logo

SCIENTIA SINICA Terrae, Volume 50, Issue 2: 177-193(2020) https://doi.org/10.1360/SSTe-2019-0112

青藏高原——现代生物多样性形成的演化枢纽

邓涛1,2,3,*, 吴飞翔1,2, 苏涛4, 周浙昆4
More info
  • ReceivedMay 29, 2019
  • AcceptedSep 16, 2019
  • PublishedOct 31, 2019

Abstract

青藏高原是当今地球上最独特的地质-地理-生态单元, 拥有独特的生物资源, 在世界生物多样性版图中占有重要地位. 新生代以来, 青藏高原地区经历了剧烈的环境变化, 出现了从“热带动植物乐土”到“冰期动物群摇篮”的转变. 近年来高原古生物学领域的一系列重要发现, 让高原环境巨变背景下青藏地区生物多样性演变历史的细节日趋清晰, 也为讨论这一生命历史进程对高原周边乃至更广阔地区生物区系的影响准备了条件. 文章基于高原古生物学最新研究成果, 涵盖众多动植物类群, 总结高原生物多样性的演变过程及其世界性影响. 我们认为青藏高原是现代生物多样性形成过程中的“演化枢纽”, 它在生物演化史上的影响主要体现为以下三种模式: (1) 土著物种本地起源, (2) 本地起源并“走出西藏”, (3) 途经西藏地区的洲际扩散. 第一种模式以高原特有的淡水鱼类区系的主要成员裂腹鱼类的演化历史为例, 其形态特征的阶段性分化、聚集地海拔的阶梯状分布、化石类群的递进式演化, 构成了“演变与隆起并进”的典范, 是响应高原隆升的结果. 第二种模式主要以上新世以来众多哺乳动物和一些植物类群的演化史为支撑. 冰期动物群的祖先类型, 如披毛犀、北极狐、盘羊等动物的祖先起源于已隆升并进入冰缘环境的青藏高原, 随后在第四纪大冰期来临时, “走出西藏”扩散至北极圈地区; 豹亚科的祖先最早出现在青藏高原地区, 随后扩散至亚洲、非洲和美洲, 其后裔仍是今天各地生态系统中的顶端捕食者; 胡颓子科等一些植物的早期代表也已出现在晚始新世的西藏, 之后扩散并广布于其他地区. 第三种模式中, 臭椿在印度次大陆起源, 随板块碰撞首先扩散至西藏, 后经西藏扩散至东亚、欧洲甚至北美等其他地区; 淡水鱼类中的攀鲈始新世中期在东南亚起源后扩散至西藏, 并经印度次大陆最终拓殖于非洲, 这些实例说明了西藏作为板块碰撞区在生物扩散历史中的独特作用. 以上三种模式, 既是高原生物多样性历史的缩影, 更是高原隆升生物环境效应的体现.


Funded by

中国科学院战略性先导科技专项项目(XDB26000000,XDA20070203,XDA20070301)

第二次青藏高原综合科学考察专项项目(2019QZKK0705)

国家自然科学基金项目(41430102,41872006)

中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC022)

中国科学院国际伙伴计划项目(GJHZ1885)

中国科学院青年创新促进会项目(2017103)


Acknowledgment

衷心感谢青藏高原古生物科考队的各位同仁在野外考察和室内研究中的大力支持与帮助, 感谢审稿人的有益建议使本文得到完善与提高.


References

[1] 曹文宣, 陈宜瑜, 武云飞, 朱松泉. 1981. 裂腹鱼类的起源和演化及其与青藏高原隆起的关系. 见: 中国科学院青藏高原综合科学考察队, 编. 青藏高原隆起的时代、幅度和形式问题. 北京: 科学出版社. 118–130. Google Scholar

[2] 陈宜瑜, 陈毅峰, 刘焕章. 1996. 青藏高原动物地理区的地位和东部界线问题. 水生生物学报, 20: 97–103. Google Scholar

[3] 陈毅峰. 1998. 裂腹鱼类系统发育和分布格局的研究I, 系统发育. 动物分类学报, 23(增刊): 17–25. Google Scholar

[4] 陈毅峰, 曹文宣. 2000. 裂腹鱼亚科. 见: 乐佩琦, 编. 中国动物志, 硬骨鱼纲, 鲤形目(下卷). 北京: 科学出版社. 273–390. Google Scholar

[5] 邓涛, 王晓鸣, 李强. 2012. 西藏札达盆地发现的最原始披毛犀揭示冰期动物群的高原起源. 中国基础科学, 14: 17–21. Google Scholar

[6] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 2015. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系. 地球科学进展, 30: 407–415. Google Scholar

