logo

SCIENTIA SINICA Terrae, Volume 49, Issue 10: 1546-1564(2019) https://doi.org/10.1360/SSTe-2019-0132

青藏高原深部地球物理探测70年

More info
  • ReceivedJun 13, 2019
  • AcceptedSep 4, 2019
  • PublishedSep 27, 2019

Abstract

青藏高原是全球海拔最高、规模最大、时代最新的陆-陆碰撞造山带. 几十个百万年以来高原隆升、喜马拉雅山系崛起是地球演化史上最为壮观的构造事件之一. 青藏高原壳幔结构和深部过程备受国内外地球科学家关注. 近七十年来的地球物理研究与探索表明: (1) 青藏高原地壳巨厚, 岩石圈较薄; (2) 壳内存在软弱层, 但厚度和联通性有限; (3) 高原下地壳及Moho面广泛发育叠瓦状反射特征, 存在明显的脆性变形; (4) 喜马拉雅和拉萨块体南部存在双Moho现象/迹象; (5) 印度大陆岩石圈向高原下方俯冲的形态存在显著的东西向差异; (6) 高原主体上地幔各向异性以NEE向为主; (7) 青藏高原布格重力异常四周高、中间低, 异常场边界与地形梯度变化密切相关; (8) 高原内部磁异常较弱, 周边地区较强, 其分界与区域构造边界基本一致; (9) 青藏高原水热活动强烈, 大地热流值高, 主要来自加厚地壳的贡献. 但是, 有关青藏高原深部过程, 诸如是否存在中/下地壳流、印度与欧亚大陆岩石圈的俯冲模式等重大科学问题目前仍存在争议. 青藏高原地球物理和动力学研究是一个复杂的系统工程, 以科学问题为导向, 结合国家重大需求, 在关键区域组织实施综合地球物理探测, 可望在地学领域取得创新与突破.


Funded by

国家自然科学基金项目(U1839206)


Acknowledgment

两位匿名审稿专家和编委提出了有帮助的修改建议, 使得文章质量得以明显提高, 在此表示感谢.


References

[1] 安振昌, 马石庄, 谭东海. 1992. 中国及邻近地区卫星磁异常的球冠谐和分析. 地球物理学报, 35(增刊): 188−197. Google Scholar

[2] 安振昌, 任国泰, 薛小桢, 王居易, 徐元芳, 王世元. 1989. 青藏高原及珠穆朗玛峰地区的地磁场. 见: 中国科学院地球物理研究所论文摘要集 (1985). 北京:中国科学院地球物理研究所. Google Scholar

[3] 白志明, 王椿镛. 2004. 云南遮放-宾川和孟连-马龙宽角地震剖面的层析成像研究. 地球物理学报, 47: 257−267. Google Scholar

[4] 常利军, 丁志峰, 王椿镛. 2015. 南北构造带南段上地幔各向异性特征. 地球物理学报, 58: 4052−4067. Google Scholar

[5] 崔作舟, 李秋生, 吴朝东, 尹周勋, 刘宏兵. 1995. 格尔木-额济纳旗地学断面的地壳结构与深部构造. 地球物理学报, 38(增刊Ⅱ): 15−18. Google Scholar

[6] 崔作舟, 卢德源, 陈纪平, 张之英, 黄立言. 1987. 攀西地区的深部地壳结构与构造. 地球物理学报, 30: 566−580. Google Scholar

[7] 邓起东, 程绍平, 马冀, 杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57: 2025−2042. Google Scholar

[8] 丁志峰, 曾融生, 吴大铭. 1992. 青藏高原的Pn波速度和Moho界面的起伏. 地震学报, 14(增刊), 592−599. Google Scholar

[9] 高锐, 黄东定, 卢德源, 钱桂, 李英康, 匡朝阳, 李秋生, 李朋武, 冯如进, 管烨. 2000. 横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面. 科学通报, 45: 1874−1879. Google Scholar

[10] 高锐, 马永生, 李秋生, 朱铉, 张季生, 王海燕, 李鹏武, 卢占武, 管烨. 2006. 松潘地块与西秦岭造山带下地壳的性质和关系——深地震反射剖面的揭露. 地质通报, 25: 1361−1367. Google Scholar

[11] 高锐, 王海燕, 王成善, 尹安, 张玉修, 李秋生, 郭彤楼, 李文辉. 2011. 青藏高原东北缘岩石圈缩短变形——深地震反射剖面再处理提供的证据. 地球学报, 32: 513−520. Google Scholar

[12] 高锐, 肖序常, 刘训, 管烨, 李秋生, 卢德源, 李朋武. 2001. 新疆地学断面深地震反射剖面揭示的西昆仑——塔里木结合带岩石圈细结构. 地球学报, 22: 547−552. Google Scholar

[13] 郭新峰, 张元丑, 程庆云, 高锐, 潘渝. 1990. 青藏高原亚东——格尔木地学断面岩石圈电性研究. 地球学报, 11: 191−202. Google Scholar

