logo

SCIENTIA SINICA Terrae, Volume 49, Issue 10: 1565-1589(2019) https://doi.org/10.1360/SSTe-2019-0111

中国石笋古气候研究的回顾与展望

More info
  • ReceivedMay 28, 2019
  • AcceptedAug 21, 2019
  • PublishedSep 20, 2019

Abstract

石笋是洞穴次生碳酸盐的一种, 是由含Ca2+HCO3的洞穴滴水滴到洞穴地面后, 水中碳酸钙在一定条件下过饱和析出, 经年复一年沉积形成. 石笋是古气候研究的重要地质材料之一, 其优势在于空间分布广、适合U-Th和U-Pb精确定年、气候代用指标丰富、记录较连续、时间跨度较大、相互对比性强和采样成本低等. 以上有利因素使得洞穴石笋在全球气候变化研究领域有着不可替代的重要作用. 石笋古气候研究于20世纪60~70年代在欧美等西方国家起步, 中国的相关研究是在改革开放后80~90年代中期逐步发展起来的. 这一时期虽然总体研究水平与国际水平有较大差距, 但打下了良好的研究基础、培养了多个人才队伍. 进入21世纪, 以2001年发表南京葫芦洞石笋记录为起点, 中国石笋古气候研究在开放合作的基础上, 迎来了蓬勃发展和真正意义上的飞跃, 产生了重大国际影响, 在多个相关技术和研究领域迈向了国际前沿. 标志性成果包括建立了目前世界最长的东亚季风(64万年)石笋记录, 以及印度季风(28万年)、南美季风(25万年)、北美西风区(33万年)、中亚西风带(13.5万年)和中国西部西风带(50万年)最长的石笋记录, 奠定了这些气候系统石笋古气候研究的里程碑; 揭示了轨道-亚轨道尺度上亚洲季风与太阳辐射、南-北极地气候变化的关联, 以及与南美季风的反相位关系, 为发展轨道-亚轨道气候变化理论提供了新的内涵和证据; 阐述了亚洲季风与西风带气候模态之间的耦合和分异关系; 精细刻画了全新世亚洲季风变化历史、提供了中国和印度文明-文化演化的水文气候变化背景; 建立了大量的2000年以来的高分辨率石笋记录, 对理解短尺度气候变率、幅度、事件、周期及预测未来气候变化具有重要意义; 改进或发展了包括U-Th测年技术在内的多项重要技术和新的水文气候学指标; 为精准重建大气14C做出了重要贡献. 展望未来, 中国石笋界将继续发展关键技术、进一步厘清石笋指标的水文气候学意义、注重与相关学科的融合交叉、聚焦全球气候变化的前沿科学问题和重大社会需求, 做出新的更大的科学贡献.


Funded by

国家自然科学基金项目(41888101,41731174)


Acknowledgment

感谢谭明、汪永进、胡超涌、蔡演军和谭亮成的帮助和对初稿提出的许多建设性修改意见.


References

[1] 班凤梅, 潘根兴, 蔡炳贵, 朱健, 谭明. 2009. 北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义. 中国岩溶, 28: 243–248. Google Scholar

[2] 陈建徽, 饶志国, 刘建宝, 黄伟, Feng S, 董广辉, 胡玉, 许清海, 陈发虎. 2016. 全新世东亚夏季风最强盛期出现在何时?——兼论中国南方石笋氧同位素的古气候意义. 中国科学: 地球科学, 46: 1494–1504. Google Scholar

[3] 陈跃, 黄培华, 朱洪山. 1986. 北京周口店地区洞穴内第四纪石笋的同位素古温度研究. 科学通报, 20: 1576–1578. Google Scholar

[4] 程海, 艾思本, 王先锋, 汪永进, 孔兴功, 袁道先, 张美良, 林玉石, 覃嘉铭, 冉景丞. 2005. 中国南方石笋氧同位素记录的重要意义. 第四纪研究, 25: 157–163. Google Scholar

[5] 崔梦月, 洪晖, 孙晓双, 姜修洋, 蔡炳贵. 2018. 福建仙云洞石笋记录的新仙女木突变事件结束时的缓变特征. 第四纪研究, 38: 711–719. Google Scholar

[6] 杜雅娟, 冯添, 康志海. 2013. 北方季风边缘区洞穴石笋δ18O序列预测初步研究. 科学通报, 58: 254–259. Google Scholar

[7] 方念乔, 胡超涌. 2008. 石笋流体包裹体中的惰性气体及其在重建长江中游古温度变化中的作用. 地学前缘, 15: 132–137. Google Scholar

[8] 洪阿实, 彭子成, 李平. 1995. 洞穴石笋占温度的同位素地球化学方法. 地球科学进展, 10: 348–352. Google Scholar

[9] 胡豪然, 钱维宏. 2007. 东亚夏季风北边缘的确认. 自然科学进展, 17: 57–65. Google Scholar

[10] 胡尊语, 覃荣蓓, 樊仁为, 王孟禹, 胡超涌. 2018. 湖北清江和尚洞石笋色度对温度的响应. 第四纪研究, 38: 1487–1493. Google Scholar

[11] 黄俊华. 1992. 湖北崇阳狮泉洞第四纪石笋的碳氧同位素特征及占气候研究. 中国岩溶, 11: 245–249. Google Scholar

[12] 黄仁海. 1994. 贵州多缤洞沉积物的沉积环境特征. 见: 宋林华, 丁怀元, 编. 喀斯特与洞穴风景旅游资源研究. 北京: 地震出版社. 99–103. Google Scholar

[13] 李彬. 1994. 洞穴化学沉积物中δ13C、δ18O对环境变迁的示踪意义. 中国岩溶, 13: 17–24. Google Scholar

[14] 李彬, 袁道先, Stein-Erik L, 覃嘉明, 林玉石. 1998. 桂林盘龙洞石笋中新仙女木事件及全新世气候变化记录. 地质学报, 72: 94. Google Scholar

[15] 李彬, 袁道先, 林玉石, 覃嘉铭, 张美良. 2000. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐碳氧同位素研究及其环境意义. 中国科学: 地球科学, 30: 81–87. Google Scholar

[16] 李东, 谭亮成, 郭飞, 蔡演军, 孙有斌, 薛刚, 成星, 晏宏, 程海, 高永利. 2019. Avaatech XRF岩芯扫描分析方法在石笋Sr/Ca测试中的应用. 中国科学: 地球科学, 49: 1014–1023. Google Scholar

[17] 李瀚瑛, Sinha A, 程海, Spötl C, 宁有丰. 2019. 西南印度洋罗德里格斯岛石笋记录的新仙女木事件. 第四纪研究, 39: 1006–1017. Google Scholar

[18] 李瀚瑛, 程海, 王健, 田野, 宁有丰. 2018. 激光诱导击穿光谱仪在古气候研究中的应用: 建立石笋微量元素记录. 第四纪研究, 38: 1549–1551. Google Scholar