[7] 丁林, Maksatbek S, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云, Muhammad Q, Upendra B. 2017. 印度与欧亚大陆初始碰撞时限、封闭方式和过程. 中国科学: 地球科学, 47: 293–309. Google Scholar

[8] 何德奎, 陈咏霞, 陈毅峰. 2006. 高原鳅属Triplophysa鱼类的分子系统发育和生物地理学研究. 自然科学进展, 16: 1395–1404. Google Scholar

[9] 蒋志刚, 李立立, 胡一鸣, 胡慧建, 李春旺, 平晓鸽, 罗振华. 2018. 青藏高原有蹄类动物多样性和特有性: 演化与保护. 生物多样性, 26: 158–170. Google Scholar

[10] 林启彬. 1981. 藏北第三纪的几种昆虫化石. 见: 中国科学院青藏高原综合科学考察队, 编. 西藏古生物, 第三分册. 北京: 科学出版社. 345–348. Google Scholar

[11] 邱占祥, 邓涛, 王伴月. 2004. 甘肃东乡龙担早更新世哺乳动物群. 中国古生物志, 新丙种, 27: 1–198. Google Scholar

[12] 宋柱秋, 史恭乐, 陈运发, 王祺. 2014. 广西渐新统宁明组臭椿属(苦木科)的翅果化石及其分类学和生物地理学意义. 古生物学报, 53: 191–200. Google Scholar

[13] 魏磊, 吴孝兵, 诸立新, 蒋志刚. 2011. 豹属线粒体基因组分析. 中国科学: 生命科学, 41: 699–713. Google Scholar

[14] 吴玉虎. 2008. 青藏高原维管植物及其生态地理分布. 北京: 科学出版社. 1–1369. Google Scholar

[15] 吴征镒. 1987. 西藏植物区系的起源及其演化. 见: 中国科学院青藏高原综合科学考察队, 编. 西藏植物志, 第五卷. 北京: 科学出版社. 874–902. Google Scholar

[16] 武云飞. 1984. 中国裂腹鱼亚科鱼类的系统分类研究. 高原生物学集刊, 3: 119–140. Google Scholar

[17] 武云飞, 陈宜瑜. 1980. 西藏北部新第三纪的鲤科鱼类化石. 古脊椎动物学报, 18: 15–20. Google Scholar

[18] 武云飞, 吴翠珍. 1992. 青藏高原鱼类. 成都: 四川科学技术出版社. 1–599. Google Scholar

[19] 武云飞, 于登攀, 吴翠珍, 景春, 陈燕琴. 1994. 青海可可西里地区鱼类资源及其保护的初步研究. 动物学杂志, 29: 9–17. Google Scholar

[20] 姚檀栋, 陈发虎, 崔鹏, 马耀明, 徐柏青, 朱立平, 张凡, 王伟财, 艾丽坤, 杨晓新. 2017. 从青藏高原到第三极和泛第三极. 中国科学院院刊, 32: 924–931. Google Scholar

[21] 于海彬, 张镱锂, 刘林山, 陈朝, 祁威. 2018. 青藏高原特有种子植物区系特征及多样性分布格局. 生物多样性, 26: 130–137. Google Scholar

[22] 张春光, 贺大为. 1997. 西藏的鱼类资源. 生物学通报, 32: 9–10. Google Scholar

[23] 张弥曼, 苗德岁. 2016. 青藏高原的新生代鱼化石及其古环境意义. 科学通报, 61: 981–995. Google Scholar

[24] 郑度, 姚檀栋. 2006. 青藏高原隆升及其环境效应. 地球科学进展, 21: 451–458. Google Scholar

[25] 郑绍华, 吴文裕, 李毅, 王国道. 1985. 青海贵德、共和两盆地晚新生代哺乳动物化石. 古脊椎动物学报, 23: 89–134. Google Scholar

[26] 周明镇, 周本雄. 1965. 山西临猗维拉方期哺乳类化石补记. 古脊椎动物学报, 9: 223–234. Google Scholar

[27] 朱松泉. 1986. 中国条鳅亚科鱼类的缥和骨质缥囊的研究. 水生生物学报, 10: 136–143. Google Scholar

[28] 朱松泉. 1989. 中国条鳅志. 南京: 江苏科学技术出版社. 1–150. Google Scholar

[29] An Z S, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[30] Andersen N M. 1982. Phylogeny, Adaptations, Biogeography, and Classification. Entomonograph. Klampenborg: Scandinavian Science Press. 1–455. Google Scholar

[31] Andersen N M. 1990. Phylogeny and taxonomy of water striders, genus Aquarius Schellenberg (Insecta, Hemiptera, Gerridae), with a new species from Australia. Steenstrupia, 16: 37–81. Google Scholar

[32] Audet A M, Robbins C B, Larivière S. Alopex lagopus. Mamm Spec, 2002, 713: 1-10 CrossRef Google Scholar

