logo

SCIENTIA SINICA Terrae, Volume 50, Issue 2: 233-244(2020) https://doi.org/10.1360/SSTe-2019-0099

西藏芒康似勾儿茶叶属(鼠李科)化石及其生物地理学意义

周浙昆1,2,*,†, 王腾翔1,3,†, 黄健1, 刘佳1, 邓炜煜东1,3, 李仕虎4,5, 邓成龙4, 苏涛1,3,§
More info
  • ReceivedMay 7, 2019
  • AcceptedAug 23, 2019
  • PublishedNov 26, 2019

Abstract

文章报道了发现于西藏东南部芒康盆地上始新统的鼠李科植物叶化石标本. 化石叶缘全缘或微波状, 二级脉间距规则, 弧曲向上并与其上的二级脉在叶缘处结合并与叶缘融合, 形成真曲脉序; 二级脉在中上部较为密集, 三级脉密集相互平行, 横贯二级脉之间, 这些叶脉特征与美洲分布的灭绝类群——似勾儿茶叶属(Berhamniphyllum Jones and Dilcher)非常相似. 百分之四十的二级脉集中于叶的上半部是当前化石的一个典型特征, 未见于该属的其他类群, 于是将当前化石定为君容似勾儿茶叶新种(Berhamniphyllum junrongiae Z. K. Zhou, T. X. Wang et J. Huang sp. nov.). 进一步研究发现, 仅凭叶脉特征不能将勾儿茶属(Berchemia)和Rhamnidium、Karwinskia等三个属区分开来, 似勾儿茶叶属(Berhamniphyllum)代表了这几个属的一个灭绝的共同祖先, 本文对产于云南和山东等地三种勾儿茶属化石进行了归并, 并将其归并入似勾儿茶叶属中. 根据形态学、分子系统证据和化石记录, 将勾儿茶属、Rhamnidium、Karwinskia和似勾儿茶叶属定义为勾儿茶复合群(Berchemia complex). 本文还讨论了勾儿茶复合群地理分布格局的演变历史, 认为勾儿茶复合群于晚白垩世晚期起源于南美哥伦比亚, 在始新世经中美洲扩散到北美, 后又从北美经过北大西洋陆桥扩散至欧洲并从欧洲扩散至非洲. 东亚的勾儿茶复合群是经白令陆桥扩散而来, 时间不晚于始新世, 这一类群在东亚最早出现于西藏芒康, 其后再扩散至亚洲其他地区.


Funded by

中国科学院战略性先导科技专项项目(XDA2007030102,XDB26000000)

国家自然科学基金-英国自然环境研究理事会国际合作重点项目(41661134049,NE/P013805/1)

中国科学院第二次青藏高原综合科学考察研究项目(STEP)

中国科学院青年创新促进会项目(2017439)

中国科学院前沿科学重点研究计划项目(QYZDB-SSW-SMC016)


Acknowledgment

感谢中国科学院西双版纳热带植物园和昆明植物研究所的同事参与野外工作. 感谢西藏芒康卡均藏族同胞在野外工作中给予的帮助. 感谢史恭乐博士帮助拍摄云南开远小龙潭组勾儿茶的化石照片, Lutz Kunzmann教授、王雨晴和Steven Manchester教授提供了部分欧洲、日本和北美的文献. 在论文写作过程中, 与贾林波博士和Steven Manchester教授进行过有益的讨论. 感谢中国科学院西双版纳热带植物园中心实验室在摄影设备和技术上提供的支持. 感谢两位匿名审稿人在审稿过程中提出意见和建议, 这些意见和建议对于拙稿的改进起到了重要作用.


