logo

SCIENTIA SINICA Terrae, Volume 49 , Issue 10 : 1607-1640(2019) https://doi.org/10.1360/SSTe-2019-0125

新中国成立70年以来的中国大气科学研究: 气候与气候变化篇

More info
  • ReceivedJun 5, 2019
  • AcceptedSep 16, 2019
  • PublishedOct 14, 2019

Abstract

气候与气候变化一直是大气科学的重点研究领域, 为回顾新中国成立70年以来中国在气候和气候变化研究领域的发展概况, 中国科学家对国际大气科学和全球气候变化研究所做的贡献, 分析气候与气候变化研究领域的发展趋势, 提出前瞻性的科学问题, 本文根据正式发表的文献对以上的内容进行梳理, 从以下6个方面进行了总结: (1) 气候研究, (2) 青藏高原对中国气候的影响, (3) 季风对中国气候的影响, (4) 大气活动中心与西风带对中国气候的影响, (5) 气候动力学与气候模式的发展, (6) 气候变化研究, 并在此基础上提出前瞻性的科学问题.


Funded by

国家自然科学基金项目(41521004)

半干旱气候变化创新引智基地项目(B13045)

中央高校项目(LZUJBKY-2019-kb30)


References

[1] 陈汉耀. 1957. 1954年长江淮河流域洪水时期的环流特征. 气象学报, 28: 1–12. Google Scholar

[2] 陈烈庭. 1977. 东太平洋赤道地区海水温度异常对热带大气环流及中国汛期降水的影响. 大气科学, 1: 1–12. Google Scholar

[3] 陈烈庭. 1982. 北太平洋副热带高压与赤道东部海温的相互作用. 大气科学, 6: 148–156. Google Scholar

[4] 陈烈庭. 1983. 太平洋海气相互作用的时空变化. 气象学报, 41: 296–304. Google Scholar

[5] 陈秋士, 缪锦海, 李维亮. 1964. 1958年7月亚洲东南部西南季风区和太平洋信风区平均流场和平均经圈环流. 气象学报, 34: 51–61. Google Scholar

[6] 陈晓龙, 周天军, 郭准. 2014. 影响气候系统模式温室气体敏感度的反馈过程: 基于FGOALS模式的研究. 中国科学: 地球科学, 44: 322–332. Google Scholar

[7] 丑纪范. 1974. 天气数值预报中使用过去资料的问题. 中国科学, 6: 635–644. Google Scholar

[8] 丑纪范. 1986. 长期数值天气预报. 北京: 气象出版社. 1–85. Google Scholar

[9] 丑纪范. 1990. 大气动力学的新进展. 兰州: 兰州大学出版社. 68–112. Google Scholar

[10] 丑纪范, 刘式达, 刘式适. 1994. 非线性动力学. 北京: 气象出版社. 15–120. Google Scholar

[11] 戴新刚, 丑纪范, 吴国雄. 2002. 印度季风与东亚夏季环流的遥相关关系. 气象学报, 60: 544–552. Google Scholar

[12] 丁一汇, 柳艳菊, 梁苏洁, 马晓青, 张颖娴, 司东, 梁萍, 宋亚芳, 张锦. 2014. 东亚冬季风的年代际变化及其与全球气候变化的可能联系. 气象学报, 72: 835–852. Google Scholar

[13] 丁一汇, 李清泉, 李维京, 罗勇, 张培群, 张祖强, 史学丽, 刘一鸣, 王兰宁. 2004. 中国业务动力季节预报的进展. 气象学报, 62: 598–612. Google Scholar

[14] 丁一汇, 任国玉, 石广玉, 宫鹏, 郑循华, 翟盘茂, 张德二, 赵宗慈, 王绍武, 王会军, 罗勇, 陈亮, 高学杰, 戴晓苏. 2006. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势. 气候变化研究进展, 02: 3–8. Google Scholar

[15] 段安民, 肖志祥, 吴国雄. 2016. 1979~2014年全球变暖背景下青藏高原气候变化特征. 气候变化研究进展, 12: 374–381. Google Scholar

[16] Reiter E R, 丁一汇. 1980. 青藏高原在影响行星环流反馈机制中的作用. 大气科学, 4: 300–309. Google Scholar

[17] 符淙斌. 1979. 平均经圈环流型的转变与长期天气过程. 气象学报, 37: 74–85. Google Scholar

[18] 符淙斌. 1987. 埃尔尼诺/南方涛动现象与年际气候变化. 大气科学, 11: 209–220. Google Scholar

[19] 符淙斌, 马柱国. 2008. 全球变化与区域干旱化. 大气科学, 32: 752–760. Google Scholar

[20] 符淙斌. 1994. 气候突变现象的研究. 大气科学, 18: 373–384. Google Scholar

[21] 龚道溢. 1999. 全球变暖背景下的南极地区气候变化. 地理科学, 19: 102–107. Google Scholar

[22] 顾震潮. 1951. 西藏高原对东亚环流的影响和它的重要性. 气象学报, 22: 43–56. Google Scholar

[23] 郭增元, 刘煜, 李维亮. 2017. 气溶胶影响亚洲夏季风机理的数值研究. 气象学报, 75: 797–810. Google Scholar

[24] 金祖辉, 陶诗言. 1999. ENSO循环与中国东部地区夏季和冬季降水关系的研究. 大气科学, 23: 663–672. Google Scholar

[25] 贺圣平, 王会军. 2012. 东亚冬季风综合指数及其表达的东亚冬季风年际变化特征. 大气科学, 36: 523–538. Google Scholar

[26] 黄建平, 丑纪范. 1989. 海气耦合系统相似韵律现象的研究. 中国科学B辑, 19: 1001–1008. Google Scholar

[27] 黄荣辉, 陈际龙, 周连童, 张庆云. 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究. 大气科学, 27: 770–787. Google Scholar

[28] 黄荣辉. 1996. 现代大气科学基础研究发展趋势、特点与前沿研究课题. 见: 国家自然科学基金委员会, 等. 现代大气科学前沿与展望. 北京: 气象出版社. 7–11. Google Scholar