[33] Bai B, Wang Y Q, Meng J. The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Commun Biol, 2018, 1: 115 CrossRef PubMed Google Scholar

[34] Ballantyne A P, Greenwood D R, Sinninghe Damste J S, Csank A Z, Eberle J J, Rybczynski N. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology, 2010, 38: 603-606 CrossRef ADS Google Scholar

[35] Barnett R, Shapiro B, Barnes I, Ho S Y W, Burger J, Yamaguchi N, Higham T F G, Wheeler H T, Rosendahl W, Sher A V, Sotnikova M, Kuznetsova T, Baryshnikov G F, Martin L D, Harington C R, Burns J A, Cooper A. Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Mol Ecol, 2009, 18: 1668-1677 CrossRef PubMed Google Scholar

[36] Becker H. 1960. The Tertiary Mormon Creek flora from the Upper Ruby River Basin in southwestern Montana. Palaeontographica B, 107: 83–126. Google Scholar

[37] Bell C D, Soltis D E, Soltis P S. The age and diversification of the angiosperms re-revisited. Am J Bot, 2010, 97: 1296-1303 CrossRef PubMed Google Scholar

[38] Berg L S. 1912. Fauna of Russia and Adjacent Countries. Volume 3. St. Petersburg: Imperial Academy of Sciences. 369–704. Google Scholar

[39] Berra T M. 2007. Freshwater Fish Distribution. Chicago: University of Chicago Press. 1–615. Google Scholar

[40] Bibi F, Vrba E, Fack F. A new African fossil caprin and a combined molecular and morphological bayesian phylogenetic analysis of caprini (Mammalia: Bovidae). J Evol Biol, 2012, 25: 1843-1854 CrossRef PubMed Google Scholar

[41] Bohlin B. 1937. Eine Tertiäre säugetier-fauna aus Tsaidam. Sino-Swedish Expedition Publication. Palaeont Sin Ser C, 14: 3–111. Google Scholar

[42] Borsuk-Bialynicka M. 1973. Studies on the Pleistocene rhinoceros Coelodonta antiquitatis (Blumenbach). Palaeont Pol, 29: 1–94. Google Scholar

[43] Bossuyt F, Milinkovitch M C. Amphibians as indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science, 2001, 292: 93-95 CrossRef PubMed ADS Google Scholar

[44] Bowmaker A P, Jackson P B N, Jubb R A. 1978. Freshwater fishes. In: Werger M J A, ed. Biogeography and Ecology of Southern Africa. The Hague: Junk Publishers. 1207–1230. Google Scholar

[45] Brigham-Grette J, Melles M, Minyuk P, Andreev A, Tarasov P, DeConto R, Koenig S, Nowaczyk N, Wennrich V, Rosén P, Haltia E, Cook T, Gebhardt C, Meyer-Jacob C, Snyder J, Herzschuh U. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 2013, 340: 1421-1427 CrossRef PubMed ADS Google Scholar

[46] Cai C Y, Huang D Y, Wu F X, Zhao M, Wang N. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J Asian Earth Sci, 2019, 175: 121-127 CrossRef ADS Google Scholar

[47] Capobianco A, Friedman M. Vicariance and dispersal in southern hemisphere freshwater fish clades: A palaeontological perspective. Biol Rev, 2019, 94: 662-699 CrossRef PubMed Google Scholar

[48] Chang M M, Miao D S, Wang N. 2010. Ascent with modification: Fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. In: Long M Y, Gu H Y, Zhou Z H, eds. Darwin’s Heritage Today: Proceedings of the Darwin 200 Beijing International Conference. Beijing: Higher Education Press. 60–75. Google Scholar

[49] Chang M M, Wang X M, Liu H Z, Miao D S, Zhao Q H, Wu G X, Liu J, Li Q, Sun Z C, Wang N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Natl Acad Sci USA, 2008, 105: 13246-13251 CrossRef PubMed ADS Google Scholar

[50] Chatterjee S, Scotese C R, Bajpai S. 2017. The restless Indian Plate and its epic voyage from Gondwana to Asia: Its tectonic, paleoclimatic, and paleobiogeographic evolution. Geol Soc Am Spec Paper, 529: 1–147. Google Scholar

[51] Chen X Y, Yang J X. Triplophysa rosa sp. nov.: A new blind loach from China. J Fish Biol, 2005, 66: 599-608 CrossRef Google Scholar

[52] Chen Y S, Meseguer A S, Godefroid M, Zhou Z, Zhang J W, Deng T, Kim J H, Nie Z L, (Christopher) Liu Y S, Sun H. Out-of-India dispersal of Paliurus (Rhamnaceae) indicated by combined molecular phylogenetic and fossil evidence. Taxon, 2017, 66: 78-90 CrossRef Google Scholar