References

[1] 郭双兴. 2011. 云南临沧晚中新世邦卖组植物群. 古生物学报, 50: 353–408. Google Scholar

[2] 黄健. 2017. 云南文山中新世植物群及古环境. 博士学位论文. 西双版纳: 中国科学院西双版纳热带植物园. 1–320. Google Scholar

[3] 陶君容, 陈明洪. 1983. 横断山南部-云南临沧地区新生代植物群. 中国科学院青藏高原综合科学考察队. 横断山考察专集(一). 昆明: 云南人民出版社. 74–89. Google Scholar

[4] 王伟铭. 1996. 云南开远小龙潭盆地晚第三纪孢粉植物群. 植物学报, 38: 743–748. Google Scholar

[5] 吴靖宇. 2009. 云南腾冲上新世团田植物群及其古环境分析. 博士学位论文. 兰州: 兰州大学. 1–122. Google Scholar

[6] 吴征镒, 周浙昆, 孙航, 李德铢, 彭华. 2006. 种子植物分布区类型及其起源和分化. 昆明: 云南科技出版社. Google Scholar

[7] 中国新生代植物编写组. 1978. 中国植物化石. 第三册, 中国新生代植物. 北京: 科学出版社. Google Scholar

[8] 周浙昆. 1985. 云南开远小龙潭中新世植物群. 博士学位论文. 南京: 中国科学院南京地质古生物研究所. Google Scholar

[9] Ai K K, Shi G L, Zhang K X, Ji J L, Song B W, Shen T Y, Guo S X. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 515: 143-151 CrossRef ADS Google Scholar

[10] Basinger J F, Dilcher D L. Ancient bisexual flowers. Science, 1984, 224: 511-513 CrossRef PubMed ADS Google Scholar

[11] Becker H F. 1969. Fossil plants of the Tertiary Beaverhead Basins in souothwestern Montana. Palaeontogr Abt B, 127: 1–142. Google Scholar

[12] Berry E W. 1916a. The lower Eocene floras of southeastern North America. US Geol Surv Prof Pap, 91: 1–149. Google Scholar

[13] Berry E W. 1916b. The physical conditions indicated by the flora of the Calvert formation. US Geol Surv Prof Pap, 98: 61–73. Google Scholar

[14] Bozukov V. 2000. Miocene macroflora of the Satovcha Graben (Western Rhodopes). Phytol Balcan, 5: 15–30. Google Scholar

[15] Bozukov V, Palamarev E, Petkova A. 2008. The fossil macroflora of the Vulche Pole Molasse formation (SE Bulgaria). Phytol Balcan, 14: 173–184. Google Scholar

[16] Büchler W. 1990. Eine fossile Flora aus dem oberen Oligozän von Ebnat-Kappel. Bot Helv, 100: 133–166. Google Scholar

[17] Chaney R W, Hu H H. 1940. A Miocene Flora from Shantung Province, China. Washington: Publication of Carnegie Institute. 1–507. Google Scholar

[18] Chen Y, Schirarend C. 2007. Rhamnaceae. In: Wu Z Y, Raven P H, Hong D Y, eds. Flora of China. Beijing: Science Press. St. Louis: Missouri Botanical Garden Press. 12: 115–168. Google Scholar

[19] Collinson M E, Andrews P, Bamford M K. Taphonomy of the early miocene flora, Hiwegi formation, Rusinga Island, Kenya. J Human Evol, 2009, 57: 149-162 CrossRef PubMed Google Scholar

[20] Collinson M E, Manchester S R, Wilde V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abh Senckenb Ges Naturforsch, 570: 1–251. Google Scholar

[21] Correa E, Jaramillo C, Manchester S, Gutierrez M. A fruit and leaves of Rhamnaceous affinities from the late Cretaceous (Maastrichtian) of Colombia. Am J Bot, 2010, 97: 71-79 CrossRef PubMed Google Scholar

[22] Davis C C, Bell C D, Mathews S, Donoghue M J. Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc Natl Acad Sci USA, 2002, 99: 6833-6837 CrossRef PubMed ADS Google Scholar

[23] Denk T, Grímsson F, Zetter R. Episodic migration of oaks to Iceland: Evidence for a North Atlantic “land bridge” in the latest Miocene. Am J Bot, 2010, 97: 276-287 CrossRef PubMed Google Scholar