[19] 李红春, 顾德隆, 陈文寄, 李铁英. 1997. 利用洞穴群的δ18O和δ13C重建3000a以来北京地区古气候和古环境——石花洞研究系列之三. 地震地质, 19: 77–85. Google Scholar

[20] 李红春, 顾德隆, 陈文寄, 袁道先, 李铁英. 1998. 高分辨率洞穴石笋中稳定同位素应用——北京元大都建立后对森林资源的破坏——δ13C记录. 地质论评, 44: 456–462. Google Scholar

[21] 李俊云, 李廷勇, 王建力, 向晓晶, 陈昀暄, 李玄. 2013. 重庆芙蓉洞土壤带Mg和Sr元素特征及其环境意义. 中国科学: 地球科学, 43: 1667–1676. Google Scholar

[22] 李平, 彭子成, 文启彬, 李玉成, 杨辉, 洪阿实, 许志峰, 王明亮, 业渝光, 和杰, 刁少波. 1996. 福建宁化天鹅洞石笋年代和古温度. 沉积学报, 14: 149–154. Google Scholar

[23] 廖金, 胡超涌, 李成展, 张格格, 高金荣, 黄俊华. 2014. 石笋碳酸盐假性热释光: 古环境的新指标. 地球科学——中国地质大学学报, 39: 443–450. Google Scholar

[24] 林玉石, 张美良, 覃嘉铭. 1996. 桂林盘龙洞石笋地质时代的划分. 中国岩溶, 15: 167–173. Google Scholar

[25] 刘东生, 谭明, 秦小光, 赵树森, 李铁英, 吕金波. 1997. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义. 第四纪研究, 17: 41–51. Google Scholar

[26] 刘育燕, 何锦发. 1990. 桂林胡子材生化学沉积物(石笋)的古温度研究. 地球科学, 6: 689–696. Google Scholar

[27] 刘浴辉, 唐国强, 凌潇潇, 胡超涌, 李献华. 2015. 二次离子质谱技术在季节分辨石笋δ18O分析中的应用. 中国科学: 地球科学, 45: 1316–1323. Google Scholar

[28] 罗维均, 王世杰. 2008. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义. 科学通报, 53: 2071–2076. Google Scholar

[29] 秦小光, 刘东生, 谭明, 李铁英, 吕金波, 丁仲礼, 刘嘉麒, 聂高众. 1998. 北京石花洞石笋微层尺度变化特征及气候意义——1. 微层显微特征. 中国科学: 地球科学, 28: 91–96. Google Scholar

[30] 覃嘉铭. 1996. 古气候变化的石笋同位素记录研究——以桂林盘龙洞为例. 地球学报, 8: 255–260. Google Scholar

[31] 谭明. 2009. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义——古气候记录与现代气候研究的一次对话. 第四纪研究, 29: 851–862. Google Scholar

[32] 谭明. 2016. 近千年气候格局的环流背景: ENSO态的不确定性分析与再重建. 中国科学: 地球科学, 46: 657–673. Google Scholar

[33] 谭明, 刘东生, 秦小光, 钟华, 李铁英, 赵树森, 李红春, 吕金波, 鲁向阳. 1997. 北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究. 中国岩溶, 16: 1–10. Google Scholar

[34] 谭明, 刘东生. 1996. 洞穴碳酸钙沉积的古气候记录研究. 地球科学进展, 11: 388–395. Google Scholar

[35] 谭明, 秦小光, 沈凛梅, 王先锋, 汪永进, 李铁英, 宋林华, 王来洪, 刘东生. 1999. 中国洞穴碳酸盐双重光性显微旋回及其意义. 科学通报, 44: 646–648. Google Scholar

[36] 汤绪, 钱维宏, 梁萍. 2006. 东亚夏季风边缘带的气候特征. 高原气象, 25: 375–381. Google Scholar

[37] 汪品先. 2006. 低纬过程的轨道驱动. 第四纪研究, 26: 694–701. Google Scholar

[38] 汪训一. 1985. 桂林茅茅头大岩洞穴沉积物的放射性年龄及氧、碳同位素特征. 科学通报, 30: 528–531. Google Scholar

[39] 汪永进, 陈琪, 刘泽纯, 陈晔, 周春林, 陆从伦. 1997. 南京汤山溶洞石笋连续200ka古气候记录. 科学通报, 42: 2093–2097. Google Scholar

[40] 汪永进, 吴江莹, 许汉奎, 穆西南. 2000. 南京汤山洞穴石笋稳定同位素指示的气候与环境意义. 地质学报, 74: 333–338. Google Scholar

[41] 王世杰, 罗维均, 刘秀明, 谢兴能, 周运超, 黎廷宇等. 2009. 贵州七星洞系统中水文地球化学特征对滴水δ13CDIC的影响及其意义. 地学前缘, 16: 66–76. Google Scholar

[42] 王新中, 班凤梅, 潘根兴. 2005. 洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例. 第四纪研究 25: 258–264. Google Scholar

[43] 王兆荣, 彭子成, 孙卫东, 倪守斌. 1998. 晚更新世浙江临安石笋古气候和海平面变化研究. 地质地球化学, 1: 37–40. Google Scholar

[44] 王兆荣, 支霞臣, 张汉昌, 项亮. 1996. 华北古气候与海面变化的初步研究. 科技通报, 12: 343–346. Google Scholar

[45] 吴江滢, 汪永进, 程海, Edwards R L. 2009. 葫芦洞石笋记录的19.9~17.1 ka BP东亚夏季风增强事件. 中国科学D辑: 地球科学, 39: 61–69. Google Scholar

[46] 徐宏祖. 1980. 褚绍唐, 吴应寿, 整理. 徐霞客游记. 上海: 上海古籍出版社. 182. Google Scholar

[47] 严正. 1980. 贵州桐梓某第四纪洞穴钟乳石的氧、碳稳定同位素比值及其古温度的初步测定. 地震地质, 2: 68. Google Scholar

[48] 袁道先. 1995. 岩溶作用对环境变化的敏感性及其记录. 科学通报, 73: 1210–1213. Google Scholar

[49] 袁道先, 覃嘉铭, 林玉石. 1999. 桂林20万年石笋高分辨率古环境重建. 桂林: 广西师范大学出版社. 32–56. Google Scholar

[50] 张海伟, 程海, 蔡演军, Kathayat G, 宁有丰, Edwards R L, 孟秉霖. 2019. 赣北石笋记录的新仙女木事件. 第四纪研究, 39: 994–1005. Google Scholar

[51] 张美良, 林玉石, 覃嘉铭. 1999. 桂林水南洞石笋的沉积学特征. 沉积学报, 17: 233–239. Google Scholar

[52] 张美良, 朱晓燕, 林玉石, 田明中, 王华. 2007. 洞穴滴(流)水的沉积及溶-侵蚀作用——以桂林盘龙洞为例. 中国岩溶, 26: 326–333. Google Scholar

