logo

SCIENTIA SINICA Terrae, Volume 50, Issue 2: 220-232(2020) https://doi.org/10.1360/SSTe-2019-0100

西藏札达盆地上新世植物群及古环境

黄健1,2, 苏涛1,2, 李树峰1,2, 吴飞翔2,4,5, 邓涛2,4,5, 周浙昆1,2,3,*
More info
  • ReceivedMay 10, 2019
  • AcceptedAug 12, 2019
  • PublishedNov 7, 2019

Abstract

文章系统报道了青藏高原西端札达盆地香孜地区上新统地层中发现的植物叶片化石组合, 共鉴定植物化石10科12属21种. 研究表明札达盆地上新世的植被是以栒子、绣线菊、锦鸡儿、沙棘、杜鹃花、金露梅等灌木构成的落叶灌丛, 叶形普遍微小. 通过共存分析法和叶相-气候分析法重建古气候, 表明札达香孜地区在上新世时有着较现今高的温度和降水, 降水季节性差异明显. 古海拔重建表明札达盆地在上新世的高程已经与现代相近. 在亚洲中部干旱化的大背景下, 该地区在新生代晚期以来的逐渐干旱导致了植被由灌丛向荒漠的转变, 植物区系成分也随之发生改变.


Funded by

中国科学院战略性先导科技专项项目(XDA2007030102,XDB26000000,XDA20070203)

中国科学院第二次青藏高原综合科学考察研究项目(2019QZKK0705)

国家自然科学基金-英国自然环境研究理事会国际合作重点项目(41661134049,NE/P013805/1)

中国科学院青年创新促进会项目(2017439)

中国科学院前沿科学重点研究计划项目(QYZDB-SSW-SMC016)


Acknowledgment

感谢中国科学院西双版纳热带植物园、中国科学院古脊椎动物与古人类研究所、中国科学院昆明植物研究所的同事在野外工作过程中的帮助. 感谢西双版纳热带植物园公共技术服务中心在摄影上提供的支持.


References

[1] 安芷生, 张培震, 王二七, 王苏民, 强小科, 李力, 宋友桂, 常宏, 刘晓东, 周卫健. 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长. 第四纪研究, 26: 678–693. Google Scholar

[2] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 2015. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系. 地球科学进展, 30: 407–415. Google Scholar

[3] 方小敏, 吴福莉, 韩文霞, 王亚东, 张玺正, 张伟林. 2008. 上新世-第四纪亚洲内陆干旱化过程——柴达木中部鸭湖剖面孢粉和盐类化学指标证据. 第四纪研究, 28: 874–882. Google Scholar

[4] 郭双兴. 1980. 青海泽库中新世植物群. 古生物学报, 19: 406–411+441. Google Scholar

[5] 李浩敏, 郭双兴. 1976. 西藏南木林中新世植物群. 古生物学报, 15: 598–609. Google Scholar

[6] 李建国, 周勇. 2001. 西藏西部札达盆地上新世孢粉植物群及古环境. 微体古生物学报, 18: 89–96. Google Scholar

[7] 刘尚武, 潘锦堂, 张盍曾. 1979. 西藏阿里地区植物区系. 见: 青海省生物研究所, 编. 北京: 科学出版社. 73–78. Google Scholar

[8] 孟宪刚, 朱大岗, 邵兆刚, 杨朝, 孙立倩, 王建平, 韩同林, 杜建军, 韩建恩, 余佳. 2004. 西藏阿里札达盆地上新统中犀类化石的发现及意义. 地质通报, 23: 609–611. Google Scholar

[9] 孟宪刚, 朱大岗, 邵兆刚, 杨朝斌, 韩建恩, 余佳, 孟庆伟. 2005. 西藏阿里札达盆地上新统鼠兔类牙齿化石的发现. 地质通报, 24: 1175–1178. Google Scholar

[10] 潘锦堂, 张盍曾, 刘尚武. 1979. 西藏阿里地区的植被. 见: 青海省生物研究所, 编. 北京: 科学出版社. 73–78. Google Scholar