[24] Deng T, Wang X, Wu F, Wang Y, Li Q, Wang S, Hou S. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 2019, 174: 58-69 CrossRef ADS Google Scholar

[25] Dilcher D L, Lott T A. 2005. A middle Eocene fossil plant assemblage (Powers Clay Pit) from western Tennessee. Bull Florida Museum Nat Hist, 45: 1–43. Google Scholar

[26] Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 2017, 45: 215-218 CrossRef ADS Google Scholar

[27] Dong W, Qi G. 2013. Hominoid-producing localities and biostratigraphy in Yunnan. In: Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia—Neogene Biostratigraphy and Chronology. New York: Colombia University Press. 293–313. Google Scholar

[28] Donoghue M J, Smith S A. 2004. Patterns in the assembly of temperate forest around the Northern Hemisphere. Phil Trans R Soc Lond B, 359: 1633–1644. Google Scholar

[29] Ellis B, Daly D C, Hickey L J, Johnson K R, Mitchell J D, Wilf P, Wing S L. 2009. Manual of Leaf Architecture. Ithaca: Cornell University Press. Google Scholar

[30] Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 19+ vols. New York: Oxford University Press. Google Scholar

[31] Givulescu R. 1996. Flora Oligocena Superioara din Bazinul Petrosani. Casa Cartii de Stiinta, Cluj-Napoca, 1–177. Google Scholar

[32] Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. A major reorganization of Asian climate by the early Miocene. Clim Past, 2008, 4: 153-174 CrossRef Google Scholar

[33] Hauenschild F, Favre A, Michalak I, Muellner-Riehl A N. The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). J Biogeogr, 2018, 45: 2669-2677 CrossRef Google Scholar

[34] Hantke R. 1954. Die fossile Flora der obermiozänen Oehninger-Fundstelle Schrotzburg (Schienerberg, Süd-Baden). Doctoral Dissertation. Zürich: ETH Zürich. Google Scholar

[35] Heer O. 1855–1859. Flora Tertiaria Helveticae. Die Tertiäre flora der Schweiz. Winterthur: J. Wurster and Compagnie. Google Scholar

[36] Ishida S. 1970. The Noroshi flora of Noto Peninsula, Central Japan. Memoirs of the Faculty of Science Kyoto University, Series of Geology and Mineralogy, 37: 1–112. Google Scholar

[37] Iturralde-Vinent M A, MacPhee R D E. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bull Am Mus Nat Hist, 238: 1–95. Google Scholar

[38] Jia L B, Manchester S R, Su T, Xing Y W, Chen W Y, Huang Y J, Zhou Z K. First occurrence of Cedrelospermum (Ulmaceae) in Asia and its biogeographic implications. J Plant Res, 2015, 128: 747-761 CrossRef PubMed Google Scholar

[39] Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. J Syt Evol, 2019, 57: 94-104 CrossRef Google Scholar

[40] Jiang H, Su T, Wong W O, Wu F, Huang J, Shi G. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 2019, 175: 99-108 CrossRef ADS Google Scholar

[41] Jones J H, Dilcher D L. Investigations of angiosperms from the Eocene of North America: Rhamnus marginatus (Rhamnaceae) reexamined. Am J Bot, 1980, 67: 959-967 CrossRef Google Scholar

[42] Jung W. 1968. Pflanzenreste aus dem Jungtertiär Nieder-und Oberbayerns und deren lokalstratigraphische Bedeutung. Ber Naturwiss Ver Langshut, 25: 43–71. Google Scholar

[43] Köecke V, Uhl D. 2015. The leaf assemblage from the Early-Middle Miocene locality Sulzigtobel near Werthenstein (Canton Lucerne, Switzerland). Phytol Balcan, 21: 99–109. Google Scholar

[44] Kovar-Eder J. Early Oligocene plant diversity along the Upper Rhine Graben: The fossil flora of Rauenberg, Germany. Acta Palaeobot, 2016, 56: 329-440 CrossRef Google Scholar

