 48: 039501]. Google Scholar

[51] Lacy J H, Townes C H, Hollenbach D J. The nature of the central parsec of the galaxy. Astrophys J, 1982, 262: 120-130 CrossRef ADS Google Scholar

[52] Evans C R, Kochanek C S. The tidal disruption of a star by a massive black hole. Astrophys J, 1989, 346: L13-L16 CrossRef ADS Google Scholar

[53] Wang J, Merritt D. Revised rates of stellar disruption in galactic nuclei. Astrophys J, 2004, 600: 149-161 CrossRef ADS Google Scholar

[54] Sun H, Zhang B, Li Z. Extragalactic high-energy transients: Event rate densities and luminosity functions. Astrophys J, 2015, 812: 33-51 CrossRef ADS arXiv Google Scholar

[55] Lei W H, Zhang B. Black hole spin in Sw J1644+57 and Sw J2058+05. Astrophys J, 2058, 740: L27 CrossRef ADS arXiv Google Scholar

[56] Lei W H, Yuan Q, Zhang B, et al. IGR J12580+0134: The first tidal disruption event with an off-beam relativistic jet. Astrophys J, 2016, 816: 20-29 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) Light curves for ROSAT detected TDEs, adopted from ref. [24]. Credit: Komossa 2004, Cambridge University Press, P45-48, reproduced with permission from Cambridge University Press. (b) Light curve for TDEXF 1347-3254[19]. Credit: Cappelluti et al., Astron Astrophys, 495, L9, 2009, reproduced with permission © ESO. (c) and (d) Light curves for XMM-Newton detected TDE candidates NGC 3599 and SDSS J1323+3827, respectively, adopted from ref. [24]. Credit: Esquej et al. 2008, Astron Astrophys, 489, 54, 2008, reproduced with permission © ESO. (e) XMM-Newton and Chandra light curves for WINGS J1348[28]. Credit: Maksym et al. MNRAS, 2013, 435, 1904–1927, reproduced with permission © OUP. (f) Light curve of a possible TDE in a black hole binary system, adopted from ref. [49]. The solid and/or dashed curves show the light curves which follow Lµt−5/3, while the red curve in (f) shows a light curve of a TDE in a binary black hole system.

  • Figure 2

    (a) The 0.3–2.0 keV X-ray flux distribution of X-ray TDE; (b) the distribution of redshift for the detected TDE candidates. Those with jet have the highest redshift.

  • Figure 3

    (Color online) (a), (b) Simulated EP/WXT light curves for NGC 5905 (the light curve model is estimated by fitting the ROSAT data) and Sw 1644+57. The counts rates are estimated based on observed data by XMM and Swift, respectively. (c), (d) Simulated light curves for TDE observed by EP/WXT with different redshifts and soft X-ray luminosities (assuming luminosity declines as Lµt−5/3). The gray dashed line marks the background photon counts rate for EP/WXT. The dot-dashed line is the model used in the simulations. Lp and fp are the peak luminosity and flux in the 0.2–4 keV energy band (energy band of ROSAT), while z is redshift.

  • Figure 4

    (Color online) The maximum observable time of EP/WXT for TDE with different luminosities and redshift.

  • Figure 5

    (Color online) The red and blue lines show the predicted logN-logS for TDE and TDE with relativistic jet, respectively. The red and blue shadow area indicate the 68% confidence intervals. The logN-logS is calculated using Monte Carlo simulation. The X-axis is flux while Y-axis is the number of events per year per steradian. The vertical red dashed line and gray shadow mark the EP/WXT detection limit with ~6 ks exposure time, while the corresponding events number per year per steradian is marked with horizontal red dashed line.

  • Figure 6

    (Color online) (a) Simulated spectrum for EP/FXT. The flux is assumed to be 1×10−11 erg s−1 cm−2, while the temperature of the black body is 0.2 keV and the column density is 3×1020 cm−2. The black solid line shows the best-fitting model. The data to model ratio is shown in the bottom panel. (b) The temperature of the black body can be well constrained. The green line marks the 90% confidence level.

  • Table 1   TDE candidates that are detected at X-ray band

    TDE候选体

    红移

    探测设备

    参考文献

    NGC 5905

    0.011

    ROSAT

    [14,15]

    RX J1242-1119

    0.05

    ROSAT

    [16]

    RX J1624+7554

    0.064

    ROSAT

    [17]

    RX J1420+5334

    0.147

    ROSAT

    [18]

    NGC 3599

    0.003

    XMM-Newton

    [21,24]

    SDSS J1323+4827

    0.087

    XMM-Newton

    [21,24]

    TDXF 1347-3254

    0.037

    ROSAT

    [19]

    SDSS J1311-0123

    0.195

    Chandra

    [25]

    2XMMi 1847-6317

    0.035

    XMM-Newton

    [26]

    SDSS J1201+3003

    0.146

    XMM-Newton

    [27]

    WINGS J1348

    0.062

    Chandra

    [28]

    RBS1032

    0.026

    ROSAT

    [20]

    3XMM J1521+0749

    0.179

    XMM-Newton

    [29]

    XMMSL1 J0630-6031

    -

    XMM-Newton

    [30]

    XMMSL1 J0740-8539

    0.0173

    XMM-Newton

    [31]

    3XMM J1500+0154

    0.145

    XMM-Newton

    [32]

    Swift J1644+57

    0.353

    Swift

    [33,34]

    Swift J2058+0516

    1.186

    Swift

    [35]

    Swift J1112-8238

    0.89

    Swift

    [36]

    ASASSN-14li*

    0.0206

    Swift

    [38]

    ASASSN-14li为光学发现并在射电波段探测到外流[46,47]的TDE, 在后随观测中探测到X射线辐射

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1