[11] 钱方. 1999. 青藏高原晚新生代磁性地层研究. 地质力学学报, 5: 22–34. Google Scholar

[12] 陶君容. 1988. 西藏拉孜县柳区组植物化石组合及古气候意义. 中国科学院地质研究所集刊, 3: 223–238. Google Scholar

[13] 陶君容, 周浙昆, 刘裕生. 2000. 中国晚白垩世至新生代植物区系发展演变. 北京: 科学出版社. 56–57. Google Scholar

[14] 吴征镒. 1987. 西藏植物志. 北京: 科学出版社. Google Scholar

[15] 徐仁. 1973. 西藏南部珠穆朗玛峰地区植物化石的发现及其意义. 植物学报, 15: 254–258. Google Scholar

[16] 徐仁, 陶君容, 孙湘君. 1973. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义. 植物学报, 15: 103–114. Google Scholar

[17] 余佳, 罗鹏, 韩建恩, 孟庆伟, 吕荣平, 孟宪刚, 朱大岗, 邵兆刚. 2007. 西藏札达盆地古格剖面孢粉记录及其反映的古环境信息. 中国地质, 34: 55–60. Google Scholar

[18] 张经纬, 李渤生, 王金亭, 陈伟烈. 1988. 西藏植被. 北京: 科学出版社. 1–589. Google Scholar

[19] 张青松, 王富葆, 计宏祥, 黄万波. 1981. 西藏札达盆地的上新世地层. 地层学杂志, (3): 62–66. Google Scholar

[20] 张新时. 1991. 西藏阿里植物群落的间接梯度分析, 数量分类与环境解释. 植物生态学报, 15: 101–113. Google Scholar

[21] 周勇, 丁林, 邓万明, 张进江. 2000. 札达盆地构造旋回层及其地质意义. 地质科学, (3): 305–315. Google Scholar

[22] 周浙昆, 杨青松, 夏珂. 2007. 栎属高山栎组植物化石推测青藏高原的隆起. 科学通报, 52: 249–257. Google Scholar

[23] 朱大岗, 孟宪刚, 邵兆刚, 杨朝斌, 孙立倩, 王建平, 韩同林, 韩建恩, 杜建军, 余佳. 2004. 西藏阿里札达盆地上新世-早更新世沉积相及其构造演化特征. 地质力学学报, 10: 245–252. Google Scholar

[24] Ai K K, Shi G L, Zhang K X, Ji J L, Song B W, Shen T Y, Guo S X. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 515: 143-151 CrossRef ADS Google Scholar

[25] An Z S, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[26] Brookfield M E. Evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining north from the Pamir syntaxis. Geomorphology, 2008, 100: 296-311 CrossRef ADS Google Scholar

[27] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2015, 2: 417-437 CrossRef Google Scholar

[28] Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 2012, 109: 7374-7378 CrossRef PubMed ADS Google Scholar

[29] Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 2011, 333: 1285-1288 CrossRef PubMed ADS Google Scholar

[30] Dodds W K, Gido K, Whiles M R, Daniels M D, Grudzinski B P. The stream biome gradient concept: Factors controlling lotic systems across broad biogeographic scales. Freshwater Sci, 2014, 34: 1-19 CrossRef Google Scholar

[31] Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 2008, 36: 987-990 CrossRef ADS Google Scholar

[32] Jacobs B F. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 145: 231-250 CrossRef ADS Google Scholar

[33] Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. Jnl Sytematics Evol, 2018, 57: 94-104 CrossRef Google Scholar

[34] Kempf O, Blisniuk P M, Wang S F, Fang X M, Wrozyna C, Schwalb A. Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin, SW-Tibet. Sediment Geol, 2009, 222: 27-41 CrossRef ADS Google Scholar

[35] Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 1999, 44: 2117-2124 CrossRef ADS Google Scholar

[36] Li X C, Xiao L, Lin Z C, He W, Yang Q, Yao Y Z, Ren D, Guo J F, Guo S X. Fossil fruits of Koelreuteria (Sapindaceae) from the Miocene of northeastern Tibetan Plateau and their palaeoenvironmental, phytogeographic and phylogenetic implications. Rev Palaeobot Palynol, 2016, 234: 125-135 CrossRef Google Scholar

[37] Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[38] Miao Y F, Fang X M, Wu F L, Cai M T, Song C H, Meng Q Q, Xu L. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Clim Past, 2013, 9: 1863-1877 CrossRef ADS Google Scholar

[39] Miao Y F, Herrmann M, Wu F L, Yan X L, Yang S L. What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci Rev, 2012, 112: 155-172 CrossRef ADS Google Scholar