[53] 张美良, 朱晓燕, 吴夏, 潘谋成, 阳和平. 2015. 洞穴次生化学碳酸盐沉积物——石笋的气候替代指标的意义与不确定性因素. 地球与环境, 43: 138–151. Google Scholar

[54] 张寿越, 赵树森, 何宇彬. 1985. 中国大陆东部洞穴沉积物的Th/U年代及古环境研究. 地球科学, 10: 65–72. Google Scholar

[55] 张英俊, 缪钟灵, 毛健全, 典章. 1985. 应用岩溶学及洞穴学. 贵阳: 贵州人民出版社. 244. Google Scholar

[56] 赵景耀, 程海. 2017. 激光扫描共聚焦显微镜在古气候纹层学的应用. 第四纪研究, 37: 1472–1474. Google Scholar

[57] 赵景耀, 杨琰, 彭涛, 郭延伟, 任小凤, 张银环, 聂旭东, 刘肖, 李建仓, 凌新有, 张志钦. 2014. 河南鸡冠洞降水、滴水和现生碳酸钙的δ18O变化特征及其环流意义. 第四纪研究, 34: 1106–1116. Google Scholar

[58] 赵树森, 刘明林, 乔广生. 1989. 中国东部喀斯特洞穴沉积物铀系年代. 中国岩溶, 8: 53–61. Google Scholar

[59] 周运超, 王世杰, 谢兴能, 罗维均, 黎廷宇. 2004. 贵州4个洞穴滴水对大气降雨响应的动力学及其意义. 科学通报, 49: 2220–2227. Google Scholar

[60] 朱洪山, 张巽. 1992. 44万年以来北京地区石笋古温度记录. 科学通报, 20: 1880–1884. Google Scholar

[61] 朱学稳. 1988. 桂林岩溶地貌与洞穴研究, 北京: 地质出版社. 96–131. Google Scholar

[62] Bakker P, Clark P U, Golledge N R, Schmittner A, Weber M E. Centennial-scale Holocene climate variations amplified by Antarctic ice sheet discharge. Nature, 2017, 541: 72-76 CrossRef PubMed ADS Google Scholar

[63] Barkan E, Affek H P, Luz B, Bergel S J, Voarintsoa N R G, Musan I. Calibration of δ17O and 17Oexcess values of three international standards: IAEA-603, NBS19 and NBS18. Rapid Commun Mass Spectrom, 2019, 33: 737-740 CrossRef PubMed ADS Google Scholar

[64] Barkan E, Musan I, Luz B. High-precision measurements of δ17O and 17Oexcess of NBS19 and NBS18. Rapid Commun Mass Spectrom, 2015, 29: 2219-2224 CrossRef PubMed ADS Google Scholar

[65] Barker S, Knorr G, Edwards R L, Parrenin F, Putnam A E, Skinner L C, Wolff E, Ziegler M. 800000 years of abrupt climate variability. Science, 2011, 334: 347-351 CrossRef PubMed ADS Google Scholar

[66] Battisti D S, Ding Q, Roe G H. Coherent Pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J Geophys Res-Atmos, 2014, 119: 11997-12020 CrossRef ADS Google Scholar

[67] Berger A. Milankovitch theory and climate. Rev Geophys, 1988, 26: 624-657 CrossRef ADS Google Scholar

[68] Berger W H, Wefer G. 2003. On the dynamics of the ice ages: Stage-11 paradox, mid-Brunhes climate shift, and 100-ky cycle. Geophys Monogr-Am Geophys Union, 137: 41–60. Google Scholar

[69] Bond G, Kromer B, Beer J, Muscheler R, Evans M N, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. Persistent solar influence on North Atlantic climate during the Holocene. Science, 2001, 294: 2130-2136 CrossRef PubMed ADS Google Scholar

[70] Broecker W S. Paleocean circulation during the Last Deglaciation: A bipolar seesaw?. Paleoceanography, 1998, 13: 119-121 CrossRef ADS Google Scholar

[71] Broecker W S, van Donk J. Insolation changes, ice volumes, and the O18 record in deep-sea cores. Rev Geophys, 1970, 8: 169-197 CrossRef ADS Google Scholar

[72] Broecker W S, Olson E A, Orr P C. Radiocarbon measurements and annual rings in cave formations. Nature, 1960, 185: 93-94 CrossRef ADS Google Scholar

[73] Buizert C, Cuffey K M, Severinghaus J P, Baggenstos D, Fudge T J, Steig E J, Markle B R, Winstrup M, Rhodes R H, Brook E J, Sowers T A, Clow G D, Cheng H, Edwards R L, Sigl M, McConnell J R, Taylor K C. The WAIS Divide deep ice core WD2014 chronology—Part 1: Methane synchronization (68–31 ka BP) and the gas age-ice age difference. Clim Past, 2015, 11: 153-173 CrossRef ADS Google Scholar

[74] Cai B G, Pumijumnong N, Tan M, Muangsong C, Kong X G, Jiang X Y, Nan S L. Effects of intraseasonal variation of summer monsoon rainfall on stable isotope and growth rate of a stalagmite from northwestern Thailand. J Geophys Res, 2010, 115: D21104 CrossRef ADS Google Scholar

[75] Cai B, Zhu J, Ban F, Tan M. Intra-annual variation of the calcite deposition rate of drip water in Shihua Cave, Beijing, China and its implications for palaeoclimatic reconstructions. Boreas, 2011, 40: 525-535 CrossRef Google Scholar

[76] Cai Y J, An Z S, Cheng H, Edwards R L, Kelly M J, Liu W G, Wang X F, Shen C C. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China. Geology, 2006, 34: 621-624 CrossRef ADS Google Scholar

[77] Cai Y J, Fung I Y, Edwards R L, An Z S, Cheng H, Lee J E, Tan L C, Shen C C, Wang X F, Day J A, Zhou W J, Kelly M J, Chiang J C H. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252000 y. Proc Natl Acad Sci USA, 2015, 112: 2954-2959 CrossRef PubMed ADS Google Scholar

[78] Cai Y J, Tan L C, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 2010, 291: 21-31 CrossRef ADS Google Scholar

[79] Cai Y, Chiang J C H, Breitenbach S F M, Tan L, Cheng H, Edwards R L, An Z. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat Sci Rev, 2017, 158: 15-28 CrossRef ADS Google Scholar

[80] Chen C J, Li T Y. Geochemical characteristics of cave drip water respond to ENSO based on a 6-year monitoring work in Yangkou Cave, Southwest China. J Hydrol, 2018, 561: 896-907 CrossRef ADS Google Scholar

[81] Chen S, Wang Y, Cheng H, Edwards R L, Wang X, Kong X, Liu D. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales. Sci Rep, 2016, 6: 32995 CrossRef PubMed ADS Google Scholar