[53] Clark H O, Newman D P, Murdoch J D, Tseng J, Wang Z H, Harris R B. 2008. Vulpes ferrilata. Mamm Spec, 821: 1–6. Google Scholar

[54] Clayton J W, Soltis P S, Soltis D E. Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol, 2009, 58: 395-410 CrossRef PubMed Google Scholar

[55] Clyde W C, Khan I H, Gingerich P D. Stratigraphic response and mammalian dispersal during initial India-Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology, 2003, 31: 1097-1100 CrossRef ADS Google Scholar

[56] Corbett S L, Manchester S R. Phytogeography and fossil history of Ailanthus (Simaroubaceae). Int J Plant Sci, 2004, 165: 671-690 CrossRef Google Scholar

[57] Croitor R, Brugal J P. Ecological and evolutionary dynamics of the carnivore community in Europe during the last 3 million years. Quat Int, 2010, 212: 98-108 CrossRef ADS Google Scholar

[58] Csank A Z, Tripati A K, Patterson W P, Eagle R A, Rybczynski N, Ballantyne A P, Eiler J M. Estimates of Arctic land surface temperatures during the Early Pliocene from two novel proxies. Earth Planet Sci Lett, 2011, 304: 291-299 CrossRef ADS Google Scholar

[59] Cun Y Z, Wang X Q. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation. Mol Phylogenets Evol, 2010, 56: 972-982 CrossRef PubMed Google Scholar

[60] Damgaard J. Genetic diversity, taxonomy, and phylogeography of the western Palaearctic water strider Aquarius najas (DeGeer) (Heteroptera: Gerridae). Insect Syst Evol, 2005, 36: 395-406 CrossRef Google Scholar

[61] Darlington P J. 1957. Zoogeography, the Geographic Distribution of Animals. New York: John Wiley & Sons. 1–675. Google Scholar

[62] Davis B W, Li G, Murphy W J. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Mol Phylogenet Evol, 2010, 56: 64-76 CrossRef PubMed Google Scholar

[63] DeCelles P G, Kapp P, Ding L, Gehrels G E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol Soc Am Bull, 2007, 119: 654-680 CrossRef ADS Google Scholar

[64] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2015, 2: 417-437 CrossRef Google Scholar

[65] Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 2012a, 109: 7374-7378 CrossRef PubMed ADS Google Scholar

[66] Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 2012b, 57: 261-269 CrossRef ADS Google Scholar

[67] Deng T, Wang X M, Wu F X, Wang Y, Li Q, Wang S Q, Hou S K. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 2019, 174: 58-69 CrossRef ADS Google Scholar

[68] Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 2011, 333: 1285-1288 CrossRef PubMed ADS Google Scholar

[69] Favre A, Michalak I, Chen C H, Wang J C, Pringle J S, Matuszak S, Sun H, Yuan Y M, Struwe L, Muellner-Riehl A N. Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). J Biogeogr, 2016, 43: 1967-1978 CrossRef Google Scholar

[70] Favre A, Päckert M, Pauls S U, Jähnig S C, Uhl D, Michalak I, Muellner-Riehl A N. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev, 2015, 90: 236-253 CrossRef PubMed Google Scholar

[71] Fernández M H, Vrba E S. A complete estimate of the phylogenetic relationships in Ruminantia: A dated species-level supertree of the extant ruminants. Biol Rev, 2005, 80: 269-302 CrossRef Google Scholar

[72] Fortelius M. 2018. New and Old Worlds Database of Fossil Mammals (NOW). Helsinki: University of Helsinki. http://www.helsinki.fi/science/now/. Google Scholar

[73] Friis E M, Crane P R, Pedersen K R. 2011. Early Flowers and Angiosperm Evolution. New York: Cambridge University Press. 1–596. Google Scholar

[74] Fuentes-González J A, Muñoz-Durán J. 2012. Filogenia de los cánidos actuales (Carnivora: Canidae) mediante análisis de congruencia de characteres bajo parsimonia. Actual Biol, 34: 85–102. Google Scholar

[75] Fuentes-Hurtado M, Hof A R, Jansson R. Paleodistribution modeling suggests glacial refugia in Scandinavia and out-of-Tibet range expansion of the Arctic fox. Ecol Evol, 2016, 6: 170-180 CrossRef PubMed Google Scholar

[76] Gao Q B, Li Y H, Gornall R J, Zhang Z X, Zhang F Q, Xing R, Fu P C, Wang J L, Liu H R, Tian Z Z, Chen S L. Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon, 2015, 64: 703-713 CrossRef Google Scholar

[77] Gentry A W. 1968. The extinct bovid genus Qurliqnoria Bohlin. J Mammal, 49: 769. Google Scholar

