logo

More info
  • ReceivedJun 4, 2019
  • AcceptedNov 11, 2019
  • PublishedNov 27, 2019

Abstract

南海是连接印度洋-太平洋的最大边缘海, 在季风、海峡水交换以及复杂地形影响下, 南海环流呈现出独特的三层结构以及远强于大洋的混合特征. 理论与观测表明, 南海内潮、内孤立波以及强风等过程是强混合的动力来源. 在南海强混合作用下, 南海发育了活跃的中深层动力系统, 一方面促进了南海与大洋之间的水体交换, 另一方面调控上层风生环流, 使得南海环流显著区别于其他热带与副热带海盆. 南海活跃的中深层环流所具有的物质搬运能力又显著影响着南海的地质沉积、生物地球化学循环等过程. 中国对深海研究持续投入, 在南海中深层环流动力学研究方面取得了显著的成果, 文章就该方面进行总结, 并对南海深海环流未来研究设想进行初步探讨.


Funded by

国家重点研发计划项目(2018YFC1405701)

中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-DQC022)

国家自然科学基金项目(41521005,41730535,41776036,41676001,41776026)

国家重点研发计划全球变化及应对重点专项项目(2017YFA0603201)


References

[1] 蔡树群等, 著. 2015. 内孤立波数值模式及其在南海区域的应用. 北京: 海洋出版社. Google Scholar

[2] 韩舞鹰等, 著. 1998. 南海海洋化学. 北京: 科学出版社. Google Scholar

[3] 刘长建, 杜岩, 张庆荣, 王东晓. 2008. 南海次表层和中层水团年平均和季节变化特征. 海洋与湖沼, 39: 55–64. Google Scholar

[4] 卢著敏, 陈桂英, 尚晓东. 2009. 南海北部中深层细结构混合研究. 热带海洋学报, 28: 21–28. Google Scholar

[5] 邵磊, 李学杰, 耿建华, 庞雄, 雷永昌, 乔培军, 王嘹亮, 王宏斌. 2007. 南海北部深水底流沉积作用. 中国科学D辑: 地球科学, 37: 771–777. Google Scholar

[6] 汪品先. 2009. 南海-我国深海研究的突破口. 热带海洋学报, 28: 1–4. Google Scholar

[7] 王东晓, 肖劲根, 舒业强, 谢强, 陈举, 王强. 2016. 南海深层环流与经向翻转环流的研究进展. 中国科学: 地球科学, 46: 1317–1323. Google Scholar

[8] 王晓慧, 张卫民, 王品强, 杨俊, 王辉赞. 2018. 基于Argo历史观测的南海海盆尺度中层流场研究. 海洋学报, 6: 4–17. Google Scholar

[9] 肖劲根, 谢强, 刘长建, 陈举, 王东晓, 陈美榕. 2013. 一个考虑潮汐, 中尺度涡和地形影响的南海底部环流诊断模型. 海洋学报, 35: 1–13. Google Scholar

[10] Alford M H, Peacock T, MacKinnon J A, Nash J D, Buijsman M C, Centurioni L R, Centuroni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, St Laurent L C, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y D. The formation and fate of internal waves in the South China Sea. Nature, 2015, 521: 65-69 CrossRef PubMed Google Scholar

[11] Alford M H, MacKinnon J A, Simmons H L, Nash J D. Near-inertial internal gravity waves in the ocean. Annu Rev Mar Sci, 2016, 8: 95-123 CrossRef PubMed Google Scholar

[12] Buijsman M C, Kanarska Y, McWilliams J C. On the generation and evolution of nonlinear internal waves in the South China Sea. J Geophys Res-Oceans, 2010, 115: C02012 CrossRef Google Scholar

[13] Cai S Q, Xie J S, He H Y. An overview of internal solitary waves in the South China Sea. Surv Geophys, 2012, 33: 927-943 CrossRef Google Scholar

[14] Cai S Q, Xie J S, Xu J X, Wang D, Chen Z W, Deng X D, Long X M. Monthly variation of some parameters about internal solitary waves in the South China sea. Deep-Sea Res Part I-Oceanogr Res Pap, 2014, 84: 73-85 CrossRef Google Scholar

[15] Cao A, Guo Z, Song J, Lv X, He H, Fan W. Near-Inertial waves and their underlying mechanisms based on the South China Sea internal wave experiment (2010–2011). J Geophys Res-Oceans, 2018, 123: 5026-5040 CrossRef Google Scholar