[82] Cheng H, Edwards R L, Hoff J, Gallup C D, Richards D A, Asmerom Y. The half-lives of uranium-234 and thorium-230. Chem Geol, 2000, 169: 17-33 CrossRef ADS Google Scholar

[83] Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X G, Wang Y J, Zhang R, Wang X F. Ice age terminations. Science, 2009a, 326: 248-252 CrossRef PubMed ADS Google Scholar

[84] Cheng H, Edwards R L, Haug G H. Comment on “On linking climate to Chinese dynastic change: Spatial and temporal variations of monsoonal rain”. Chin Sci Bull, 2010, 55: 3734-3737 CrossRef ADS Google Scholar

[85] Cheng H, Lawrence Edwards R, Shen C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Calvin Alexander Jr E. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett, 2013a, 371-372: 82-91 CrossRef ADS Google Scholar

[86] Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. The Asian monsoon over the past 640000 years and ice age terminations. Nature, 2016a, 534: 640-646 CrossRef PubMed ADS Google Scholar

[87] Cheng H, Edwards R L, Southon J, Matsumoto K, Feinberg J M, Sinha A, Zhou W, Li H, Li X, Xu Y, Chen S, Tan M, Wang Q, Wang Y J, Ning Y F. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science, 2018, 362: 1293-1297 CrossRef PubMed ADS Google Scholar

[88] Cheng H, Edwards R L, Wang Y, Kong X, Ming Y, Kelly M J, Wang X, Gallup C D, Liu W. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology, 2006, 34: 217-220 CrossRef ADS Google Scholar

[89] Cheng H, Fleitmann D, Edwards R L, Wang X, Cruz F W, Auler A S, Mangini A, Wang Y, Kong X, Burns S J, Matter A. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology, 2009b, 37: 1007-1010 CrossRef ADS Google Scholar

[90] Cheng H, Sinha A, Colman S M. 2012c. Will summer rain increase or decrease in monsoon regions? PAGES News, 20: 27. Google Scholar

[91] Cheng H, Sinha A, Cruz F W, Wang X, Edwards R L, d’Horta F M, Ribas C C, Vuille M, Stott L D, Auler A S. Climate change patterns in Amazonia and biodiversity. Nat Commun, 2013b, 4: 1411 CrossRef PubMed ADS Google Scholar

[92] Cheng H, Sinha A, Verheyden S, Nader F H, Li X L, Zhang P Z, Yin J J, Yi L, Peng Y B, Rao Z G, Ning Y F, Edwards R L. The climate variability in northern Levant over the past 20000 years. Geophys Res Lett, 2015, 42: 8641-8650 CrossRef ADS Google Scholar

[93] Cheng H, Sinha A, Wang X, Cruz F W, Edwards R L. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn, 2012a, 39: 1045-1062 CrossRef ADS Google Scholar

[94] Cheng H, Spötl C, Breitenbach S F M, Sinha A, Wassenburg J A, Jochum K P, Scholz D, Li X, Yi L, Peng Y, Lv Y, Zhang P, Votintseva A, Loginov V, Ning Y, Kathayat G, Edwards R L. Climate variations of Central Asia on orbital to millennial timescales. Sci Rep, 2016b, 6: 36975 CrossRef PubMed ADS Google Scholar

[95] Cheng H, Springer G S, Sinha A, Hardt B F, Yi L, Li H Y, Tian Y, Li X L, Rowe H D, Kathayat G, Ning Y F, Edwards R L. Eastern North American climate in phase with fall insolation throughout the last three glacial-interglacial cycles. Earth Planet Sci Lett, 2019, 522: 125-134 CrossRef ADS Google Scholar

[96] Cheng H, Zhang P Z, Spötl C, Edwards R L, Cai Y J, Zhang D Z, Sang W C, Tan M, An Z S. The climatic cyclicity in semiarid-arid central Asia over the past 500000 years. Geophys Res Lett, 2012b, 39: L01705 CrossRef ADS Google Scholar

[97] Cherdyntsev V V, Kazachevskiy I V, Kuz’mina Y A. 1965. Age of Pleistocene carbonate determined from the isotopes of thorium and uranium. Geochem Int, 2: 749. Google Scholar

[98] Chiang J C H, Fung I Y, Wu C H, Cai Y, Edman J P, Liu Y, Day J A, Bhattacharya T, Mondal Y, Labrousse C A. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat Sci Rev, 2015, 108: 111-129 CrossRef ADS Google Scholar

[99] Chou Y M, Jiang X, Liu Q, Hu H M, Wu C C, Liu J, Jiang Z X, Lee T Q, Wang C C, Song Y F, Chiang C C, Tan L, Lone M A, Pan Y, Zhu R, He Y, Chou Y C, Tan A H, Roberts A P, Zhao X, Shen C C. Multidecadally resolved polarity oscillations during a geomagnetic excursion. Proc Natl Acad Sci USA, 2018, 115: 8913-8918 CrossRef PubMed ADS Google Scholar

[100] Croll J. 1875. Climate and Time in Their Geological relations: A Theory of Secular Changes of the Earth’s Climate. New York: Cambridge University Press. Google Scholar

[101] Cruz F W, Burns S J, Karmann I, Sharp W D, Vuille M, Cardoso A O, Ferrari J A, Silva Dias P L, Viana O. Insolation-driven changes in atmospheric circulation over the past 116000 years in subtropical Brazil. Nature, 2005, 434: 63-66 CrossRef PubMed ADS Google Scholar

[102] Du W J, Cheng H, Xu Y, Yang X L, Zhang P Z, Sha L J, Li H Y, Zhu X Y, Zhang M L, Stríkis N M, Cruz F W, Edwards R L, Zhang H, Ning Y. Timing and structure of the weak Asian Monsoon event about 73000 years ago. Quat Geochronol, 2019, 53: 101003 CrossRef Google Scholar

[103] Duan F, Liu D, Cheng H, Wang X, Wang Y, Kong X, Chen S. A high-resolution monsoon record of millennial-scale oscillations during Late MIS 3 from Wulu Cave, south-west China. J Quat Sci, 2014, 29: 83-90 CrossRef ADS Google Scholar

[104] Duan W, Cai B, Tan M, Liu H, Zhang Y. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring. Boreas, 2012, 41: 113-123 CrossRef Google Scholar

[105] Duan W, Cheng H, Tan M, Edwards R L. Onset and duration of transitions into greenland Interstadials 15.2 and 14 in northern china constrained by an annually laminated stalagmite. Sci Rep, 2016a, 6: 20844 CrossRef PubMed ADS Google Scholar

[106] Duan W, Ruan J, Luo W, Li T, Tian L, Zeng G, Zhang D, Bai Y, Li J, Tao T, Zhang P, Baker A, Tan M. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China. Geochim Cosmochim Acta, 2016b, 183: 250-266 CrossRef ADS Google Scholar