[29] 黄荣辉. 2001. 大气科学发展的回顾与展望. 地球科学进展, 16: 643–657. Google Scholar

[30] 黄荣辉. 2006. 中国重大气候灾害的形成机理和预测理论研究. 地球科学进展, 21: 564–575. Google Scholar

[31] 黄荣辉. 1985. 夏季青藏高原上空热源异常对北半球大气环流异常的作用. 气象学报, 43: 208–220. Google Scholar

[32] 黄荣辉, 吴国雄, 陈文, 刘屹岷, 周连童, 王林. 2014. 大气科学和全球气候变化研究进展与前沿. 北京: 科学出版社. 85–115. Google Scholar

[33] 黄荣辉, 陈际龙, 刘永. 2011a. 中国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系. 大气科学, 35: 589–606. Google Scholar

[34] 黄荣辉, 陈文, 马耀明, 高晓清, 吕世华, 韦志刚, 张强, 韦国安, 胡泽勇, 周连童, 周德刚. 2011b. 中国西北干旱区陆-气相互作用及其对东亚气候变化的影响. 北京: 气象出版社. 356. Google Scholar

[35] 黄荣辉, 傅云飞, 臧晓云. 1996. 亚洲季风与ENSO循环的相互作用. 气候与环境研究, 1: 38–54. Google Scholar

[36] 何金海, 陈丽臻. 1989. 南半球中纬度准40天振荡及其与北半球夏季风的关系. 南京气象学院学报, 12: 11–18. Google Scholar

[37] 季劲钧, 巢纪平. 1979. 热带海气耦合系统中的长周期振荡及大气中的赤道辐合带. 气象学报, 37: 32–43. Google Scholar

[38] 姜学恭, 陈受钧. 2008. 地形影响沙尘传输的观测和模拟研究. 气象学报, 66: 1–12. Google Scholar

[39] 金飞飞, 朱抱真. 1988a. 海气耦合振荡非线性动力系统的平衡态研究. 中国科学B辑, 18: 777–786. Google Scholar

[40] 金飞飞, 朱抱真. 1988b. 海气耦合非线性振荡与大气环流年变. 大气科学, 12: 346–356. Google Scholar

[41] 李占清. 2016. 气溶胶对亚洲季风的强迫及影响: 认识与挑战. 气象学报, 74: 1017–1022. Google Scholar

[42] 李崇银. 1987. 当代大气科学的几个重大研究课题. 大气科学, 11: 430–440. Google Scholar

[43] 李崇银. 1988. 频繁的强东亚大槽活动与El Ninño的发生. 中国科学B辑, 6: 667–674. Google Scholar

[44] 李崇银. 1989. 中国东部地区的暖冬与El Niño. 科学通报, 4: 283–296. Google Scholar

[45] 李崇银, 陈于湘, 袁重光. 1988. El Niño事件发生的一个重要原因, 东亚寒潮的频繁活动. 大气科学, (特刊): 125–132. Google Scholar

[46] 李崇银, 穆明权. 1998. 异常东亚冬季风激发ENSO的数值模拟研究. 大气科学, 22: 481–490. Google Scholar

[47] 李崇银. 1996. 蒸发-风反馈机制的进一步研究. 热带气象学报, 12: 193–199. Google Scholar

[48] 李崇银. 1990. 大气中的季节内振荡. 大气科学, 14: 32–45. Google Scholar

[49] 刘健, von Storch H, 陈星, Zorita E, 郑景云, 王苏民. 2005. 千年气候模拟与中国东部温度重建序列的比较研究. 科学通报, 50: 2251–2255. Google Scholar

[50] 刘新, 李伟平, 吴国雄. 2002. 夏季青藏高原加热和北半球环流年际变化的相关分析. 气象学报, 60: 266–277. Google Scholar

[51] 刘屹岷, 刘伯奇, 任荣彩, 段安民, 毛江玉. 2016. 当前重大厄尔尼诺事件对中国春夏气候的影响, 中国科学院院刊, 31: 241–250. Google Scholar

[52] 柳艳菊, 丁一汇. 2007. 亚洲夏季风爆发的基本气候特征分析. 气象学报, 65: 511–526. Google Scholar

[53] 骆美霞, 朱抱真, 张学洪. 1983. 青藏高原对东亚纬向型环流形成的动力作用. 大气科学, 7: 145–152. Google Scholar

[54] 马柱国, 符淙斌. 2001. 中国北方干旱区地表湿润状况的趋势分析. 气象学报, 59: 737–746. Google Scholar

[55] 牟惟丰, 陈佑淑, 仪清菊. 1975. 极涡活动对华中持续低温的影响. 气象科技, 4: 11–14. Google Scholar

[56] 秦大河, Stocker T. 2014. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 10: 1–6. Google Scholar

[57] 秦大河, 陈宜瑜, 李学勇. 2005. 中国气候与环境演变. 北京: 科学出版社. 1–148. Google Scholar

[58] 秦大河. 2002. 中国西部环境演变评估. 综合卷. 中国西部环境演变评估综合报告. 北京: 科学出版社, 1–92. Google Scholar

[59] 秦大河. 2018. 气候变化科学概论. 北京: 科学出版社. 1–120. Google Scholar

[60] 任国玉, 郭军, 徐铭志, 初子莹, 张莉, 邹旭凯, 李庆祥, 刘小宁. 2005. 近50年中国地面气候变化基本特征. 气象学报, 63: 942–956. Google Scholar

[61] 石广玉, 王喜红, 张立盛, 黄兴友, 赵宗慈, 高学杰, 徐影. 2002. 人类活动对气候影响的研究Ⅱ. 对东亚和中国气候变化的影响. 气候与环境研究, 7: 255–266. Google Scholar

[62] 石广玉, 王标, 张华. 2008. 大气气溶胶的辐射与气候效应. 大气科学, 32: 826–840. Google Scholar

[63] 石广玉, 檀赛春, 陈彬. 2018. 沙尘和生物气溶胶的环境和气候效应. 大气科学, 42: 559–569. Google Scholar

[64] 施能. 1996. 北半球冬季大气环流遥相关的长期变化及其与中国气候变化的关系. 气象学报, 54: 675–683. Google Scholar

[65] 宋敏红, 钱正安, 蔡英, 柳中明. 2007. 中蒙强、弱沙尘暴年春季平均环流及沙尘活动变化分析. 气象学报, 65: 94–104. Google Scholar