[45] Kubitzki K. 2004. The Families and Genera of Vascular Plants. Vol. 6. Flowering Plants—Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Berlin: Springer. Google Scholar

[46] Lazarević Z, Milivojević J, Bogićević K, Nenadić D. Early Miocene flora from the Valjevo-Mionica Basin (Western Serbia). N J Geol Pal A, 2013, 267: 297-307 CrossRef Google Scholar

[47] Lebreton-Anberrée J, Li S, Li S F, Spicer R A, Zhang S T, Su T, Deng C, Zhou Z K. Lake geochemistry reveals marked environmental change in Southwest China during the Mid Miocene Climatic Optimum. Chin Sci Bull, 2016, 61: 897-910 CrossRef Google Scholar

[48] de León P V, Cevallos-Ferriz S R, Silva-Pineda A. Leaves of Karwinskia axamilpense sp.nov. (Rhamnaceae) from Oligocene sediments, near Tepexi de Rodríguez, Puebla, Mexico. Can J Bot, 1998, 76: 410-419 CrossRef Google Scholar

[49] Li S F, Mao L M, Spicer R A, Lebreton-Anberrée J, Su T, Sun M, Zhou Z K. Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 425: 14-40 CrossRef ADS Google Scholar

[50] Li S H, Deng C L, Dong W, Sun L, Liu S Z, Qin H F, Yin J Y, Ji X P, Zhu R X. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: Constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics, 2015, 655: 213-226 CrossRef ADS Google Scholar

[51] Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[52] Macaluso L, Martinetto E, Vigna B, Bertini A, Cilia A, Teodoridis V, Kvaček Z. Palaeofloral and stratigraphic context of a new fossil forest from the Pliocene of NW Italy. Rev Palaeobot Palynol, 2018, 248: 15-33 CrossRef Google Scholar

[53] MacPhee R D E, Iturralde-Vinent M A. 1995. Origin of the Great Antillean land mammals, 1: New Tertiary fossils from Cuba and Puerto Rico. Am Mus Novitates, 3141: 1–31. Google Scholar

[54] Manchester S R. 2000. Late Eocene fossil plants of the John Day Formation, Wheeler County, Oregon. Oregon Geol, 62: 51–63. Google Scholar

[55] Myers J A, Kester P R, Retallack G J. 2002. Paleobotanical record of Eocene-Oligocene climate and vegetational change near Eugene, Oregon. Oregon Dep Geol Min Ind Spec Pap, 36: 145–154. Google Scholar

[56] Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A B, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858 CrossRef PubMed Google Scholar

[57] Ozaki K. 1980. Late Miocene Tatsumitoge flora of Tottori Prefecture, Southwest Honshu, Japan (III). Sci Rep Yokohama Natl Univ, 27: 19–45. Google Scholar

[58] Ozaki K. 1991. Late Miocene and Pliocene Floras in Central Honshu, Japan. Bulletin of Kanagawa Prefectural Museum Natural Science Special Issue. Yokohama: Kanagawa Prefectural Museum. 1–244. Google Scholar

[59] Palgrave K C. 2015. Palgrave’s Trees of Southern Africa. 3rd ed. Cape Town: Struik Publishers. Google Scholar

[60] Prasad M, Dwivedi H D. 2007. Systematic study of the leaf impressions from the Churia Formation of Koilabas area, Nepal and their significance. Palaeobotanist, 56: 139–154. Google Scholar

[61] Retallack G J. Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology, 1992, 18: 383-400 CrossRef Google Scholar

[62] Richardson J E, Fay M F, Cronk Q C B, Chase M W. A revision of the tribal classification of rhamnaceae. Kew Bull, 2000, 55: 311-340 CrossRef Google Scholar

[63] Sakala J. 2000. Flora and vegetation of the roof of the main lignite seam in the Bilina Mine (Most Basin, Lower Miocene). Acta Mus Nat Pragae Ser B Hist Nat, 56: 49–84. Google Scholar

[64] Singh S K, Prasad M. 2007. Late Tertiary leaf flora of mahuadanr valley, Jharkhand. J Palaeontol Soc India, 52: 175–194. Google Scholar