[107] Duplessy J C, Labeyrie J, Lalou C, Nguyen H V. Continental climatic variations between 130000 and 90000 years BP. Nature, 1970, 226: 631-633 CrossRef PubMed ADS Google Scholar

[108] Dykoski C A, Edwards R L, Cheng H, Yuan D X, Cai Y J, Zhang M L, Lin Y S, Qing J M, An Z S, Revenaugh J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 2005, 233: 71-86 CrossRef ADS Google Scholar

[109] Emiliani C. Pleistocene temperatures. J Geol, 1955, 63: 538-578 CrossRef ADS Google Scholar

[110] Fantidis J, Ehhalt D H. Variations of the carbon and oxygen isotopic composition in stalagmites and stalactites: Evidence of non-equilibrium isotopic fractionation. Earth Planet Sci Lett, 1970, 10: 136-144 CrossRef ADS Google Scholar

[111] Fleming J R. 2006. James Croll in Context: The Encounter between climate dynamics and geology in the second half of the Nineteenth Century. Hist Meteorol, 3: 43–54. Google Scholar

[112] Fornaca-Rinaldi G, Panichi C, Tongiorgi E. Some causes of the variation of the isotopic composition of carbon and oxygen in cave concretions. Earth Planet Sci Lett, 1968, 4: 321-324 CrossRef ADS Google Scholar

[113] Fornaca-Rinaldi G. 230Th/234Th dating of cave concretions. Earth Planet Sci Lett, 1968, 5: 120-122 CrossRef ADS Google Scholar

[114] Galimov E M, Grinenko V A. 1965. The effect of leaching under surface conditions on the isotopic composition of carbon in secondary calcite. Geochem Int, 1: 79–82. Google Scholar

[115] Gascoyne M. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. J Hydrol, 1983, 61: 213-222 CrossRef ADS Google Scholar

[116] Han L Y, Li T Y, Cheng H, Edwards R L, Shen C C, Li H C, Huang C X, Li J Y, Yuan N, Wang H B, Zhang T T, Zhao X. Potential influence of temperature changes in the southern hemisphere on the evolution of the Asian summer monsoon during the last glacial period. Quat Int, 2016, 392: 239-250 CrossRef ADS Google Scholar

[117] Harmon R S, Ford D C, Schwarcz H P. Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Th-234U dating of calcite speleothems. Can J Earth Sci, 1977, 14: 2543-2552 CrossRef ADS Google Scholar

[118] Harmon R S, Schwarcz H P, Ford D C, Koch D L. An isotopic paleotemperature record for Late Wisconsinan time in northeast Iowa. Geology, 1979a, 7: 430-433 CrossRef Google Scholar

[119] Harmon R S, Thompson P, Schwarcz H P, Ford D C. Late Pleistocene paleoclimates of North America as inferred from stable isotope studies of speleothems. Quat Res, 1978a, 9: 54-70 CrossRef ADS Google Scholar

[120] Harmon R S, Schwarcz H P, Ford D C. Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave System: Implications for terrestrial climate change during the period 230000 to 100000 years B.P. J Geol, 1978b, 86: 373-384 CrossRef ADS Google Scholar

[121] Harmon R S, Schwarcz H P, O’Neil J R. D/h ratios in speleothem fluid inclusions: A guide to variations in the isotopic composition of meteoric precipitation?. Earth Planet Sci Lett, 1979b, 42: 254-266 CrossRef ADS Google Scholar

[122] Hays J D, Imbrie J, Shackleton N J. Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science, 1976, 194: 1121-1132 CrossRef PubMed ADS Google Scholar

[123] Henderson G M. Climate: Caving in to new chronologies. Science, 2006, 313: 620-622 CrossRef PubMed Google Scholar

[124] Hendy C H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim Cosmochim Acta, 1971, 35: 801-824 CrossRef ADS Google Scholar

[125] Hendy C H, Wilson A T. Palaeoclimatic data from speleothems. Nature, 1968, 219: 48-51 CrossRef ADS Google Scholar

[126] Hu C, Henderson G M, Huang J, Xie S, Sun Y, Johnson K R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett, 2008, 266: 221-232 CrossRef ADS Google Scholar

[127] Imbrie J, Berger A, Boyle EA. 1993. On the structure and origin of major glaciation cycles. Part 2: The 100000-year cycle. Paleoceanography, 8: 699–735. Google Scholar

[128] Imbrie J, Hays J D, Martinson D G, McIntyre A, Mix A C, Morley J J, Pisias N G, Prell W L, Shackleton N J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger A L, ed. Milankovitch and Climate, Part I. Dordrecht: D. Reidel Publ. 269–305. Google Scholar

[129] Jansen J H F, Kuijpers A, Troelstra S R. A mid-brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 1986, 232: 619-622 CrossRef PubMed ADS Google Scholar

[130] Jiang X, Wang X, He Y, Hu H M, Li Z, Spötl C, Shen C C. Precisely dated multidecadally resolved asian summer monsoon dynamics 113.5–86.6 thousand years ago. Quat Sci Rev, 2016, 143: 1-12 CrossRef ADS Google Scholar

[131] Johnson K R, Hu C, Belshaw N S, Henderson G M. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet Sci Lett, 2006, 244: 394-407 CrossRef ADS Google Scholar

[132] Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 2007, 317: 793-796 CrossRef PubMed ADS Google Scholar

[133] Kathayat G, Cheng H, Sinha A, Berkelhammer M, Zhang H, Duan P, Li H, Li X, Ning Y, Edwards R L. Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Clim Past, 2018, 14: 1869-1879 CrossRef Google Scholar

[134] Kathayat G, Cheng H, Sinha A, Spötl C, Edwards R L, Zhang H, Li X, Yi L, Ning Y, Cai Y, Lui W L, Breitenbach S F M. Indian monsoon variability on millennial-orbital timescales. Sci Rep, 2016, 6: 24374 CrossRef PubMed ADS Google Scholar

[135] Kathayat G, Cheng H, Sinha A, Yi L, Li X, Zhang H, Li H, Ning Y, Edwards R L. The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci Adv, 2017, 3: e1701296 CrossRef PubMed ADS Google Scholar

[136] Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta, 1997, 61: 3461-3475 CrossRef ADS Google Scholar

[137] Kong W, Swenson L M, Chiang J C H. Seasonal transitions and the westerly jet in the Holocene East Asian summer monsoon. J Clim, 2017, 30: 3343-3365 CrossRef ADS Google Scholar

[138] Kuo T S, Liu Z Q, Li H C, Wan N J, Shen C C, Ku T L. Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21. J Asian Earth Sci, 2011, 40: 1111-1120 CrossRef ADS Google Scholar

[139] Kutzbach J E. Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9000 years ago. Science, 1981, 214: 59-61 CrossRef PubMed ADS Google Scholar