[78] Gheerbrant E, Rage J C. Paleobiogeography of Africa: How distinct from Gondwana and Laurasia?. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 241: 224-246 CrossRef ADS Google Scholar

[79] Hoffmann R S. 1991. The Tibetan Plateau fauna, a high altitude desert associated with the Sahara-Gobi. In: McNeely J A, Neronov V, eds. Mammals of the Palaearctic Desert: Status and Trends in the Sahara-Gobi Region. Moscow: Russian Academy of Sciences. 285–297. Google Scholar

[80] Hollick A. 1936. The Tertiary floras of Alaska. US Geol Surv Prof Paper, 182: 1–185. Google Scholar

[81] Hora S L. 1953. Fish distribution and Central Asian orography. Curr Sci, 22: 93–97. Google Scholar

[82] Huang J H, Liu C R, Zhang J L, Lu X H, Ma K P. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol Conserv, 2016, 198: 104-112 CrossRef Google Scholar

[83] Jacques F M B, Guo S X, Su T, Xing Y W, Huang Y J, Liu Y S C, Ferguson D K, Zhou Z K. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 304: 318-327 CrossRef ADS Google Scholar

[84] Jiang H, Su T, Wong W O, Wu F, Huang J, Shi G. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 2019, 175: 99-108 CrossRef ADS Google Scholar

[85] Johnson W E, Eizirik E, Pecon-Slattery J, Murphy W J, Antunes A, Teeling E, O’Brien S J. The Late Miocene radiation of modern felidae: A genetic assessment. Science, 2006, 311: 73-77 CrossRef PubMed ADS Google Scholar

[86] Kahlke H D. 1969. Die Rhinocerotiden-Reste aus den Kiesen von Süssenborn bei Weimar. Paläont Abh A, 3: 567–709. Google Scholar

[87] Kahlke R D. 1999. The History of the Origin, Evolution and Dispersal of the Late Pleistocene Mammuthus-Coelodonta Faunal Complex in Eurasia (Large Mammals). Rapid City: Fenske Companies. 1–219. Google Scholar

[88] Kahlke R D, Lacombat F. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat Sci Rev, 2008, 27: 1951-1961 CrossRef ADS Google Scholar

[89] Klaus S, Morley R J, Plath M, Zhang Y P, Li J T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat Commun, 2016, 7: 12132 CrossRef PubMed ADS Google Scholar

[90] Kullander O S, Fang F, Bo D, Erik A. 1999. The fishes of the Kashmir Valley. In: Lennart N, ed. River Jhelum, Kashmir Valley: Impacts on the Aquatic Environment. Swedmar: The International Consultancy Group of the National Board of Fisheries. 99–168. Google Scholar

[91] Kurtén B. 1968. Pleistocene Mammals of Europe. Chicago: Aldine Publishing Company. 1–316. Google Scholar

[92] Li J T, Li Y, Klaus S, Rao D Q, Hillis D M, Zhang Y P. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proc Natl Acad Sci USA, 2013, 110: 3441-3446 CrossRef PubMed ADS Google Scholar

[93] Li J X, Wang Y, Jin H F, Li W J, Yan C C, Yan P F, Zhang X Y, He S P, Song Z B. Identification of Triplophysa species from the Qinghai-Tibetan Plateau (QTP) and its adjacent regions through DNA barcodes. Gene, 2017, 605: 12-19 CrossRef PubMed Google Scholar

[94] Li Q, Stidham T A, Ni X J, Li L Z. Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal ‘into Tibet’. J Vert Paleontol, 2017, 37: e1403443 CrossRef Google Scholar

[95] Li Q, Xie G P, Takeuchi G T, Deng T, Tseng Z J, Grohé C, Wang X M. Vertebrate fossils on the Roof of the World: Biostratigraphy and geochronology of high-elevation Kunlun Pass Basin, northern Tibetan Plateau, and basin history as related to the Kunlun strike-slip fault. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 411: 46-55 CrossRef ADS Google Scholar

[96] Liem K F. 1963. The comparative osteology and phylogeny of the Anabantoidei (Teleostei, Pisces). Illinois Biol Monogr, 30: 1–149. Google Scholar

[97] Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Do T V, Deng T, Zhou Z K. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[98] Lydekker R. On the skull of a chiru-like antelope from the ossiferous deposits of Hundes (Tibet). Q J Geol Soc, 1901, 57: 289-292 CrossRef Google Scholar

[99] Matuszak S, Muellner-Riehl A N, Sun H, Favre A. Dispersal routes between biodiversity hotspots in Asia: The case of the mountain genus Tripterospermum (Gentianinae, Gentianaceae) and its close relatives. J Biogeogr, 2016, 43: 580-590 CrossRef Google Scholar