[16] Chao S Y, Ko D S, Lien R C, Shaw P T. Assessing the west ridge of Luzon Strait as an internal wave mediator. J Oceanogr, 2007, 63: 897-911 CrossRef Google Scholar

[17] Chang M H, Lien R C, Tang T Y, D’Asaro E A, Yang Y J. Energy flux of nonlinear internal waves in northern South China Sea. Geophys Res Lett, 2006, 33: L03607 CrossRef Google Scholar

[18] Chang Y T, Hsu W L, Tai J H, Tang T Y, Chang M H, Chao S Y. Cold deep water in the South China Sea. J Oceanogr, 2010, 66: 183-190 CrossRef Google Scholar

[19] Chen H, Xie X, Zhang W, Shu Y, Wang D, Vandorpe T, Van Rooij D. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea. Mar Geol, 2016, 378: 101-113 CrossRef Google Scholar

[20] Chen G, Wang D, Dong C, Zu T, Xue H, Shu Y, Chu X, Qi Y, Chen H. Observed deep energetic eddies by seamount wake. Sci Rep, 2015, 5: 17416 CrossRef PubMed Google Scholar

[21] Chen Z W, Xie J S, Xu J X, Zhan J M, Cai S Q. Energetics of nonlinear internal waves generated by tidal flow over topography. Ocean Model, 2013, 68: 1-8 CrossRef Google Scholar

[22] Chen Z W, Nie Y H, Xie J S, Xu J X, He Y H, Cai S Q. Generation of internal solitary waves over a large sill: From Knight Inlet to Luzon Strait. J Geophys Res-Oceans, 2017, 122: 1555-1573 CrossRef Google Scholar

[23] Chen Z W, Xie J, Wang D, Zhan J M, Xu J, Cai S. Density stratification influences on generation of different modes internal solitary waves. J Geophys Res-Oceans, 2014, 119: 7029-7046 CrossRef Google Scholar

[24] Cheng L, Zhang Z W, Zhao W, Tian J W. Temporal variability of the current in the northeastern South China Sea revealed by 2.5-year-long moored observations. J Oceanogr, 2015, 71: 361-372 CrossRef Google Scholar

[25] Chu P C, Veneziano J M, Fan C W, Fan C. 2000. Response of the South China Sea to tropical cyclone Ernie. J Geophys Res, 105: 13991–14009. Google Scholar

[26] Fang G, Wang Y, Wei Z, Fang Y, Qiao F, Hu X. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn Atmos Oceans, 2009, 47: 55-72 CrossRef Google Scholar

[27] Ferrari R, Wunsch C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu Rev Fluid Mech, 2009, 41: 253-282 CrossRef Google Scholar

[28] Gan J P, Liu Z Q, Hui R X. A three-layer alternating spinning circulation in the South China Sea. J Phys Oceanogr, 2016, 46: 2309-2315 CrossRef Google Scholar

[29] Heezen B C, Hollister C. Deep-sea current evidence from abyssal sediments. Mar Geol, 1964, 1: 141-174 CrossRef Google Scholar

[30] Huang P, Zhang M, Cai M, Ke H W, Deng H X, Li W Q. Ventilation time and anthropogenic CO2 in the South China Sea based on CFC-11 measurements. Deep-Sea Res Part I-Oceanogr Res Pap, 2016, 116: 187-199 CrossRef Google Scholar

[31] Huang X, Chen Z, Zhao W, Zhang Z, Zhou C, Yang Q, Tian J. An extreme internal solitary wave event observed in the northern South China Sea. Sci Rep, 2016, 6: 30041 CrossRef PubMed Google Scholar

[32] Huang X, Wang Z, Zhang Z, Yang Y, Zhou C, Yang Q, Zhao W, Tian J. Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea. J Phys Oceanogr, 2018, 48: 1749-1770 CrossRef Google Scholar

[33] Huang X, Zhang Z, Zhang X, Qian H, Zhao W, Tian J. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. J Phys Oceanogr, 2017, 47: 1539-1554 CrossRef Google Scholar

[34] Jan S, Chern C S, Wang J, Chao S Y. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J Geophys Res-Oceans, 2007, 112: C06019 CrossRef Google Scholar