[40] Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson J M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J B, Lovelock E C, Lusk C H, Niinemets U, Peñuelas J, Rapson G, Wing S L, Wright I J. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol, 2011, 190: 724-739 CrossRef PubMed Google Scholar

[41] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117-122 CrossRef ADS Google Scholar

[42] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res, 1989, 94: 18409-18427 CrossRef ADS Google Scholar

[43] Saylor J, DeCelles P G, Quade J. Climate-driven environmental change in the Zhada Basin, southwestern Tibetan Plateau. Geosphere, 2010, 6: 74-92 CrossRef ADS Google Scholar

[44] Saylor J, DeCelles P G, Gehrels G. 2007. Origin of the Zhada Basin, SW Tibet: A tectonically dammed paleo-river valley. 2007 GSA Denver Annual Meeting. 39: 437. Google Scholar

[45] Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. The late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 2009, 309: 1-42 CrossRef ADS Google Scholar

[46] Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S X, Valdes P J, Wolfe J A, Kelley S P. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622-624 CrossRef PubMed ADS Google Scholar

[47] Spicer R A, Valdes P J, Spicer T E V, Craggs H J, Srivastava G, Mehrotra R C, Yang J. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 283: 91-98 CrossRef Google Scholar

[48] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[49] Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 2018, 6: 495-504 CrossRef Google Scholar

[50] Sun J M, Liu W G, Liu Z H, Deng T, Windley B F, Fu B H. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol, 2017, 485: 189-200 CrossRef ADS Google Scholar

[51] Wang S F, Zhang W L, Fang X M, Dai S, Kempf O. Magnetostratigraphy of the Zanda Basin in southwest Tibet Plateau and its tectonic implications. Chin Sci Bull, 2008, 53: 1393-1400 CrossRef Google Scholar

[52] Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C, Wang N, Wu F. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 374: 81-95 CrossRef ADS Google Scholar

[53] Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 2015, 27: 1335-1354 CrossRef ADS Google Scholar

[54] Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 2006, 34: 309 CrossRef ADS Google Scholar

[55] Whittaker R H. 1975. Communities and Ecosystems. New York: MacMillan Publishing Company, Inc. Google Scholar

[56] Woodward F I, Lomas M R, Kelly C K. 2004. Global climate and the distribution of plant biomes. Philos Trans R Soc Lond B-Biol Sci, 359: 1465–1476. Google Scholar

[57] Wu F L, Herrmann M, Fang X M. Early Pliocene paleo-altimetry of the Zanda Basin indicated by a sporopollen record. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 412: 261-268 CrossRef Google Scholar

[58] Xu C L, Su T, Huang J, Huang Y J, Li S F, Zhao Y S, Zhou Z K. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. Jnl Sytemat Evol, 2019, 57: 169-179 CrossRef Google Scholar

[59] Xu H, Su T, Zhang S T, Deng M, Zhou Z K. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 442: 61-71 CrossRef ADS Google Scholar

[60] Yang J, Spicer R A, Spicer T E V, Li C S. ‘CLAMP Online’: A new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio Palaeoenv, 2011, 91: 163-183 CrossRef Google Scholar

[61] Zhang M L, Fritsch P W. 2010. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification. Plant Syst Evol, 288: 191–199. Google Scholar

  • 图 1

    札达香孜植物群化石产地在札达盆地中的位置

  • 图 2

    札达香孜植物群化石产地状况

  • 图 3

    札达香孜植物群的微型叶植物化石

  • 图 4

    札达香孜植物群的小型叶植物化石

  • 图 5

    青藏高原西部的不同植被面貌及与化石相似的现代种

  • 图 6

    典型相关分析(CCA)反映的札达香孜植物群叶相在Global378叶相空间中的位置

  • 表 1   札达香孜植物群物种名录按系统顺序排列

    化石类群

    现代最近亲缘类群

    标本数量占比

    莎草科(Cyperaceae)

    嵩草属(未定种)(Kobresia sp.)

    西藏嵩草(Kobresia tibetica)

    1.4%

    小檗科(Berberidaceae)

    小檗属(未定种)(Berberis sp.)

    刺红珠(Berberis dictyophylla)

    1.4%

    豆科(Fabaceae)

    似印度锦鸡儿(Caragana cf.gerardiana)

    印度锦鸡儿(Caragana gerardiana)

    12.2%

    似变色锦鸡儿(Caragana cf.versicolor)

    变色锦鸡儿(Caragana versicolor)

    6.8%

    锦鸡儿属(未定种)(Caragana sp.)