[100] Murray A M, Thewissen J G M. Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (Channiformes). J Vert Paleontol, 2008, 28: 41-52 CrossRef Google Scholar

[101] Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A B, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858 CrossRef PubMed Google Scholar

[102] Nalbant T T, Bianco P G. The loaches of Iran and adjacent regions with description of six new species (Cobitoidea). Ital J Zool, 1998, 65: 109-123 CrossRef Google Scholar

[103] Ni X J, Li Q, Stidham T A, Li L Z, Lu X Y, Meng J. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction. Sci Rep, 2016, 6: 38547 CrossRef PubMed ADS Google Scholar

[104] Nooteboom H. 1960. Simaroubaceae. Flora Malesiana-Series 1, Spermatophyta, 6: 193–226. Google Scholar

[105] Norris S M. 1994. The osteology and phylogenetics of the Anabantidae (Osteichthyes, Perciformes). Dissertation for Doctoral Degree. Tempe: Arizona State University. Google Scholar

[106] Pocock R I. 1937. The foxes of British India. J Bombay Nat Hist Soc, 39: 36–57. Google Scholar

[107] Polhemus J T, Polhemus D A. 2008. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia, 595: 379–391. Google Scholar

[108] Prestrud P. 1991. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic, 44: 132–138. Google Scholar

[109] Qin H N, Michael G G. 2007. Flora of China (English version, Vol. 13). Beijing and Missouri: Science Press and Missouri Botanical Garden. Google Scholar

[110] Qiu Y X, Fu C X, Comes H P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol, 2011, 59: 225-244 CrossRef PubMed Google Scholar

[111] Rezaei H R, Naderi S, Chintauan-Marquier I C, Jordan S, Taberlet P, Virk A T, Naghash H R, Rioux D, Kaboli M, Luikart G, Pompanon F. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol, 2010, 54: 315-326 CrossRef PubMed Google Scholar

[112] Rose K D, Holbrook L T, Rana R S, Kumar K, Jones K E, Ahrens H E, Missiaen P, Sahni A, Smith T. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nat Commun, 2014, 5: 5570 CrossRef PubMed ADS Google Scholar

[113] Rosen D E. Vicariant patterns and historical explanation in biogeography. Syst Zool, 1978, 27: 159-188 CrossRef Google Scholar

[114] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau. Science, 2008, 321: 1054-1058 CrossRef PubMed ADS Google Scholar

[115] Rüber L, Britz R, Zardoya R, Linder P. Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Syst Biol, 2006, 55: 374-397 CrossRef PubMed Google Scholar

[116] Sandel B, Arge L, Dalsgaard B, Davies R G, Gaston K J, Sutherland W J, Svenning J C. The influence of late Quaternary climate-change velocity on species endemism. Science, 2011, 334: 660-664 CrossRef PubMed ADS Google Scholar

[117] Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. The Late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 2009, 309: 1-42 CrossRef ADS Google Scholar

[118] Saylor J, DeCelles P, Gehrels G, Murphy M, Zhang R, Kapp P. Basin formation in the High Himalaya by arc-parallel extension and tectonic damming: Zhada Basin, southwestern Tibet. Tectonics, 2010a, 29: TC1004 CrossRef ADS Google Scholar

[119] Saylor J, DeCelles P, Quade J. Climate-driven environmental change in the Zhada basin, southwestern Tibetan Plateau. Geosphere, 2010b, 6: 74-92 CrossRef ADS Google Scholar

[120] Schaller G B. 1998. Wildlife of the Tibetan Steppe. Chicago: University of Chicago Press. 1–373. Google Scholar

[121] Shafroth P B, Auble G T, Scott M L. 1995. Germination and establishment of the native Plains Cottonwood (Populus deltoides Marshall subsp. monilifera) and the exotic Russian-Olive (Elaeagnus angustifolia L.). Conserv Biol, 9: 1169–1175. Google Scholar

[122] Shukla A, Mehrotra R C, Spicer R A, Spicer T E V. Aporosa Blume from the paleoequatorial rainforest of Bikaner, India: Its evolution and diversification in deep time. Rev Palaeobot Palynol, 2016, 232: 14-21 CrossRef Google Scholar

[123] Skelton P H. 1980. Systematics and biogeography of the redfin Barbus species (Pisces: Cyprinidae) from southern Africa. Dissertation for Doctoral Degree. Grahamstown: Rhodes University. 1–417. Google Scholar

[124] Slechtova V, Bohlen J, Tan H H. 2007. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol Phylogenet Evol, 44: 1358–1365. Google Scholar