[66] 孙菽芬, 卢志泊. 1989. 一个可与大气环流模式相耦合的陆地水热交换模式. 中国科学B辑, 19: 216–224. Google Scholar

[67] 孙颖, 尹红, 田沁花, 胡婷, 石英, 刘洪滨, 周波涛. 2013. 全球和中国区域近50年气候变化检测归因研究进展. 气候变化研究进展, 9: 235–245. Google Scholar

[68] 孙颖, 秦大河, 周波涛. 2015. 未来气候变化科学研究的主要方向和挑战. 气候变化研究进展, 11: 324–330. Google Scholar

[69] 谭本馗, 陈文. 2014. 中高纬度大气遥相关动力学及其对东亚冬季气候影响的研究进展. 气象学报, 72: 908–925. Google Scholar

[70] 谭红建, 蔡榕硕, 黄荣辉. 2016. 中国近海海表温度对气候变暖及暂缓的显著响应. 气候变化研究进展, 12: 500–507. Google Scholar

[71] 汤懋苍, 钟强, 吴士杰. 1982. 一个长期降水预报的热力学模式. 气象学报, 40: 49–58. Google Scholar

[72] 汤懋苍, 张建, 王敬香, 杨良. 1988. 中国季平均的0.8m地温距平场与后一季降水场的相关分析. 气象学报, 46: 481–485. Google Scholar

[73] 陶诗言, 陈隆勋. 1957. 夏季亚洲大陆上空大气环流的结构. 气象学报, 28: 233–247. Google Scholar

[74] 陶诗言, 赵煜佳, 陈晓敏. 1958. 东亚的梅雨期与亚洲上空大气环流季节变化的关系. 气象学报, 29: 119–134. Google Scholar

[75] 陶诗言, 张庆云. 1998. 亚洲冬夏季风对ENSO事件的响应. 大气科学, 22: 399–407. Google Scholar

[76] 王会军, 范可. 2013. 东亚季风近几十年来的主要变化特征. 大气科学, 37: 313–318. Google Scholar

[77] 王会军, 曾庆存. 1992. 冰期气候的数值模拟. 气象学报, 50: 279–289. Google Scholar

[78] 王会军, 曾庆存, 张学洪. 1992. CO2含量加倍引起的气候变化的数值模拟研究. 中国科学B辑, 6: 663–672. Google Scholar

[79] 王会军, 范可, 郎咸梅, 孙建奇, 陈丽娟. 2012. 中国短期气候预测的新理论、新方法和新技术. 北京: 气象出版社. 226. Google Scholar

[80] 王开发, 张玉兰, 叶志华, 蒋辉. 1978. 根据孢粉分析推断上海地区近六千年以来的气候变迁. 大气科学, 2: 139–144. Google Scholar

[81] 王绍武. 1962. 东亚大气活动中心的多年变化与中国的气候振动. 气象学报, 32: 19–36. Google Scholar

[82] 王绍武, 赵宗慈, 陈振华. 1983. 月平均环流异常的持续性与韵律性和海气相互作用. 气象学报, 41: 33–42. Google Scholar

[83] 王绍武, 赵宗慈. 1979. 中国旱涝36年周期及其产生的机制. 气象学报, 37: 64–73. Google Scholar

[84] 王绍武, 龚道溢. 2000. 全新世几个特征时期的中国气温. 自然科学进展, 4: 325–332. Google Scholar

[85] 王绍武, 罗勇, 唐国利, 赵宗慈, 黄建斌, 闻新宇. 2010. 近10年全球变暖停止了吗? 气候变化研究进展, 6: 95–99. Google Scholar

[86] 王式功, 杨德宝, 金炯, 徐启运, 杨瑜峰. 1995. 中国西北地区黑风暴的成因和对策. 中国沙漠, 15: 19–30. Google Scholar

[87] 王式功, 王金艳, 周自江, 尚可政, 杨德保, 赵宗锁. 2003. 中国沙尘天气的区域特征. 地理学报, 58: 193–200. Google Scholar

[88] 王邨, 王松梅. 1987. 近五千余年来中国中原地区气候在年降水量方面的变迁. 中国科学B辑, 17: 104–112. Google Scholar

[89] 吴国雄, 李伟平, 郭华, 刘辉、薛继善、王在志. 1997. 青藏高原感热气泵和亚洲夏季风. 见: 叶笃正, 编. 赵九章纪念文集. 北京: 科学出版社. 116–126. Google Scholar

[90] 吴国雄, 刘还珠. 1995. 降水对热带海表温度异常的邻域响应: Ⅰ数值模拟. 大气科学, 19: 422–434. Google Scholar

[91] 吴国雄, 孙凤英, 王敬方, 王晓春. 1995. 降水对热带海表温度异常的邻域响应: Ⅱ资料分析. 大气科学, 19: 663–676. Google Scholar

[92] 吴国雄, 李占清, 符淙斌, 张小曳, Zhang R Y, 张人禾, 周天军, 李建平, 李剑东, 周德刚, 武亮, 周连童, 何编, 黄荣辉. 2015. 气溶胶与东亚季风相互影响的研究进展. 中国科学: 地球科学, 45: 1609–1627. Google Scholar

[93] 吴祥定, 林振耀. 1978. 西藏近代气候变化及其趋势的探证. 科学通报, 12: 746–750. Google Scholar

[94] 吴统文, 宋连春, 刘向文, 李巧萍, 梁潇云, 程彦杰, 周巍, 聂肃平, 张莉, 颉卫华, 房永杰, 张艳武, 路屹雄, 储敏, 李江龙. 2013. 国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 24: 24–543. Google Scholar

[95] 徐淑英, 高由禧. 1962. 西藏高原的季风现象. 地理学报, 28: 111–123. Google Scholar

[96] 徐祥德, 赵天良, 施晓晖, Lu C G. 2015. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用. 气象学报, 73: 20–35. Google Scholar

[97] 杨大升, 王会军. 1989. 季风环流的正压低阶截谱模式. 气象学报, 47: 424–435. Google Scholar

[98] 杨广基, 王兴东, 王桂芳, 周明煜. 1980. 冬季青藏高原对其周围地区流场影响的模拟实验. 气象学报, 38: 16–26. Google Scholar