[140] Labeyrie J, Duplessy J C, Delibrais G, Letolle R. 1967. Etude des tempereatures des climates anciens par la mesure de l’oxygen-18 do carbone-13 et du carbone-14 dans les concretions des caverenes. In: Symposium on Radioactive Dating and Methods of Low Level Counting. Vienna: Proceedings of the International Atomic Energy Agency. IAEA–SM87/5. 153–160. Google Scholar

[141] Lachniet M S, Denniston R F, Asmerom Y, Polyak V J. Orbital control of western North America atmospheric circulation and climate over two glacial cycles. Nat Commun, 2014, 5: 3805 CrossRef PubMed ADS Google Scholar

[142] Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astr, 428: 261–285. Google Scholar

[143] Li H, Cheng H, Sinha A, Kathayat G, Spötl C, André A A, Meunier A, Biswas J, Duan P, Ning Y, Edwards R L. Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago. Clim Past, 2018, 14: 1881-1891 CrossRef ADS Google Scholar

[144] Li J Y, Li T Y, Wang J L, Xiang X J, Chen Y X, Li X. 2013. Characteristics and environmental significance of Ca, Mg, and Sr in the soil infiltrating water overlying the Furong Cave, Chongqing, China. Sci China Earth Sci, 56: 2126–2134. Google Scholar

[145] Li T Y, Li H C, Xiang X J, Kuo T S, Li J Y, Zhou F L, Chen H L, Peng L L. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area. Sci China Earth Sci, 2012, 55: 685-694 CrossRef Google Scholar

[146] Li T Y, Shen C C, Huang L J, Jiang X Y, Yang X L, Mii H S, Lee S Y, Lo L. Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial-interglacial period. Clim Past, 2014, 10: 1211-1219 CrossRef ADS Google Scholar

[147] Li T Y, Yuan D X, Li H C, Yang Y, Wang J L, Wang X Y, Li J Y, Qin J M, Zhang M L, Lin Y S. High-resolution climate variability of southwest China during 57–70 ka reflected in a stalagmite δ18O record from Xinya Cave. Sci China Ser D-Earth Sci, 2007, 50: 1202-1208 CrossRef Google Scholar

[148] Li X L, Cui X P, He D, Liao J, Hu C. Evaluation of the Heshang Cave stalagmite calcium isotope composition as a paleohydrologic proxy by comparison with the instrumental precipitation record. Sci Rep, 2018, 8: 2615 CrossRef PubMed ADS Google Scholar

[149] Li X, Cheng H, Tan L, Ban F, Sinha A, Duan W, Li H, Zhang H, Ning Y, Kathayat G, Edwards R L. The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record, North China. Sci Rep, 2017, 7: 7078 CrossRef PubMed ADS Google Scholar

[150] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005, 20: PA1003 CrossRef ADS Google Scholar

[151] Liu D, Wang Y, Cheng H, Edwards R L, Kong X, Chen S, Liu S. Contrasting patterns in abrupt asian summer monsoon changes in the last glacial period and the holocene. Paleoceanogr Paleoclimatol, 2018, 33: 214-226 CrossRef Google Scholar

[152] Liu D, Wang Y, Cheng H, Edwards R L, Kong X, Wang X, Wu J, Chen S. A detailed comparison of asian monsoon intensity and greenland temperature during the allerød and Younger Dryas events. Earth Planet Sci Lett, 2008, 272: 691-697 CrossRef ADS Google Scholar

[153] Liu D, Wang Y, Cheng H, Kong X, Chen S. Centennial-scale Asian Monsoon variability during the mid-Younger Dryas from Qingtian Cave, central China. Quat Res, 2013, 80: 199-206 CrossRef ADS Google Scholar

[154] Liu X, Rao Z, Shen C C, Liu J, Chen J, Chen S, Wang X, Chen F. Holocene solar activity imprint on centennial to multidecadal scale hydroclimatic oscillations in arid central Asia. J Geophys Res-Atmos, 2019, 124: 2562-2573 CrossRef ADS Google Scholar

[155] Liu Y H, Henderson G M, Hu C Y, Mason A J, Charnley N, Johnson K R, Xie S C. Links between the East Asian monsoon and North Atlantic climate during the 8200 year event. Nat Geosci, 2013, 6: 117-120 CrossRef ADS Google Scholar

[156] Ma Z B, Cheng H, Tan M, Edwards R L, Li H C, You C F, Duan W H, Wang X, Kelly M J. Timing and structure of the younger dryas event in northern China. Quat Sci Rev, 2012, 41: 83-93 CrossRef ADS Google Scholar

[157] Mahata S, Bhattacharya S K, Liang M C. An improved method of high-precision determination of Δ17O of CO2 by catalyzed exchange with O2 using hot platinum. Rapid Commun Mass Spectrom, 2016, 30: 119-131 CrossRef PubMed Google Scholar

[158] Mahata S, Bhattacharya S K, Wang C H, Liang M C. Oxygen isotope exchange between O2 and CO2 over hot platinum: An innovative technique for measuring Δ17O in CO2. Anal Chem, 2013, 85: 6894-6901 CrossRef PubMed Google Scholar

[159] Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment. Holocene, 2008, 18: 861-866 CrossRef Google Scholar

[160] Meckler N. an extended yardstick for climate variability. Nature, 2016, 534: 626-628 CrossRef PubMed ADS Google Scholar

[161] Milankovitch M. 1941. Kanon der erdbestrahlung und seine anwendung auf das eiszeiten problem. Mihaila Curcica. Google Scholar

[162] Moore G W. 1952. Speleothem: A new cave term. Natural Speleol Soc News, 10: 2. Google Scholar

[163] Overpeck J, Cole J. 2008. The rhythm of the rain. Nature, 451: 1061–1062. Google Scholar

[164] Pausata F S R, Battisti D S, Nisancioglu K H, Bitz C M. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci, 2011, 4: 474-480 CrossRef ADS Google Scholar

[165] Raymo M E. The timing of major climate terminations. Paleoceanography, 1997, 12: 577-585 CrossRef ADS Google Scholar

[166] Rosholt J N, Antal P S. 1962. Evaluation of the 231Pa/U-230Th/U method for dating Pleistocene carbonate rocks. US Geol Surv Prof Paper, 450: E108–E111. Google Scholar

[167] Ruan J Y, Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, Central China. Chin Sci Bull, 2010, 55: 3929-3935 CrossRef ADS Google Scholar

[168] Ruddiman W F. Orbital changes and climate. Quat Sci Rev, 2006, 25: 3092-3112 CrossRef ADS Google Scholar

[169] Schaefer J M, Putnam A E, Denton G H, Kaplan M R, Birkel S, Doughty A M, Kelley S, Barrell D J A, Finkel R C, Winckler G, Anderson R F, Ninneman U S, Barker S, Schwartz R, Andersen B G, Schluechter C. The southern glacial maximum 65000 years ago and its unfinished termination. Quat Sci Rev, 2015, 114: 52-60 CrossRef ADS Google Scholar