[125] Soltis D E, Smith S A, Cellinese N, Wurdack K J, Tank D C, Brockington S F, Refulio-Rodriguez N F, Walker J B, Moore M J, Carlsward B S, Bell C D, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth C A, Gitzendanner M A, Sytsma K J, Qiu Y L, Hilu K W, Davis C C, Sanderson M J, Beaman R S, Olmstead R G, Judd W S, Donoghue M J, Soltis P S. Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot, 2011, 98: 704-730 CrossRef PubMed Google Scholar

[126] Song Z Q, Xu D X. The identity of Ailanthus guangxiensis (Simaroubaceae) and lectotypification of A. integrifolia Lamarck. Phytotaxa, 2014, 173: 177-180 CrossRef Google Scholar

[127] Spicer R A. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related?. Plant Divers, 2017, 39: 233-244 CrossRef PubMed Google Scholar

[128] Stiassny M L J. 1991. Phylogenetic intrarelationships of the family Cichlidae: An overview. In: Keenleyside M H A, ed. Cichlid Fishes: Behaviour, Ecology and Evolution. London: Chapman & Hall. 1–35. Google Scholar

[129] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019a, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[130] Su T, Jacques F M B, Spicer R A, Liu Y S, Huang Y J, Xing Y W, Zhou Z K. Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora. Clim Past, 2013, 9: 1911-1920 CrossRef ADS Google Scholar

[131] Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 2019b, 6: 495-504 CrossRef Google Scholar

[132] Su T, Wilf P, Xu H, Zhou Z K. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism. Am J Bot, 2014, 101: 1350-1361 CrossRef PubMed Google Scholar

[133] Sun J, Xu Q, Liu W, Zhang Z, Xue L, Zhao P. Palynological evidence for the latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 399: 21-30 CrossRef ADS Google Scholar

[134] Tang Q, Liu H, Mayden R, Xiong B X. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Mol Phylogenet Evol, 2006, 39: 347-357 CrossRef PubMed Google Scholar

[135] Tedford R H, Wang X M, Taylor B E. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bull Am Mus Nat Hist, 2009, 325: 1-218 CrossRef Google Scholar

[136] Teilhard de Chardin P, Piveteau J. 1930. Les mammifères fossiles de Nihowan (Chine). Ann Paléont, 19: 1–134. Google Scholar

[137] Tseng Z J, Li Q, Wang X. A new cursorial hyena from Tibet, and analysis of biostratigraphy, paleozoogeography, and dental morphology of Chasmaporthetes (Mammalia, Carnivora). J Vert Paleontol, 2013, 33: 1457-1471 CrossRef Google Scholar

[138] Tseng Z J, Wang X, Slater G J, Takeuchi G T, Li Q, Liu J, Xie G. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc R Soc B, 2014, 281: 20132686 CrossRef PubMed Google Scholar

[139] Van Sam H, Nooteboom H P. Ailanthus Vietnamensis (Simaroubaceae): A new species from Vietnam. Blumea, 2007, 52: 555-558 CrossRef Google Scholar

[140] Van Valkenburgh B, Wang X M, Damuth J. Cope’s rule, hypercarnivory, and extinction in North American canids. Science, 2004, 306: 101-104 CrossRef PubMed ADS Google Scholar

[141] Vangengeim E A, Beljaeva E I, Garutt V Y, Dmitrieva E L, Zazhigin V S. 1966. Eopleistocene mammals of Western Transbaikalia. Trudy Geol Inst Akad Nauk SSSR, 152: 92–143. Google Scholar

[142] Vermeij G J. When biotas meet: Understanding biotic interchange. Science, 1991, 253: 1099-1104 CrossRef PubMed ADS Google Scholar

[143] Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987-4992 CrossRef PubMed ADS Google Scholar

[144] Wang N, Chang M. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 2010, 53: 485-500 CrossRef Google Scholar

[145] Wang N, Chang M. Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci, 2012, 55: 714-727 CrossRef Google Scholar

[146] Wang N, Wu F. New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 2015, 62: 274-285 CrossRef Google Scholar

[147] Wang S Q, Yang Q, Zhao Y, Li C X, Shi Q Q, Zong L Y, Ye J. New Olonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau. J Paleontol, 2019, 93: 385-397 CrossRef Google Scholar

[148] Wang X M. 1988. Systematics and population ecology of Late Pleistocene bighorn sheep (Ovis canadensis) of Natural Trap Cave, Wyoming. Trans Nebraska Acad Sci, 16: 173–183. Google Scholar

[149] Wang X M. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull Am Mus Nat Hist, 221: 1–207. Google Scholar

[150] Wang X M, Li Q, Takeuchi G T. Out of Tibet: An early sheep from the Pliocene of Tibet, Protovis himalayensis , genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vert Paleontol, 2016, 36: e1169190 CrossRef Google Scholar

[151] Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C F, Wang N, Wu F X. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 374: 81-95 CrossRef ADS Google Scholar