[99] 杨修群, 谢倩, 黄士松. 1992. 大西洋海温异常对东亚夏季大气环流影响的数值试验. 气象学报, 50: 349–354. Google Scholar

[100] 杨修群, 谢倩, 黄士松. 1994. 北极冰异常对亚洲夏季风影响的数值模拟. 海洋学报, 16: 34–40. Google Scholar

[101] 杨修群, 黄士松. 1993. 外强迫引起的夏季大气环流异常及其机制探讨. 大气科学, 17: 697–702. Google Scholar

[102] 杨修群, 朱益民, 谢倩, 任雪娟, 徐桂玉. 2004. 太平洋年代际振荡的研究进展. 大气科学, 28: 979–992. Google Scholar

[103] 叶笃正, 罗四维, 朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡. 气象学报, 28: 108–121. Google Scholar

[104] 叶笃正, 陶诗言, 李麦村. 1958. 在六月和十月大气环流的突变现象. 气象学报, 30: 249–263. Google Scholar

[105] 叶笃正. 1952. 西藏高原对大气环流影响的季节变化. 气象学报, 23: 33–47. Google Scholar

[106] 叶笃正, 张捷迁. 1974. 青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验. 中国科学, 3: 301–320. Google Scholar

[107] 叶笃正, 高由禧. 1979. 青藏高原气象学. 北京: 气象出版社. 279. Google Scholar

[108] 叶笃正. 1996. 关于全球变化的若干问题. 见: 国家自然科学基金委员会地球科学学部, 等. 现代大气科学前沿与展望. 北京: 气象出版社. 17–22. Google Scholar

[109] 叶笃正, 丑纪范, 刘纪远, 张增祥, 王一谋, 周自江, 鞠洪波, 黄签. 2000. 关于中国华北沙尘天气的成因与治理对策. 地理学报, 67: 513–521. Google Scholar

[110] 曾庆存. 1963a. 大气中的适应过程和发展过程(一)——物理分析和线性理论. 气象学报, 33: 163–174. Google Scholar

[111] 曾庆存. 1963b. 大气中的适应过程和发展过程(二)——非线性问题. 气象学报, 33: 281–289. Google Scholar

[112] 曾庆存. 1985. 大气科学中的数值模拟研究——理论研究和实用相结合. 大气科学, 9: 186–194. Google Scholar

[113] 曾庆存, 王会军, 林朝晖, 李崇银, 黄荣辉, 吴国雄, 周天军. 2003a. 气候动力学与气候预测理论的研究. 大气科学, 27: 468–483. Google Scholar

[114] 曾庆存, 林朝晖, 周广庆. 2003b. 跨季度动力气候预测系统IAP DCP-II. 大气科学, 27: 289–303. Google Scholar

[115] 曾庆存, 周广庆, 浦一芬, 陈文, 李荣凤, 廖宏, 林朝晖, 刘辉志, 王必正, 谢正辉, 徐永福, 薛峰, 曾晓东, 张凤. 2008. 地球系统动力学模式及模拟研究. 大气科学, 32: 653–690. Google Scholar

[116] 张德二. 1984. 中国历史时期以来降尘的天气气候学初步分析. 中国科学B辑, 14: 278–288. Google Scholar

[117] 章基嘉, 周顺泰. 1988. “六月突变”中的波纬相互作用. 气象学报, 46: 1–8. Google Scholar

[118] 张家诚, 张先恭. 1979. 近五百年中国气候的几种振动及其相互关系. 气象学报, 37: 49–57. Google Scholar

[119] 张家诚. 1959. 关于中国季风性质的几个问题. 气象学报, 30: 350–361. Google Scholar

[120] 张莉, 任国玉. 2003. 中国北方沙尘暴频数演化及其气候成因分析. 气象学报, 61: 744–750. Google Scholar

[121] 张庆云, 陶诗言. 1998. 亚洲中高纬度环流对东亚夏季降水的影响. 气象学报, 56: 199–211. Google Scholar

[122] 张人禾. 1995. 简单热带海气耦合模式中的耦合波及其不稳定性(II). 大气科学, 19: 563–574. Google Scholar

[123] 张人禾, 武炳义, 赵平, 韩晋平. 2008. 中国东部夏季气候20世纪80年代后期的年代际转型及其可能成因. 气象学报, 66: 697–706. Google Scholar

[124] 张人禾, 闵庆烨, 苏京志, 等. 2017. 厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用. 中国科学: 地球科学, 47: 544–553. Google Scholar

[125] 张人禾, 朱江, 许建平, 刘益民, 李清泉, 牛涛. 2013. Argo大洋观测资料的同化及其在短期气候预测和海洋分析中的应用. 大气科学, 37: 411–424. Google Scholar

[126] 张学洪, 包宁, 袁重光, 曾庆存. 1986. 大气环流模式动力框架对初值的敏感性研究. 中国科学B辑, 16: 1337–1346. Google Scholar

[127] 赵平, 李跃清, 郭学良, 徐祥德, 刘屹岷, 唐世浩, 肖文名, 师春香, 马耀明, 余兴, 刘辉志, 假拉, 谌芸, 柳艳菊, 李建, 罗达标, 曹云昌, 郑向东, 陈军明, 肖安, 远芳, 陈东辉, 潘旸, 胡志群, 张胜军, 董立新, 胡菊旸, 韩帅, 周秀骥. 2018. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验. 气象学报, 76: 833–860. Google Scholar

[128] 赵振国. 1995. 夏季青藏高原位势高度场的长期振荡与气候变化. 气象学报, 53: 108–114. Google Scholar

[129] 郑斯中, 冯丽文. 1985. 中国冷的时期气候超常不稳定的历史证据. 中国科学B辑, 15: 1038–1044. Google Scholar

[130] 郑庆林, 燕启民. 1994. 青藏高原对莫东北侧初夏干旱天气影响的数值研究. 气象学报, 52: 25–32. Google Scholar

[131] 周天军, 邹立维, 吴波, 金晨曦, 宋丰飞, 陈晓龙, 张丽霞. 2014. 中国地球气候系统模式研究进展: CMIP计划实施近20年回顾. 气象学报, 72: 892–907. Google Scholar

[132] 周秀骥, 李维亮, 陈隆勋, 刘煜. 2004. 青藏高原地区大气臭氧变化的研究. 气象学报, 62: 513–527. Google Scholar