[35] Jan S, Lien R C, Ting C H. Numerical study of baroclinic tides in Luzon Strait. J Oceanogr, 2008, 64: 789-802 CrossRef Google Scholar

[36] Klymak J M, Alford M H, Pinkel R, Lien R C, Yang Y J, Tang T Y. The breaking and scattering of the internal tide on a continental slope. J Phys Oceanogr, 2011, 41: 926-945 CrossRef Google Scholar

[37] Lan J, Zhang N, Wang Y. On the dynamics of the South China Sea deep circulation. J Geophys Res-Oceans, 2013, 118: 1206-1210 CrossRef Google Scholar

[38] Lan J, Wang Y, Cui F, Zhang N. Seasonal variation in the South China Sea deep circulation. J Geophys Res-Oceans, 2015, 120: 1682-1690 CrossRef Google Scholar

[39] Li L, Qu T. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. J Geophys Res-Oceans, 2006, 111: C05017 CrossRef Google Scholar

[40] Li H, Song D, Chen X, Qian H, Mu L, Song J. Numerical study of M2 internal tide generation and propagation in the Luzon Strait. Acta Oceanol Sin, 2011, 30: 23-32 CrossRef Google Scholar

[41] Li L, Guo X G, Wu R S. The winter western boundary current of the South China Sea: Physical structure and volume transport in December 1998. Acta Oceanol Sin, 2018, 37: 1-7 CrossRef Google Scholar

[42] Liang C R, Chen G Y, Shang X D. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dyn, 2017, 67: 597-609 CrossRef Google Scholar

[43] Liang C R, Shang X D, Chen G Y. The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea. Acta Oceanol Sin, 2019, 38: 36-44 CrossRef Google Scholar

[44] Liu Z Y, Lozovatsky I. Upper pycnocline turbulence in the northern South China Sea. Chin Sci Bull, 2012, 57: 2302-2306 CrossRef Google Scholar

[45] Liu J L, He Y H, Li J, Cai S Q, Wang D, Huang Y D. Cases study of nonlinear interaction between near-inertial waves induced by typhoon and diurnal tides near the Xisha Islands. J Geophys Res-Oceans, 2018, 123: 2768-2784 CrossRef Google Scholar

[46] Lien R C, Tang T Y, Chang M H, D’Asaro E A. Energy of nonlinear internal waves in the South China Sea. Geophys Res Lett, 2005, 32: L05615 CrossRef Google Scholar

[47] Liu C J, Wang D, Chen J, Du Y, Xie Q. Freshening of the intermediate water of the South China Sea between the 1960s and the 1980s. Chin J Ocean Limnol, 2012, 30: 1010-1015 CrossRef Google Scholar

[48] Luyten J R, Stommel H. Gyres driven by combined wind and buoyancy flux. J Phys Oceanogr, 1986, 16: 1551-1560 CrossRef Google Scholar

[49] Lüdmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophys Res Lett, 2005, 32: L05614 CrossRef Google Scholar

[50] Müller P, Liu X. Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J Phys Oceanogr, 2000, 30: 532-549 CrossRef Google Scholar

[51] Munk W H. 1966. Abyssal recipes. In: Deep Sea Research and Oceanographic Abstracts. Elsevier. 13: 707–730. Google Scholar

[52] Munk W, Wunsch C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res Part I-Oceanogr Res Pap, 1998, 45: 1977-2010 CrossRef Google Scholar

[53] Nan F, Xue H, Chai F, Wang D, Yu F, Shi M, Guo P, Xiu P. 2013. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades. J Clim, 26: 8097–8110. Google Scholar

[54] Nash J D, Kunze E, Toole J M, Schmitt R W. Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr, 2004, 34: 1117-1134 CrossRef Google Scholar

[55] Niwa Y, Hibiya T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res-Oceans, 2004, 109: C04027 CrossRef Google Scholar

[56] Qu T, Girton J B, Whitehead J A. Deepwater overflow through Luzon Strait. J Geophys Res-Oceans, 2006, 111: C01002 CrossRef Google Scholar

[57] Qu T, Song Y T, Yamagata T. 2009. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dyn Atmos Oceans, 47: 3–14. Google Scholar

[58] Shang X D, Liu Q, Xie X H, Chen G Y, Chen R Y. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 2015b, 98: 43-52 CrossRef Google Scholar