[65] Smiley C J, Gray J, Huggins L M. 1975. Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho. J Paleontol, 49: 833–844. Google Scholar

[66] Spicer R A. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related?. Plant Divers, 2017, 39: 233-244 CrossRef PubMed Google Scholar

[67] Spitzelberger V G. 1989. Die Miozänfundstelle Goldern bei Landshut (Niederbayern). Geol Bavarica, 94: 371–407. Google Scholar

[68] Su T, Wilf P, Xu H, Zhou Z K. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism. Am J Bot, 2014, 101: 1350-1361 CrossRef PubMed Google Scholar

[69] Su T, Li S F, Tang H, Huang Y J, Li S H, Deng C L, Zhou Z K. Hemitrapa Miki (Lythraceae) from the earliest Oligocene of southeastern Qinghai-Tibetan Plateau and its phytogeographic implications. Rev Palaeobot Palynol, 2018, 257: 57-63 CrossRef Google Scholar

[70] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019a, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[71] Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 2019b, 6: 495-504 CrossRef Google Scholar

[72] Suessenguth K. 1953. Rhamnaceae. In: Engler A, Prantl K, eds. Die natiirlichen Pflanzenfamilien. 2nd ed. Berlin: Dunker et Humboldt. Google Scholar

[73] Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222 CrossRef ADS Google Scholar

[74] Tang H, Liu J, Wu F, Spicer T, Spicer R A, Deng W, Xu C, Zhao F, Huang J, Li S, Su T, Zhou Z. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J Syt Evol, 2019, 18: jse.12505 CrossRef Google Scholar

[75] Taylor T N, Taylor E L, Krings M. 2008. Paleobotany: The Biology and Evolution of Fossil Plants. 2nd ed. New York: Academic Press. 1230. Google Scholar

[76] Teodoridis V. 2007. Revision of Potamogeton fossils from the Most Basin and their palaeoecological significance (Early Miocene, Czech Republic). Bull Geosci, 82: 409–418. Google Scholar

[77] Tiffney B H, Manchester S R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern hemisphere tertiary. Int J Plant Sci, 2001, 162: S3-S17 CrossRef Google Scholar

[78] Wu F X, Miao D S, Chang M M, Shi G L, Wang N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci Rep, 2017, 7: 878 CrossRef PubMed ADS Google Scholar

[79] Xu C L, Su T, Huang J, Huang Y J, Li S F, Zhao Y S, Zhou Z K. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. J Syt Evol, 2019, 57: 169-179 CrossRef Google Scholar

[80] Xu H, Su T, Zhang S T, Deng M, Zhou Z K. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 442: 61-71 CrossRef ADS Google Scholar

[81] Xu H, Su T, Zhou Z K. Leaf and infructescence fossils of Alnus (Betulaceae) from the late Eocene of the southeastern Qinghai-Tibetan Plateau. J Syt Evol, 2019, 57: 105-113 CrossRef Google Scholar

[82] Yabe A. 2008. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bull Geol Surv Jpn, 59: 397–413. Google Scholar

[83] Zhou Z K, Yang X F, Yang Q S. Land bridge and long-distance dispersal—Old views, new evidence. Chin Sci Bull, 2006, 51: 1030-1038 CrossRef ADS Google Scholar

  • 图 1

    勾儿茶属及其相似类群的化石记录和现代分布

  • 图 2

    化石采集点位置

  • 图 3

    君容似勾儿茶叶(新种)(Berhamniphyllum junrongiae Z. K. Zhou, T.X. Wang et J. Huang sp. nov.)、多花似勾儿茶叶(Berhamniphyllum miofloribundum (Hu et Chaney) J. Huang, T. Su et Z. K. Zhou comb. nov.)及长梗勾儿茶(Berchemia longipes)(现代)透明叶