    锦鸡儿属(Caragana)

    1.4%

    蔷薇科(Rosaceae)

    栒子属(未定种1)(Cotoneaster sp.1)

    尖叶栒子属(Cotoneaster acuminatus)

    14.9%

    栒子属(未定种2)(Cotoneaster sp.2)

    匍匐栒子(Cotoneaster adpressus)

    9.5%

    金露梅(Potentilla fruticosa)

    金露梅(Potentilla fruticosa)

    4.1%

    似细枝绣线菊(Spiraea cf. myrtilloides)

    细枝绣线菊(Spiraea myrtilloides)

    17.6%

    绣线菊属(未定种1)(Spiraea sp.1)

    绣线菊属(Spiraea)

    1.4%

    绣线菊属(未定种2)(Spiraea sp.2)

    绣线菊属(Spiraea)

    1.4%

    胡颓子科(Elaeagnaceae)

    沙棘属(未定种)(Hippophae sp.)

    沙棘(Hippophae rhamnoides)

    5.4%

    杨柳科(Salicaceae)

    柳属(未定种1)(Salix sp.1)

    柳属(Salix)

    1.4%

    柳属(未定种2)(Salix sp.2)

    欧杞柳(Salix caesia)

    1.4%

    柳属(未定种3)(Salix sp.3)

    奇花柳(Salix atopantha)

    1.4%

    蓼科(Polygonaceae)

    萹蓄属(未定种)(Polygonum sp.)

    萹蓄(Polygonum aviculare)

    1.4%

    白花丹科(Plumbaginaceae)

    蓝雪花属(未定种)(Ceratostigma sp.)

    小蓝雪花(Ceratostigma minus)

    1.4%

    杜鹃花科(Ericaceae)

    杜鹃花属(未定种1)(Rhododendron sp.1)

    鳞腺杜鹃(Rhododendron lepidotum)

    2.7%

    杜鹃花属(未定种2)(Rhododendron sp.2)

    毛花杜鹃(Rhododendron hypenanthum)

    2.7%

    忍冬科(Caprifoliaceae)

    似棘枝忍冬(Lonicera cf.spinosa)

    棘枝忍冬(Lonicera spinosa)

    1.4%

    忍冬属(未定种)(Lonicera sp.)

    细叶忍冬(Lonicera minutifolia)

    4.1%

    未鉴定科

    未鉴定叶1(Dictphyllum sp.1)

    4.1%

    未鉴定叶2(Dictphyllum sp.2)

    1.4%

  • 表 2   札达香孜植物群古气候重建值与青藏高原现代气候对比

    气候指标

    现代气候

    札达植物群古气候

    狮泉河站

    拉孜站

    林芝站

    共存分析CA

    叶相分析CLAMP

    年均温MAT(℃)

    1.0

    7.0

    9.1

    3.05~10.42

    6.78±4.10

    最热月均温MTWM(℃)

    14.4

    15.1

    16.2

    10.16~17.90

    20.66±3.97

    最冷月均温MTCM(℃)

    −12.0

    −1.9

    1.0

    −4.23~1.45

    −8.30±6.92

    生长期GRS(month)

    8.78±1.92

    年降水量MAP/生长季降水量GSP(mm)

    66.4

    328.3

    692.5

    505~893

    677.5±569.6

    月均降水量MMGSP(mm)

    5.5

    27.4

    57.7

    42.08~74.42

    75.8±61.1

    最湿月降水量MPWET(mm)

    23.8

    118.5

    143.3

    104.25~162.75

    最干月降水量MPDRY(mm)

    0.3

    0.1

    1.0

    2.5~3.0

    最暖月降水量 MPWAR(mm)

    21.4

    43.3

    143.3

    101.5~182.25

    最湿三个月降水量X3.WET(mm)

    50.9

    272.2

    384.7

    246.5±335.5

    最干三个月降水量X3.DRY(mm)

    2.6

    0.3

    6.7

    112.2±134.0

    海拔ALT(m)

    约4250

    约4000

    约2900

    3536~4176

    可存在的植被类型

    荒漠-草甸

    草甸-灌丛

    灌丛-暗针叶林

    灌丛-暗针叶林

    灌丛-暗针叶林

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1