[152] Wang X M, Li Q, Xie G P. Earliest record of Sinicuon in Zanda Basin, southern Tibet and implications for hypercarnivores in cold environments. Quat Int, 2015a, 355: 3-10 CrossRef ADS Google Scholar

[153] Wang X M, Qiu Z D, Li Q, Wang B Y, Qiu Z X, Downs W, Xie G P, Xie J Y, Deng T, Takeuchi G, Tseng Z J, Chang M M, Liu J, Wang Y, Biasatti D, Sun Z C, Fang X M, Meng Q Q. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 363-385 CrossRef Google Scholar

[154] Wang X M, Tedford R H, Taylor B E. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull Am Mus Nat Hist, 243: 1–391. Google Scholar

[155] Wang X M, Tseng Z J, Li Q, Takeuchi G T, Xie G P. From ‘third pole’ to north pole: A Himalayan origin for the arctic fox. Proc R Soc B, 2014, 281: 20140893 CrossRef PubMed Google Scholar

[156] Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 2015b, 27: 1335-1354 CrossRef ADS Google Scholar

[157] Wang X M, Xie G P, Li Q, Qiu Z D, Tseng Z J, Takeuchi G T, Wang B Y, Fortelius M, Rosenström-Fortelius A, Wahlquist H, Downs W R, Zhang C F, Wang Y. 2011. Early explorations of Qaidam Basin (Tibetan Plateau) by Birger Bohlin: Reconciling classic vertebrate fossil localities with modern biostratigraphy. Vert PalAsiat, 49: 285–310. Google Scholar

[158] Wang Y, Shen Y J, Feng C G, Zhao K, Song Z B, Zhang Y P, Yang L D, He S P. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep, 2016, 6: 29690 CrossRef PubMed ADS Google Scholar

[159] Wang Y, Xu Y F, Khawaja S, Passey B H, Zhang C F, Wang X M, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett, 2013, 376: 43-53 CrossRef ADS Google Scholar

[160] Wen J, Zhang J Q, Nie Z L, Zhong Y, Sun H. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet, 2014, 5: 4 CrossRef Google Scholar

[161] Werdelin L, Peigne S. 2010. Carnivora. In: Werdelin L, Sanders W J, eds. Cenozoic Mammals of Africa. Berkeley: University of California Press. 603–657. Google Scholar

[162] Werdelin L, Yamaguchi N, Johnson W E, O’Brien S J. 2010. Phylogeny and evolution of cats (Felidae). In: Macdonald D W, Loveridge A J, eds. Biology and Conservation of Wild Felids. Oxford: Oxford University Press. 59–82. Google Scholar

[163] Wheeler E A, Srivastava R, Manchester S R, Baas P, Wiemann M. Surprisingly modern latest Cretaceous-earliest Paleocene woods of India. IAWA J, 2017, 38: 456-542 CrossRef Google Scholar

[164] Wiens J J, Donoghue M J. Historical biogeography, ecology and species richness. Trends Ecol Evol, 2004, 19: 639-644 CrossRef PubMed Google Scholar

[165] Wu F X, He D K, Fang G Y, Deng T. Into Africa via docked India: A fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 2019, 64: 455-463 CrossRef Google Scholar

[166] Wu F X, Miao D S, Chang M M, Shi G L, Wang N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene. Sci Rep, 2017, 7: 878 CrossRef PubMed ADS Google Scholar

[167] Xing Y W, Utescher T, Jacques F M, Su T, Liu Y S C, Huang Y J, Zhou Z K. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: Evidence from plant macrofossils. Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 358-360: 19-26 CrossRef ADS Google Scholar

[168] Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J B, Wang X, Freyhof J, Saitoh K, Simons A M, Miya M, He S, Mayden R L. Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenets Evol, 2015, 85: 97-116 CrossRef PubMed Google Scholar

[169] Yang T, Zhang L, Li W J, Jia J W, Han L, Zhang Y X, Chen Y Q, Yan D F. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleontol, 2018, 38: e1442840 CrossRef Google Scholar

[170] Youngman P. 1993. The Pleistocene small carnivores of eastern Beringia. Can Field Nat, 107: 139–163. Google Scholar

[171] Yu H B, Zhang Y L, Liu L S, Qi W, Li S C, Hu Z J. Combining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late Quaternary in Himalayan hemlock. Ecol Evol, 2015, 5: 5781-5791 CrossRef PubMed Google Scholar

[172] Zeuner F E. 1963. A History of Domesticated Animals. London: Hutchinson. 1–560. Google Scholar

[173] Zhang D C, Ye J X, Sun H. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J Biogeogr, 2016, 43: 2465-2476 CrossRef Google Scholar

[174] Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 2013, 23: 1429-1454 CrossRef ADS Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1