  • 图 4

    勾儿茶属Karwinskia属及Rhamnidium

  • 图 5

    鼠李族的勾儿茶类植物可能的传播路径

  • 表 1   勾儿茶属化石记录

    物种

    器官

    时代

    地点

    文献

    Berchemia mellerae

    内果皮

    中始新世

    德国Messel

    Collinson等, 2012

    B. sp

    晚始新世

    美国俄勒冈州

    Manchester, 2000

    B. altorhenana

    早渐新世

    德国Rauenberg

    Kovar-Eder, 2016

    B. multinervis

    晚渐新世

    瑞士Ebnat-Kappel

    Büchler, 1990

    B. multinervis

    晚渐新世

    保加利亚Vulche Pole Molasse组

    Bozukov等, 2008

    B. multinervis

    晚渐新世

    罗马尼亚Petrosani盆地

    Givulescu, 1996

    B. huanoides

    晚渐新世

    美国蒙大拿州

    Becker, 1969

    B. multinervis

    中新世

    保加利亚Western Rhodopes

    Bozukov, 2000

    B. priscaformis

    中新世

    美国南卡罗莱纳州

    Berry, 1916b

    B. sp

    中新世

    美国爱达荷州

    Smiley等, 1975

    B. pseudodiscolor

    种子

    早中新世

    肯尼亚Rusinga岛

    Collinson等, 2009

    B. acutangula

    早中新世

    巴伐利亚Goldern

    Spitzelberger, 1989

    B. miofloribunda

    早中新世

    日本本州

    Yabe, 2008

    B. multinervis

    早中新世

    塞尔维亚Valjevo-Mionica盆地

    Lazarević等, 2013

    B. multinervis

    早中新世

    捷克Most盆地

    Sakala, 2000; Teodoridis, 2007

    B. multinervis

    早-中中新世

    瑞士Canton Lucerne

    Köecke和Uhl, 2015

    B. pseudodiscolor

    外果皮

    中中新世

    肯尼亚Fort Ternan

    Retallack, 1992

    B. miofloribunda

    中中新世

    日本能登半岛

    Ishida, 1970

    B. nepalensis

    中中新世

    尼泊尔Koilabas

    Prasad和Dwivedi, 2007

    B. multinervis

    晚中新世

    巴伐利亚Lerch

    Jung, 1968

    B. multinervis

    晚中新世

    瑞士Oehingen

    Hantke, 1954; Heer, 1855–1859

    B. miofloribunda

    晚中新世

    日本本州

    Ozaki, 1980

    B. miofloribunda

    晚中新世

    日本本州

    Ozaki, 1991

    B. miofloribunda

    上新世

    中国云南团田

    吴靖宇, 2009

    B. cf. yunnanensis

    上新世

    中国云南团田

    吴靖宇, 2009

    B. multinervis

    上新世

    意大利Fossano

    Macaluso等, 2018

    B. floribunda

    晚第三纪

    印度Jharkhand

    Singh和Prasad, 2007

  • 表 2   其他勾儿茶类化石记录

    物种

    时代

    地点

    文献

    Berhamniphyllum sp.

    晚白垩世

    南美哥伦比亚

    Correa等, 2010

    Berhamniphyllum claibornense

    早始新世

    美国肯塔基州、田纳西州

    Berry, 1916a; Jones和Dilcher, 1980

    Berhamniphyllum claibornense

    中始新世

    美国田纳西州

    Dilcher和Lott, 2005

    Berhamniphyllum sp.

    中始新世

    美国田纳西州

    Dilcher和Lott, 2005

    Berhamniphyllum sp.

    晚始新世

    美国俄勒冈州

    Myers等, 2002

    Berhamniphyllum junrongiae sp. nov.

    晚始新世

    中国西藏芒康

    本研究

    Karwinskia axamilpense

    渐新世

    墨西哥普埃布拉

    de León等, 1998

    Berhamniphyllum miofloribundum comb. nov.

    中新世

    中国山东山旺; 云南文山、小龙潭

    中国新生代植物编写组, 1978; 周浙昆, 1985; 黄健, 2017; 本研究

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1