[59] Shang X D, Liang C R, Chen G Y. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Sci, 2017a, 13: 503-519 CrossRef Google Scholar

[60] Shang X D, Qi Y F, Chen G Y, Liang C R, Lueck R G, Prairie B, Li H. An expendable microstructure profiler for deep ocean measurements. J Atmos Ocean Technol, 2017b, 34: 153-165 CrossRef Google Scholar

[61] Shang X D, Qi Y F, Chen G Y, Liang C R. Observations of upper layer turbulent mixing in the southern South China Sea. Acta Oceanol Sin, 2015a, 34: 6-13 CrossRef Google Scholar

[62] Shu Y Q, Xue H J, Wang D, Chai F, Xie Q, Cai S Q, Chen R Y, Chen J, Li J, He Y K. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea. Sci Rep, 2016, 6: 24338 CrossRef PubMed Google Scholar

[63] Shu Y, Xue H, Wang D, Chai F, Xie Q, Yao J L, Xiao J G. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J Geophys Res-Oceans, 2014, 119: 3012-3028 CrossRef Google Scholar

[64] Shu Y, Chen J, Li S, Wang Q, Yu J, Wang D. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017. Sci China Earth Sci, 2019, 62: 451-458 CrossRef Google Scholar

[65] Sun Z, Hu J, Zheng Q, Li C Y. 2011. Strong near-inertial oscillations in geostrophic shear in the northern South China Sea. J Oceanogr, 67: 377. Google Scholar

[66] Sun H, Yang Q, Zhao W, Liang X, Tian J. Temporal variability of diapycnal mixing in the northern South China Sea. J Geophys Res-Oceans, 2016, 121: 8840-8848 CrossRef Google Scholar

[67] Sun H, Wang Q. Microstructure observations in the upper layer of the South China Sea. J Oceanogr, 2016, 72: 777-786 CrossRef Google Scholar

[68] Tian J, Zhou L, Zhang X, Liang X, Zheng Q, Zhao W. Estimates of M2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys Res Lett, 2003, 30 CrossRef Google Scholar

[69] Tian J, Yang Q, Liang X, Xie L, Hu D, Wang F, Qu T. Observation of Luzon Strait transport. Geophys Res Lett, 2006, 33: L19607 CrossRef Google Scholar

[70] Tian J W, Yang Q X, Zhao W. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr, 2009, 39: 3191-3203 CrossRef Google Scholar

[71] Wang D, Wang Q, Zhou W, Cai S, Li L, Hong B. An analysis of the current deflection around Dongsha Islands in the northern South China Sea. J Geophys Res-Oceans, 2013, 118: 490-501 CrossRef Google Scholar

[72] Wang D, Liu X, Wang W, Du Y, Zhou W. Simulation of meridional overturning in the upper layer of the South China Sea with an idealized bottom topography. Chin Sci Bull, 2004, 49: 740-746 CrossRef Google Scholar

[73] Wang G H, Huang R X, Su J L, Chen D K. The effects of thermohaline circulation on wind-driven circulation in the South China Sea. J Phys Oceanogr, 2012, 42: 2283-2296 CrossRef Google Scholar

[74] Wang G G, Xie S P, Qu T, Huang R X. Deep South China Sea circulation. Geophys Res Lett, 2011, 38: L05601 CrossRef Google Scholar

[75] Wang J. 1986. Observation of abyssal flows in the Northern South China Sea. Acta Oceanogr Taiwan, 16: 36–45. Google Scholar

[76] Wang Q, Zeng L, Li J, Chen J, He Y, Yao J, Wang D, Zhou W. Observed cross-shelf flow induced by mesoscale eddies in the northern South China Sea. J Phys Oceanogr, 2018, 48: 1609-1628 CrossRef Google Scholar

[77] Wang Q, Zeng L, Shu Y, Li J, Chen J, He Y, Yao J, Wang D, Zhou W. Energetic topographic Rossby Waves in the northern South China Sea. J Phys Oceanogr, 2019, 49: 2697-2714 CrossRef Google Scholar

[78] Wang X, Liu Z, Peng S. Impact of tidal mixing on water mass transformation and circulation in the South China Sea. J Phys Oceanogr, 2017, 47: 419-432 CrossRef Google Scholar