[133] 周秀骥, 徐祥德, 颜鹏, 翁永辉, 王建林. 2002. 2000年春季沙尘暴动力学特征. 中国科学D辑: 地球科学, 32: 327–334. Google Scholar

[134] 周秀骥, 罗超, 李维亮, 史久恩. 1995. 中国地区臭氧总量变化与青藏高原低值中心. 科学通报, 40: 1396–1398. Google Scholar

[135] 周自江, 王锡稳, 牛若芸. 2002. 近47年中国沙尘暴气候特征研究. 应用气象学报, 13: 193–200. Google Scholar

[136] 朱抱真, 骆美霞, 黄荣辉. 1981. 大尺度海温扰动的动力不稳定与海温异常的形成. 中国科学, 11: 716–723. Google Scholar

[137] 竺可桢. 1934. 东南季风与中国之雨量. 地理学报, 1–27. Google Scholar

[138] 竺可桢. 1962. 历史时代世界气候的波动. 气象学报, 31: 275–287. Google Scholar

[139] 竺可桢. 1973. 中国近五千年来气候变迁的初步研究. 中国科学A辑, 2: 15–38. Google Scholar

[140] 朱乾根, 杨松. 1990. 青藏高原大地形对冷涌作用的数值模拟研究. 气象学报, 48: 164–171. Google Scholar

[141] 朱乾根, 胡江林. 1993. 青藏高原大地形对夏季大气环流和亚洲夏季风影响的数值试验. 南京气象学院学报, 16: 120–129. Google Scholar

[142] 朱乾根, 施能, 徐建军, 沈桐立. 1997. 近百年北半球冬季大气活动中心的长期变化及其与中国气候变化的关系. 气象学报, 55: 750–758. Google Scholar

[143] 朱玉祥, 丁一汇, 徐怀刚. 2007. 青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系. 气象学报, 65: 946–958. Google Scholar

[144] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系. 气象学报, 61: 641–654. Google Scholar

[145] 邹捍, 黄荣辉. 1988. 北半球阻塞形势建立与维持的E-P通量诊断研究. 中国科学B辑, 18: 202–215. Google Scholar

[146] Cai W, Li K, Liao H, Wang H, Wu L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat Clim Change, 2017, 7: 257-262 CrossRef ADS Google Scholar

[147] Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 2010, 291: 21-31 CrossRef ADS Google Scholar

[148] Chen F H, Huang W. Multi-scale climate variations in the arid Central Asia. Adv Clim Change Res, 2017, 8: 1-2 CrossRef Google Scholar

[149] Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 2010, 29: 1055-1068 CrossRef ADS Google Scholar

[150] Chen F, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev, 2019, 192: 337-354 CrossRef Google Scholar

[151] Chen F, Wu D, Chen J, Zhou A, Yu J, Shen J, Wang S, Huang X. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quat Sci Rev, 2016, 154: 111-129 CrossRef ADS Google Scholar

[152] Chen F, Yu Z, Yang M, Ito E, Wang S, Madsen D B, Huang X, Zhao Y, Sato T, John B. Birks H, Boomer I, Chen J, An C, Wünnemann B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 2008, 27: 351-364 CrossRef ADS Google Scholar

[153] Chen H, Sun J. Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorol Atmos Phys, 2013, 121: 55-77 CrossRef ADS Google Scholar

[154] Chen H, Sun J. Increased population exposure to extreme droughts in China due to 0.5°C of additional warming. Environ Res Lett, 2019, 14: 064011 CrossRef ADS Google Scholar

[155] Chen J, Chen F, Feng S, Huang W, Liu J, Zhou A. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat Sci Rev, 2015, 107: 98-111 CrossRef ADS Google Scholar

[156] Chen W, Graf H F, Huang R. 2000. The interannual variability of East Asian winter monsoon and its relationship to the summer monsoon. Adv Atmos Sci, 17: 48–60. Google Scholar

[157] Chen X, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 2014, 345: 897-903 CrossRef PubMed ADS Google Scholar

[158] Chou J. Predictability of the atmosphere. Adv Atmos Sci, 1989, 6: 335-346 CrossRef ADS Google Scholar

[159] Ding Y, Wang Z, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int J Climatol, 2008, 28: 1139-1161 CrossRef ADS Google Scholar

[160] Ding Y, Sun Y, Wang Z, Zhu Y, Song Y. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int J Climatol, 2009, 29: 1926-1944 CrossRef ADS Google Scholar

[161] Duan W S, Mu M. 2018. Predictability of El Niño-Southern Oscillation events. Oxford Research Encyclopedia of Climate Science. 1–38. Google Scholar

[162] Fan K, Wang H. Antarctic oscillation and the dust weather frequency in North China. Geophys Res Lett, 2004, 31: L10201 CrossRef ADS Google Scholar

[163] Fang J, Yang X Q. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system. Clim Dyn, 2016, 47: 1989-2007 CrossRef ADS Google Scholar

[164] Fang J B, Yang X Q. The relative roles of different physical processes in unstable midlatitude ocean-atmosphere interactions. J Clim, 2011, 24: 1542-1558 CrossRef ADS Google Scholar

[165] Fu C, Fletcher J O. The relationship between tibet-tropical ocean thermal contrast and interannual variability of indian monsoon rainfall. J Clim Appl Meteor, 1985, 24: 841-847 CrossRef Google Scholar

[166] Gong D, Wang S. Definition of Antarctic Oscillation index. Geophys Res Lett, 1999, 26: 459-462 CrossRef ADS Google Scholar

[167] He S P, Wang H J, Gao Y Q, Li F, Li H, Wang C. Influence of solar wind energy flux on the interannual variability of ENSO in the subsequent year. Atmos Ocean Sci Lett, 2018, 11: 165-172 CrossRef Google Scholar

[168] He S, Wang H. Oscillating relationship between the East Asian winter monsoon and ENSO. J Clim, 2013, 26: 9819-9838 CrossRef ADS Google Scholar

[169] Huang J, Wang T, Wang W, Li Z, Yan H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res-Atmos, 2014, 119: 11398-11416 CrossRef ADS Google Scholar

[170] Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Change, 2016, 6: 166-171 CrossRef ADS Google Scholar