[170] Schwarcz H P, Harmon R S, Thompson P, Ford D C. Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance. Geochim Cosmochim Acta, 1976, 40: 657-665 CrossRef ADS Google Scholar

[171] Shen C C, Edwards R L, Cheng H, Dorale A, Thomas R B, Moran S B, Weinstein S E, Edmonds H N. 2002. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol, 185: 165–178. Google Scholar

[172] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack. Clim Past, 2016, 12: 1079-1092 CrossRef ADS Google Scholar

[173] Sun Y, Chen J, Clemens S C, Liu Q, Ji J, Tada R. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochem Geophys Geosyst, 2006, 7: Q12Q02 CrossRef ADS Google Scholar

[174] Sun Z, Yang Y, Zhao J, Tian N, Feng X. Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China. J Hydrol, 2018, 566: 164-174 CrossRef ADS Google Scholar

[175] Talma A S, Vogel J C, Partridge T C. 1974. Isotopic contents of some Transvaal speleothems and their paleoclimate significance. South African J Sci, 70: 135–140. Google Scholar

[176] Tan L C, An Z, Huh C A, Cai Y, Shen C C, Shiau L J, Yan L, Cheng H, Edwards R L. Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries. Sci Rep, 2014a, 4: 6381 CrossRef PubMed ADS Google Scholar

[177] Tan L C, Cai Y J, Cheng H, Edwards L R, Gao Y L, Xu H, Zhang H W, An Z S. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet Sci Lett, 2018a, 482: 580-590 CrossRef ADS Google Scholar

[178] Tan L C, Cai Y J, An Z, Cheng H, Shen C C, Breitenbach S F M, Gao Y L, Edwards R L, Zhang H, Du Y. A Chinese cave links climate change, social impacts and human adaptation over the last 500 years. Sci Rep, 2015, 5: 12284 CrossRef PubMed ADS Google Scholar

[179] Tan L, Cai Y, An Z, Cheng H, Shen C C, Gao Y, Edwards R L. 2017. Decreasing monsoon precipitation in southwest china during the last 240 years associated with the warming of tropical ocean. Clim Dyn, 48: 1769–1778. Google Scholar

[180] Tan L C, Cai Y J, An Z, Yi L, Zhang H, Qin S. Climate patterns in north central China during the last 1800 yr and their possible driving force. Clim Past, 2011, 7: 685-692 CrossRef ADS Google Scholar

[181] Tan L C, Cai Y J, Cheng H, An Z, Edwards R L. Summer monsoon precipitation variations in central China over the past 750years derived from a high-resolution absolute-dated stalagmite. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 280: 432-439 CrossRef ADS Google Scholar

[182] Tan L C, Cai Y J, Cheng H, Edwards L R, Lan J H, Zhang H W, Li D, Ma L, Zhao P, Gao Y. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years. Quat Sci Rev, 2018b, 195: 122-132 CrossRef ADS Google Scholar

[183] Tan L C, Shen C C, Cai Y, Cheng H, Edwards R L. Great flood in the middle-lower Yellow River reaches at 4000 a BP inferred from accurately-dated stalagmite records. Chin Sci Bull, 2018c, 63: 206-208 CrossRef Google Scholar

[184] Tan L C, Shen C C, Cai Y, Lo L, Cheng H, An Z. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quat Res, 2014b, 81: 181-188 CrossRef ADS Google Scholar

[185] Tan L C, Song Y G, Cai Y J, An Z S, Orozbaev R, Mamadjanov Y, Edwards L R, Cheng H, Li D, Li Y. Preliminary studies of speleothem in central Asia. Acta Geol Sin, 2016, 90: 2279-2280 CrossRef Google Scholar

[186] Tan L C, Yi L, Cai Y, Shen C C, Cheng H, An Z. Quantitative temperature reconstruction based on growth rate of annually-layered stalagmite: A case study from central China. Quat Sci Rev, 2013, 72: 137-145 CrossRef ADS Google Scholar

[187] Tan L C, Shen C C, Löwemark L, Chawchai S, Edwards R L, Cai Y J, Breitenbach S F M, Cheng H, Chou Y C, Duerrast H, Partin J W, Cai W J, Chabangborn A, Gao Y L, Kwiecien O, Wu C C, Shi Z G, Hsu H H, Wohlfarth B. Rainfall variations in central Indo-Pacific over the past 2700 y. Proc Natl Acad Sci USA, 2019, 6: 201903167 CrossRef PubMed Google Scholar

[188] Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Clim Dyn, 2014, 42: 1067-1077 CrossRef ADS Google Scholar

[189] Tan M, Baker A, Genty D, Smith C, Esper J, Cai B. Applications of stalagmite laminae to paleoclimate reconstructions: Comparison with dendrochronology/climatology. Quat Sci Rev, 2006, 25: 2103-2117 CrossRef ADS Google Scholar

[190] Tan M, Liu T, Hou J, Qin X, Zhang H, Li T. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett, 2003, 30: 1617 CrossRef ADS Google Scholar

[191] Tan M, Liu T. 1995. Stable Isotope Records of a Stalagmite from Jiguan Cave in Henan Province, China. Sci Geol Sin, Suppl: 281–284. Google Scholar

[192] Thompson P, Schwarcz H P, Ford D C. Continental Pleistocene climatic variations from speleothem age and isotopic data. Science, 1974, 184: 893-895 CrossRef PubMed ADS Google Scholar

[193] Thompson P, Schwarcz H P, Ford D C. Stable isotope geochemistry, geothermometry, and geochronology of speleothems from West Virginia. Geol Soc Am Bull, 1976, 87: 1730 CrossRef Google Scholar

[194] WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 2015, 520: 661-665 CrossRef PubMed ADS Google Scholar

[195] Walker M, Head M H, Berkelhammer M, Björck S, Cheng H, Cwyna L, Fisher D, Gkinis V, Long A, Lowe J, Newnham R, Rasmussen S O, Weiss H. Formal ratification of the subdivision of the Holocene series/epoch (Quaternary system/period): Two new global boundary stratotype sections and points (GSSPs) and three new stages/subseries. Episodes, 2018, 41: 213-223 CrossRef Google Scholar

[196] Walker M, Head M J, Lowe J, Berkelhammer M, BjÖrck S, Cheng H, Cwynar L C, Fisher D, Gkinis V, Long A, Newnham R, Rasmussen S O, Weiss H. Subdividing the Holocene Series/Epoch: Formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J Quat Sci, 2019, 34: 173-186 CrossRef ADS Google Scholar

[197] Wang C F, Bendle J A, Zhang H B, Yang Y, Liu D, Huang J, Cui J, Xie S. Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in a stalagmite from central China. Quat Sci Rev, 2018, 192: 97-105 CrossRef ADS Google Scholar