[79] Wang X W, Peng S, Liu Z, Huang R X, Qian Y K, Li Y. Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J Phys Oceanogr, 2016, 46: 107-124 CrossRef Google Scholar

[80] Wu L D, Miao C B, Zhao W. Patterns of K1 and M2 internal tides and their seasonal variations in the northern South China Sea. J Oceanogr, 2013, 69: 481-494 CrossRef Google Scholar

[81] Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13: 167–182. Google Scholar

[82] Wunsch C, Ferrari R. Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech, 2004, 36: 281-314 CrossRef Google Scholar

[83] Xiao J, Xie Q, Wang D, Yang L, Shu Y, Liu C, Chen J, Yao J, Chen G. On the near-inertial variations of meridional overturning circulation in the South China Sea. Ocean Sci, 2016, 12: 335-344 CrossRef Google Scholar

[84] Xie X H, Chen G Y, Shang X D, Fang W D. Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophys Res Lett, 2008, 35: L13604 CrossRef Google Scholar

[85] Xie X H, Shang X D, van Haren H, Chen G Y, Zhang Y Z. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys Res Lett, 2011, 38: L05603 CrossRef Google Scholar

[86] Xie X H, Liu Q, Zhao Z X, Shang X D, Cai S Q, Wang D, Chen D. Deep sea currents driven by breaking internal tides on the continental slope. Geophys Res Lett, 2018, 27: 6160-6166 CrossRef Google Scholar

[87] Xie X, Liu Q, Shang X, Chen G, Wang D. Poleward propagation of parametric subharmonic instability-induced inertial waves. J Geophys Res-Oceans, 2016, 121: 1881-1895 CrossRef Google Scholar

[88] Xie X H, Shang X D, van Haren H, Chen G Y. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophys Res Lett, 2013, 40: 1580-1586 CrossRef Google Scholar

[89] Xie X H, Shang X D, Chen G Y, Sun L. Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys Res Lett, 2009, 36: L02606 CrossRef Google Scholar

[90] Xie J S, He Y H, Chen Z W, Xu J X, Cai S Q. Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea. J Phys Oceanogr, 2015, 45: 2959-2978 CrossRef Google Scholar

[91] Xu J P, Barry J P, Paull C K. Small-scale turbidity currents in a big submarine canyon. Geology, 2013, 41: 143-146 CrossRef Google Scholar

[92] Xu Z H, Yin B S, Hou Y J, Liu A K. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J Mar Syst, 134: 101–112. Google Scholar

[93] Xu Z, Liu K, Yin B, Zhao Z, Wang Y, Li Q. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. J Geophys Res-Oceans, 121: 8268–8286, doi: 10.1002/2016JC012105. Google Scholar

[94] Yang J Y, Price J F. 2007. Potential vorticity constraint on the flow between two basins. J Phys Oceanogr, 37: 2251–2266. Google Scholar

[95] Yang Y J, Fang YC, Chang MH, Ramp S R, Kao C C, Tang T Y. 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. J Geophys Res, 114: C10003, doi: 10.1029/2009JC005318. Google Scholar

[96] Yang Q, Tian J, Zhao W, Xie L. 2013. Turbulent dissipation and mixing in Prydz Bay. Chin J Oceanol Limnol, 31: 445–453. Google Scholar

[97] Yang Q, Zhao W, Liang X, Tian J W. Three-dimensional distribution of turbulent mixing in the South China Sea. J Phys Oceanogr, 2016, 46: 769-788 CrossRef Google Scholar

[98] Yang J, Price J F. Water-mass formation and potential vorticity balance in an abyssal ocean circulation. J Mar Res, 2000, 58: 789-808 CrossRef Google Scholar

[99] Yang Q, Tian J, Zhao W. Observation of Luzon Strait transport in summer 2007. Deep-Sea Res Part I-Oceanogr Res Pap, 2010, 57: 670-676 CrossRef Google Scholar

[100] Yang Q, Tian J, Zhao W. Observation of material fluxes through the Luzon Strait. Chin J Ocean Limnol, 2011, 29: 26-32 CrossRef Google Scholar

[101] Yang Q, Nikurashin M, Sasaki H, Sun H, Tian J W. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Sci Rep, 2019, 9: 556 CrossRef PubMed Google Scholar

[102] Yang Q, Tian J, Zhao W, Liang X F, Zhou L. Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 2014, 87: 43-52 CrossRef Google Scholar