[171] Huang J, Zhang X, Zhang Q, Lin Y, Hao M, Luo Y, Zhao Z, Yao Y, Chen X, Wang L, Nie S, Yin Y, Xu Y, Zhang J. Recently amplified arctic warming has contributed to a continual global warming trend. Nat Clim Change, 2017, 7: 875-879 CrossRef ADS Google Scholar

[172] Huang R. The numerical simulation of the three-dimensional teleconnections in the summer circulation over the Northern Hemisphere. Adv Atmos Sci, 1985, 2: 81-92 CrossRef ADS Google Scholar

[173] Huang R, Chen J, Huang G. Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv Atmos Sci, 2007, 24: 993-1023 CrossRef ADS Google Scholar

[174] Huang R, Chen J, Wang L, Lin Z. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv Atmos Sci, 2012, 29: 910-942 CrossRef ADS Google Scholar

[175] Huang R, Huang G, Wei Z. 2004. Climate variations of the summer monsoon over China. In: East Asian Monsoon. Singapore: World Scientific Publishing Co Pte Ltd. 213–270. Google Scholar

[176] Huang R, Sun F. Impacts of the tropical western Pacific on the East Asian summer monsoon. J Meteorol Soc Jpn, 1992, 70: 243-256 CrossRef Google Scholar

[177] Huang R, Wu Y. The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci, 1989, 6: 21-32 CrossRef ADS Google Scholar

[178] Huang Y, Wang B, Li X, Wang H. Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s. Clim Dyn, 2018, 51: 443-455 CrossRef ADS Google Scholar

[179] Huang Y, Wang H, Fan K, Gao Y. The western Pacific subtropical high after the 1970s: Westward or eastward shift?. Clim Dyn, 2015, 44: 2035-2047 CrossRef ADS Google Scholar

[180] Im E S, Eltahir E A B. Simulation of the diurnal variation of rainfall over the western maritime continent using a regional climate model. Clim Dyn, 2018, 51: 73-88 CrossRef ADS Google Scholar

[181] Im E S, Kang S, Eltahir E A B. Projections of rising heat stress over the western maritime continent from dynamically downscaled climate simulations. Glob Planet Change, 2018, 165: 160-172 CrossRef ADS Google Scholar

[182] Ji F, Wu Z, Huang J, Chassignet E P. Evolution of land surface air temperature trend. Nat Clim Change, 2014, 4: 462-466 CrossRef ADS Google Scholar

[183] Ji L, Sun S, Arpe K, Bengtsson L. Model study on the interannual variability of Asian winter monsoon and its influence. Adv Atmos Sci, 1997, 14: 1-22 CrossRef ADS Google Scholar

[184] Ju J, Slingo J. The Asian summer monsoon and ENSO. Q J R Met Soc, 1995, 121: 1133-1168 CrossRef ADS Google Scholar

[185] Lau K M, Kim M K, Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim Dyn, 2006, 26: 855-864 CrossRef ADS Google Scholar

[186] Lau N C, Nath M J. A model study of the Air-Sea interaction associated with the climatological aspects and interannual variability of the South Asian summer monsoon development. J Clim, 2012, 25: 839-857 CrossRef ADS Google Scholar

[187] Lau W K M, Kim M K, Kim K M, Lee W S. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ Res Lett, 2010, 5: 025204 CrossRef ADS Google Scholar

[188] Li C. Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv Atmos Sci, 1990, 7: 36-46 CrossRef ADS Google Scholar

[189] Li C. A further inquiry on the mechanism of 30–60 day oscillation in the tropical atmosphere. Adv Atmos Sci, 1993, 10: 41-53 CrossRef ADS Google Scholar

[190] Li C, Li G. Evolution of intraseasonal oscillation over the tropical western pacific/south China sea and its effect to the summer precipitation in southern China. Adv Atmos Sci, 1997, 14: 246-254 CrossRef ADS Google Scholar

[191] Li C, Li G. The NPO/NAO and interdecadal climate variation in China. Adv Atmos Sci, 2000, 17: 555-561 CrossRef ADS Google Scholar

[192] Li C Y. 1996. Dynamic mechanism of intraseasonal oscillation in the tropical atmosphere. From Atmospheric Circulation to Global Change. 351–364. Google Scholar

[193] Li C, Cho H R, Wang J T. CISK kelvin wave with evaporation-wind feedback and air-sea interaction-A further study of tropical intraseasonal oscillation mechanism. Adv Atmos Sci, 2002, 19: 379-390 CrossRef ADS Google Scholar

[194] Li H X, Chen H P, Wang H J, Sun J Q, Ma J H. Can Barents Sea ice decline in spring enhance summer hot drought events over Northeastern China?. J Clim, 2018, 31: 4705-4725 CrossRef ADS Google Scholar

[195] Li H, Dai A, Zhou T, Lu J. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim Dyn, 2010, 34: 501-514 CrossRef ADS Google Scholar

[196] Li J, Wang J X L. 2003b. A modified zonal index and its physical sense. Geophys Res Lett, 30: 34-1. Google Scholar

[197] Li J, Wang J X L. A new North Atlantic Oscillation index and its variability. Adv Atmos Sci, 2003a, 20: 661-676 CrossRef ADS Google Scholar

[198] Li J, Wang J X L. A modified zonal index and its physical sense. Geophys Res Lett, 2003, 30: 1632 CrossRef ADS Google Scholar

[199] Li J, Zeng Q. A unified monsoon index. Geophys Res Lett, 2002, 29: 115-1-115-4 CrossRef ADS Google Scholar

[200] Li J, Xie S P, Cook E R, Morales M S, Christie D A, Johnson N C, Chen F, D’Arrigo R, Fowler A M, Gou X, Fang K. El Niño modulations over the past seven centuries. Nat Clim Change, 2013, 3: 822-826 CrossRef ADS Google Scholar

[201] Li S, Bates G T. Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv Atmos Sci, 2007, 24: 126-135 CrossRef ADS Google Scholar

[202] Li Y, Lau N C. Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. J Clim, 2012, 25: 320-342 CrossRef ADS Google Scholar

[203] Lin I I, Black P, Price J F, Yang C Y, Chen S S, Lien C C, Harr P, Chi N H, Wu C C, D’Asaro E A. An ocean coupling potential intensity index for tropical cyclones. Geophys Res Lett, 2013, 40: 1878-1882 CrossRef ADS Google Scholar