[198] Wang Q, Wang Y, Shao Q, Liang Y, Zhang Z, Kong X. Millennial-scale Asian monsoon variability during the late Marine Isotope Stage 6 from Hulu Cave, China. Quat Res, 2018, 90: 394-405 CrossRef ADS Google Scholar

[199] Wang X, Auler A S, Edwards R L, Cheng H, Cristalli P S, Smart P L, Richards D A, Shen C C. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 2004, 432: 740-743 CrossRef PubMed ADS Google Scholar

[200] Wang X, Edwards R L, Auler A S, Cheng H, Kong X, Wang Y, Cruz F W, Dorale J A, Chiang H W. Hydroclimate changes across the Amazon lowlands over the past 45000 years. Nature, 2017, 541: 204-207 CrossRef PubMed ADS Google Scholar

[201] Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294: 2345-2348 CrossRef PubMed ADS Google Scholar

[202] Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 2005, 308: 854-857 CrossRef PubMed ADS Google Scholar

[203] Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S, Wu J Y, Jiang X, Wang X, An Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224000 years. Nature, 2008, 451: 1090-1093 CrossRef PubMed ADS Google Scholar

[204] Waters C N, Zalasiewicz J, Summerhayes C, Barnosky A D, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis E C, Ellis M, Jeandel C, Leinfelder R, McNeill J R, Richter D B, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, An Z S, Grinevald J, Odada E, Oreskes N, Wolfe A P. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 2016, 351: aad2622 CrossRef PubMed Google Scholar

[205] Weber M E, Clark P U, Kuhn G, Timmermann A, Sprenk D, Gladstone R, Zhang X, Lohmann G, Menviel L, Chikamoto M O, Friedrich T, Ohlwein C. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature, 2014, 510: 134-138 CrossRef PubMed ADS Google Scholar

[206] Wilson R M. Paleoclimate record connects Asian monsoons and ice-age cycles. Phys Today, 2016, 69: 13-15 CrossRef ADS Google Scholar

[207] Wolff E W, Fischer H, Röthlisberger R. Glacial terminations as southern warmings without northern control. Nat Geosci, 2009, 2: 206-209 CrossRef ADS Google Scholar

[208] Woodhead J, Reisz R, Fox D, Drysdale R, Hellstrom J, Maas R, Cheng H, Edwards R L. Speleothem climate records from deep time? Exploring the potential with an example from the Permian. Geology, 2010, 38: 455-458 CrossRef ADS Google Scholar

[209] Yang X L, Yang H, Wang B Y, Huang L J, Shen C C, Edwards R L, Cheng H. Early-Holocene monsoon instability and climatic optimum recorded by Chinese stalagmites. Holocene, 2019, 29: 1059-1067 CrossRef Google Scholar

[210] Yang Y, Yuan D X, Cheng H, Zhang M L, Qin J M, Lin Y S, Zhu X Y, Edwards R L. Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China. Sci China Earth Sci, 2010, 53: 633-641 CrossRef Google Scholar

[211] Yoshimura K, Kanamitsu M, Noone D, Oki T. Historical isotope simulation using reanalysis atmospheric data. J Geophys Res, 2008, 113: D19108 CrossRef ADS Google Scholar

[212] Yuan D X, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M L, Qing J M, Lin Y S, Wang Y J, Wu J Y, Dorale J A, An Z S, Cai Y J. Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science, 2004, 304: 575-578 CrossRef PubMed ADS Google Scholar

[213] Zhang H, Cai Y, Tan L, Cheng H, Qin S, An Z, Edwards R L, Ma L. Large variations of δ13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation. Boreas, 2015, 44: 511-525 CrossRef Google Scholar

[214] Zhang H, Cheng H, Cai Y, Spötl C, Kathayat G, Sinha A, Edwards R L, Tan L. Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records. Clim Past, 2018a, 14: 1805-1817 CrossRef Google Scholar

[215] Zhang H, Cheng H, Spötl C, Cai Y, Sinha A, Tan L, Yi L, Yan H, Kathayat G, Ning Y, Li X, Zhang F, Zhao J, Edwards R L. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO. Sci Rep, 2018b, 8: 12344 CrossRef PubMed ADS Google Scholar

[216] Zhang H, Griffiths M L, Chiang J C H, Kong W, Wu S, Atwood A, Huang J, Cheng H, Ning Y, Xie S. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science, 2018c, 362: 580-583 CrossRef PubMed ADS Google Scholar

[217] Zhang H W, Brahim Y A, Li H Y, Zhao J Y, Kathayat G, Tian Y, Baker J, Wang J, Zhang F, Ning Y F, Edwards R L, Cheng H. The Asian summer monsoon: Teleconnections and forcing mechanisms—A review from Chinese speleothem δ18O records. Quaternary, 2019, 2: 26 CrossRef Google Scholar

[218] Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Jia J H, Jin L Y, Johnson K R. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008, 322: 940-942 CrossRef PubMed ADS Google Scholar

[219] Zhang T T, Li T Y, Cheng H, Edwards R L, Shen C C, Spötl C, Li H C, Han L Y, Li J Y, Huang C X, Zhao X. Stalagmite-inferred centennial variability of the Asian summer monsoon in southwest China between 58 and 79 ka BP. Quat Sci Rev, 2017, 160: 1-12 CrossRef ADS Google Scholar

[220] Zhao J Y, Cheng H, Yang Y, Tan L, Spötl C, Ning Y, Zhang H, Cheng X, Sun Z, Li X, Li H, Liu W, Edwards R L. Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records. Clim Dyn, 2018, 52: 3741-3757 CrossRef ADS Google Scholar

[221] Zhao K, Wang Y, Edwards R L, Cheng H, Liu D. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth Planet Sci Lett, 2010, 298: 191-198 CrossRef ADS Google Scholar

[222] Zhao X, Cheng H, Sinha A, Zhang H, Baker J L, Chen S, Kong X, Wang Y, Edwards R L, Ning Y, Zhao J. 2019. A high-resolution speleothem record of Marine Isotope Stage 11 as a natural analog to Holocene Asian summer monsoon variations. Geophys Res Lett, 46, https://doi.org/10.1029/2019GL083836. Google Scholar

[223] Zhou H, Zhao J, Feng Y, Gagan M K, Zhou G, Yan J. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China. Quat Res, 2008, 69: 306-315 CrossRef ADS Google Scholar

[224] Zhou H, Zhao J, Qing W, Feng Y, Tang J. Speleothem-derived Asian summer monsoon variations in Central China, 54–46 ka. J Quat Sci, 2011, 26: 781-790 CrossRef ADS Google Scholar

[225] Zhu Z, Feinberg J M, Xie S, Bourne M D, Huang C, Hu C, Cheng H. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China. Proc Natl Acad Sci USA, 2017, 114: 852-857 CrossRef PubMed ADS Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1