[103] Yang Q, Zhao W, Liang X, Dong J H, Tian J W. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J Phys Oceanogr, 2017, 47: 895-907 CrossRef Google Scholar

[104] Ye R, Zhou C, Zhao W, Tian J W, Yang Q X, Huang X D, Zhang Z W, Zhao X L. Variability in the deep overflow through the Heng-Chun Ridge of the Luzon Strait. J Phys Oceanogr, 2019, 49: 811-825 CrossRef Google Scholar

[105] Yuan D L. 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol Sin, 21: 187–202. Google Scholar

[106] Zhang Y, Liu Z, Zhao Y, Wang W G, Li J R, Xu J P. Mesoscale eddies transport deep-sea sediments. Sci Rep, 2014, 4: 5937 CrossRef PubMed Google Scholar

[107] Zhang Z, Zhao W, Tian J, Liang X. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J Geophys Res-Oceans, 2013, 118: 6479-6494 CrossRef Google Scholar

[108] Zhang Z, Zhao W, Tian J, Yang Q X, Qu T D. Spatial structure and temporal variability of the zonal flow in the luzon strait. J Geophys Res-Oceans, 2015, 120: 759-776 CrossRef Google Scholar

[109] Zhang Z, Tian J, Qiu B, Zhao W, Chang P, Wu D, Wan X Q. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the south china sea. Sci Rep, 2016, 6: 24349 CrossRef PubMed Google Scholar

[110] Zhang X, Huang X, Zhang Z, Zhou C, Tian J, Zhao W. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: Impacts of seasonal stratification, mesoscale eddies, and internal tides. J Phys Oceanogr, 2018, 48: 1349-1365 CrossRef Google Scholar

[111] Zhang S, Xie L, Cao R, Zhao H. 2012. Observation of upper-ocean mixing in the region west of the Luzon Strait in spring. J Coast Res, 28: 1208–1213. Google Scholar

[112] Zhang Y W, Tian J W. Enhanced turbulent mixing induced by strong wind on the South China Sea shelf. Ocean Dyn, 2014, 64: 781-796 CrossRef Google Scholar

[113] Zhao W, Zhou C, Tian J, Yang Q X, Wang B, Xie L L, Qu T D. Deep water circulation in the Luzon Strait. J Geophys Res-Oceans, 2014, 119: 790-804 CrossRef Google Scholar

[114] Zhao Z, Klemas V, Zheng Q, Yan X. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys Res Lett 31: L06302. Google Scholar

[115] Zhao X, Zhou C, Xu X, Ye R, Tian J, Zhao W. 2019. Deep Circulation in the South China Sea simulated in a regional model. Ocean Sci Discuss, doi: 10.5194/os-2019-29. Google Scholar

[116] Zheng H B, Yan P. Deep-water bottom current research in the northern South China Sea. Mar Georesour Geotech, 2012, 30: 122-129 CrossRef Google Scholar

[117] Zhou C, Zhao W, Tian J, Yang Q, Qu T. Variability of the deep-water overflow in the Luzon Strait. J Phys Oceanogr, 2014, 44: 2972-2986 CrossRef Google Scholar

[118] Zhou C, Zhao W, Tian J, Zhao X L, Zhu Y C, Yang Q X, Qu T D. Deep western boundary current in the south China sea. Sci Rep, 2017, 7: 9303 CrossRef PubMed Google Scholar

[119] Zhou C, Zhao W, Tian J, Yang Q X, Huang X D, Zhang Z W, Qu T D. Observations of deep current at the western boundary of the Northern Philippine Basin. Sci Rep, 2018, 8: 14334 CrossRef PubMed Google Scholar

[120] Zhu M, Graham S, Pang X, McHargue T. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Mar Pet Geol, 2010, 27: 307-319 CrossRef Google Scholar

[121] Zhu Y, Sun J, Wang Y, Wei Z, Yang D, Qu T. Effect of potential vorticity flux on the circulation in the South China Sea. J Geophys Res-Oceans, 2017, 122: 6454-6469 CrossRef Google Scholar

[122] Zhu Y, Fang G, Wei Z, Wang Y, Teng F, Qu T. Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2.4. J Geophys Res-Oceans, 2016, 121: 3090-3105 CrossRef Google Scholar

[123] Zu T, Gan J, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 2008, 55: 137-154 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号