[204] Liu X, Yin Z Y, Zhang X, Yang X. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J Geophys Res, 2004, 109: D16210 CrossRef ADS Google Scholar

[205] Liu Y M, Hoskins B J, Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia. J Met Soc Japan, 85B: 1–19. Google Scholar

[206] Liu Y, Wu G, Hong J, Dong B, Duan A, Bao Q, Zhou L. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim Dyn, 2012, 39: 1183-1195 CrossRef ADS Google Scholar

[207] Lu R Y, Dong B W, Ding H. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett, 2006, 33: L24701 CrossRef ADS Google Scholar

[208] Miao J, Wang T, Wang H, Zhu Y, Sun J. Interdecadal weakening of the East Asian winter monsoon in the mid-1980s: The roles of external forcings. J Clim, 2018, 31: 8985-9000 CrossRef ADS Google Scholar

[209] Mu M, Duan W, Chen D, Yu W. Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. Nat Sci Rev, 2015, 2: 226-236 CrossRef Google Scholar

[210] Mu M, Duan W, Wang B. Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J Geophys Res, 2007, 112: D10113 CrossRef ADS Google Scholar

[211] Pan W J, Mao J Y, Wu G X. Characteristics and mechanism of the 10–20-day oscillation of spring rainfall over Southern China. J Clim, 2013, 26: 5072-5087 CrossRef ADS Google Scholar

[212] Peng S, Piao S, Ciais P, Myneni R B, Chen A, Chevallier F, Dolman A J, Janssens I A, Peñuelas J, Zhang G, Vicca S, Wan S, Wang S, Zeng H. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501: 88-92 CrossRef PubMed ADS Google Scholar

[213] Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43-51 CrossRef PubMed ADS Google Scholar

[214] Qian W, Quan L, Shi S. Variations of the dust storm in China and its climatic control. J Clim, 2002, 15: 1216-1229 CrossRef Google Scholar

[215] Qin D, Yao T, Chen F, Zhang T, Meng X. Uplift of the Tibetan Plateau and its environmental impacts. Quat Res, 2014, 81: 397-399 CrossRef ADS Google Scholar

[216] Ren R, Zhu C, Cai M. Linking quasi-biweekly variability of the South Asian high to atmospheric heating over Tibetan Plateau in summer. Clim Dyn, 2019, 53: 3419-3429 CrossRef ADS Google Scholar

[217] Sui C H, Li X, Ho C H, Lau K M. Effects of radiative cooling on the tropical convective response to sea surface temperature: 2-D large domain cumulus ensemble simulations. J Geophys Res, 2008, 113: D08116 CrossRef ADS Google Scholar

[218] Sun J Q, Wang H J. Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J Geophys Res, 2012, 117: D08110 CrossRef ADS Google Scholar

[219] Sun J, Zhang M, Liu T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J Geophys Res, 2001, 106: 10325-10333 CrossRef ADS Google Scholar

[220] Tao S, Chen L. 1987. A Review of Recent Research on the East Asian Summer Monsoon in China. In: Chang C P, ed. Krishnamurti T N. Monsoon Meteorology. Oxford: Oxford University Press. Google Scholar

[221] Wang H. The weakening of the Asian monsoon circulation after the end of 1970’s. Adv Atmos Sci, 2001, 18: 376-386 CrossRef ADS Google Scholar

[222] Wang H J. The instability of the East Asian summer monsoon–ENSO relations. Adv Atmos Sci, 2002, 19: 1-11 CrossRef ADS Google Scholar

[223] Wang H, He S. The North China/Northeastern Asia severe summer drought in 2014. J Clim, 2015, 28: 6667-6681 CrossRef ADS Google Scholar

[224] Wang H J, Chen H P. Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmos Chem Phys, 2016, 16: 4205-4211 CrossRef ADS Google Scholar

[225] Wang H J, Sun J Q, Chen H P, Zhu Y L, Zhang Y, Jiang D B, Lang X M, Fan K, Yu E T, Yang S. Extreme climate in China: Facts, simulation and projection. Meteorol Z, 2012, 21: 279-304 CrossRef ADS Google Scholar

[226] Wang L Y, Hu H B, Yang X Q, Ren X J. Atmospheric eddy anomalies associated with the wintertime North Pacific subtropical front strength and their influences on the seasonal-mean atmosphere. Sci China Earth Sci, 2016, 59: 2022-2036 CrossRef Google Scholar

[227] Wang L, Chen W, Huang R. Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys Res Lett, 2008, 35: L20702 CrossRef ADS Google Scholar

[228] Wang T, Guo D, Gao Y, Wang H, Zheng F, Zhu Y, Miao J, Hu Y. Modulation of ENSO evolution by strong tropical volcanic eruptions. Clim Dyn, 2018, 51: 2433-2453 CrossRef ADS Google Scholar

[229] Wang T, Wang H J, Otterå O H, Gao Y Q, Suo L L, Furevik T, Yu L. Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmos Chem Phys, 2013, 13: 12433-12450 CrossRef ADS Google Scholar

[230] Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X. The Holocene Asian Monsoon: Links to Solar changes and North Atlantic climate. Science, 2005, 308: 854-857 CrossRef PubMed ADS Google Scholar

[231] Wu A, Ni Y. The influence of Tibetan Plateau on the interannual variability of Asian Monsoon. Adv Atmos Sci, 1997, 14: 491-504 CrossRef ADS Google Scholar

[232] Wu G, Guan Y, Liu Y, Yan J, Mao J. Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Clim Dyn, 2012a, 38: 261-279 CrossRef ADS Google Scholar

[233] Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeor, 2007, 8: 770-789 CrossRef ADS Google Scholar

[234] Wu G, Zhang Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev, 1998, 126: 913-927 CrossRef Google Scholar

[235] Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, He B, Liu B, Hu W. Tibetan Plateau climate dynamics: Recent research progress and outlook. Nat Sci Rev, 2015, 2: 100-116 CrossRef Google Scholar

[236] Wu G, Liu Y, Dong B, Liang X, Duan A, Bao Q, Yu J. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn, 2012c, 39: 1169-1181 CrossRef ADS Google Scholar

[237] Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F. Thermal controls on the Asian summer monsoon. Sci Rep, 2012b, 2: 404 CrossRef PubMed ADS Google Scholar

[238] Yao C S. A statistical approach to historical records of flood and drought. J Appl Meteor, 1982, 21: 588-594 CrossRef Google Scholar

[239] Yao T, Duan K, Xu B, Wang N, Guo X, Yang X. Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau. Clim Past, 2008, 4: 175-180 CrossRef Google Scholar

[240] Yao T D, Duan K Q, Xu B Q, Wang N L, Pu J C, Kang S C, Qin X, Lonnie G T. Temperature and methane changes over the past 1000 years recorded in Dasuopu glacier (central Himalaya) ice core. Ann Glaciol, 2002, 35: 379-383 CrossRef Google Scholar

[241] Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys, 2013, 51: 525-548 CrossRef ADS Google Scholar

[242] Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2012, 2: 663-667 CrossRef ADS Google Scholar

[243] Yao T D, Xiang S R, Zhang X J, Wang N L, Wang Y Q. Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Glob Biogeochem Cycle, 2006, 20: GB1004 CrossRef ADS Google Scholar

[244] Yao Y, Zhong Z, Yang X Q. Numerical experiments of the storm track sensitivity to oceanic frontal strength within the Kuroshio/Oyashio Extensions. J Geophys Res-Atmos, 2016, 121: 2888-2900 CrossRef ADS Google Scholar

[245] Yeh T C. The circulation of the high troposphere over China in the winter of 1945–46. Tellus, 1950, 2: 173-183 CrossRef ADS Google Scholar

[246] Yin Z, Wang H. Seasonal prediction of winter haze days in the north central North China Plain. Atmos Chem Phys, 2016, 16: 14843-14852 CrossRef ADS Google Scholar

[247] Yin Z, Wang H. Statistical prediction of winter haze days in the North China plain using the generalized additive model. J Appl Meteorol Climatol, 2017, 56: 2411-2419 CrossRef ADS Google Scholar

[248] Yin Z, Wang H. The strengthening relationship between Eurasian snow cover and December haze days in central North China after the Mid-1990s. Atmos Chem Phys, 2018, 18: 4753-4763 CrossRef ADS Google Scholar

[249] Yu R C, Wang B, Zhou T J. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys Res Lett, 2004, 31: L22212 CrossRef ADS Google Scholar

[250] Zeng Q, Li J. 2002. Interactions between the Northern and Southern hemispheric atmospheres and the essence of monsoon (in Chinese). Chin J Atmos Sci, 26: 433–448. Google Scholar

[251] Zeng Q C. The evolution of a rossby-wave packet in a three-dimensional baroclinic atmosphere. J Atmos Sci, 1983, 40: 73-84 CrossRef Google Scholar

[252] Zeng Z, Piao S, Li L Z X, Zhou L, Ciais P, Wang T, Li Y, Lian X, Wood E F, Friedlingstein P, Mao J, Estes L D, Myneni R B, Peng S, Shi X, Seneviratne S I, Wang Y. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Change, 2017, 7: 432-436 CrossRef ADS Google Scholar

[253] Zhang J, Crowley T J. Historical climate records in China and reconstruction of past climates. J Clim, 1989, 2: 833-849 CrossRef Google Scholar

[254] Zhang Q, Wu G, Qian Y. The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer.. J Meteorol Soc Jpn, 2002, 80: 733-744 CrossRef Google Scholar

[255] Zhang R, Sumi A. Moisture circulation over East Asia during El Niño episode in Northern Winter, Spring and Autumn. J Meteorol Soc Jpn, 2002, 80: 213-227 CrossRef Google Scholar

[256] Zhang R, Zuo Z. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J Clim, 2011, 24: 3309-3322 CrossRef ADS Google Scholar

[257] Zhang R, Sumi A, Kimoto M. Impact of El Niño on the East Asian Monsoon. J Meteorol Soc Jpn, 1996, 74: 49-62 CrossRef Google Scholar

[258] Zhang R, Sumi A, Kimoto M. A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci, 1999, 16: 229-241 CrossRef ADS Google Scholar

[259] Zhang W, Zhou T, Zou L, Zhang L, Chen X. Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nat Commun, 2018, 9: 3153 CrossRef PubMed ADS Google Scholar

[260] Zhang Z, Sun X, Yang X Q. Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals. J Clim, 2018, 31: 5485-5506 CrossRef ADS Google Scholar

[261] Zhou T J, Wang B, Yu Y Q, Liu Y M, Zheng W P, Li L J, Wu B, Lin P F, Guo Z, Man W M, Bao Q, Duan A M, Liu H L, Chen X L, He B, Li J D, Zou L W, Wang X C, Zhang L X, Sun Y, Zhang W X. The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview. Earth Planet Phys, 2018, 2: 276-291 CrossRef Google Scholar

[262] Zhou T, Yu R, Li H, Wang B. Ocean forcing to changes in global monsoon precipitation over the recent half-century. J Clim, 2008, 21: 3833-3852 CrossRef ADS Google Scholar

[263] Zhou T, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson D L R, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y. Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim, 2009, 22: 2199-2215 CrossRef ADS Google Scholar

[264] Zhu C, Ren R, Wu G. Varying Rossby Wave trains from the developing to decaying period of the upper atmospheric heat source over the Tibetan Plateau in boreal summer. Adv Atmos Sci, 2018, 35: 1114-1128 CrossRef ADS Google Scholar

[265] Zhu Y, Yang X. Joint propagating patterns of SST and SLP anomalies in the North Pacific on bidecadal and pentadecadal timescales. Adv Atmos Sci, 2003, 20: 694-710 CrossRef ADS Google Scholar

[266] Zhu Y, Wang H, Ma J, Wang T. 2015. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall. J Geophys Res, 120: 8817–8827. Google Scholar

[267] Zhu Y, Wang H, Zhou W, Ma J. Recent changes in the summer precipitation pattern in East China and the background circulation. Clim Dyn, 2011, 36: 1463-1473 CrossRef ADS Google Scholar

[268] Zhu Y, Wang T, Wang H. Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Chin Sci Bull, 2016, 61: 416-424 CrossRef Google Scholar

[269] Zou X K, Zhai P M, Zhang Q. Variations in droughts over China: 1951–2003. Geophys Res Lett, 2005, 32: L04707 CrossRef ADS Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号