[14] 胡鸿翔, 陆涵行, 王椿镛, 何正勤, 朱良保, 颜其中, 樊跃新, 张国庆, 邓英娥. 1986. 云南地区地壳结构的爆破地震研究. 地球物理学报, 29: 133−144. Google Scholar

[15] 胡鸿翔, 李学清. 1994. 云南地区孟连-思茅-马龙剖面的基底速度系结构. 见: 陈运泰, 等, 主编. 中国固体地球物理学进展. 北京: 海洋出版社. 100−106. Google Scholar

[16] 贺日政, 高锐, 郑洪伟. 2007. 隐伏在青藏高原中部的东西走向断裂的航磁异常场特征及其意义. 地球物理学报, 37: 1002−1008. Google Scholar

[17] 环文林, 汪素云, 时振梁, 鄢家全. 1980. 青藏高原震源分布与板块运动. 地球物理学报, 23: 269−280. Google Scholar

[18] 阚荣举, 林中洋. 1986. 云南地壳上地幔构造的初步研究. 中国地震, 2: 50−61. Google Scholar

[19] 康国发, 高国明, 白春华, 韶丹, 冯丽丽. 2011. 青藏高原及邻区的地壳磁异常特征与区域构造. 中国科学: 地球科学, 41: 1577−1585. Google Scholar

[20] 孔祥儒, 马晓冰, 于晟, 李宗舜. 1998. 青藏高原电性结构研究. 见: 潘裕生, 主编. 青藏高原岩石圈结构演化和动力学. 广州: 广东科技出版社. 67−93. Google Scholar

[21] 孔祥儒, 熊绍柏, 王谦身. 1996. 青藏高原西部综合地球物理与岩石圈结构研究. 中国科学D辑: 地球科学, 26: 308−315. Google Scholar

[22] 李松林, 张先康, 张成科, 赵金仁, 成双喜. 2002. 玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究. 地球物理学报, 45: 200−217. Google Scholar

[23] 李秋生, 卢德源, 高锐. 2000. 横跨西昆仑-塔里木接触带的爆炸地震探测. 中国科学D辑: 地球科学, 30(增刊): 16−21. Google Scholar

[24] 李秋生, 彭苏萍, 高锐. 2004. 青藏高原莫霍面的研究进展. 地质论评, 50: 598−612. Google Scholar

[25] 林中洋, 胡鸿翔, 张文彬, 章惠芬, 何正勤, 林真明, 邱陶兴. 1993. 滇西地区地壳上地幔速度结构特征的研究. 地震学报, 15: 424−440. Google Scholar

[26] 卢德源, 王香泾. 1990. 青藏高原北部沱沱河-格尔木地区的地壳结构和深部作用过程. 地球学报, 11: 227−237. Google Scholar

[27] 卢占武, 高锐, 李洪强, 李文辉, 熊小松, 徐泰然. 2016. 深反射地震数据揭示的拉萨地体北部到羌塘地体南部地壳厚度的变化. 中国地质, 43: 1679−1687. Google Scholar

[28] 马丽华. 2018. 青藏光芒. 北京: 北京十月文艺出版社. Google Scholar

[29] 孟令顺, 高锐. 1992. 青藏高原重力测量与岩石圈构造. 北京: 地质出版社. Google Scholar

[30] 潘裕生, 孔祥儒, 钟大责. 1998. 青藏高原岩石圈结构演化和动力学. 广州: 广东科技出版社. Google Scholar

[31] 潘作枢, 滕吉文, 申江胜, 王孝沛. 1981. 雅鲁藏布江一带的航磁异常特征及地壳构造. 石油物探, 2: 78−91. Google Scholar

[32] 沈显杰, 康文华, 李德禄, 白嘉启, 魏红兵, 邓肖粤, Francheteau J, Jaupart C, Lossouarn H. 1983. 西藏高原的热流测量. 科学通报, 28: 876−877. Google Scholar

[33] 沈显杰, 张文仁, 杨淑贞, 管炸, 金旭, 张菊明, 汪辑安, 沈继英, 张容燕. 1992. 青藏热流和地体构造热演化, 地质专报. 北京: 地质出版社. 1−94. Google Scholar

[34] 孙鸿烈等口述/温瑾整理. 2010. 青藏高原科考访谈录: 1973~1992. 长沙: 湖南教育出版社. Google Scholar

[35] 谭捍东, 陈乐寿, 魏文博, 邓明, 胡建德, 金胜. 1997. 从 INDEPTH-MT 结果探讨雅鲁藏布江缝合带的电性结构. 现代地质, 11: 375−378. Google Scholar

[36] 滕吉文, 阚荣举, 刘道洪, 曾融生. 1973. 柴达木东盆地的基岩首波和反射波. 地球物理学报, 16: 62−70. Google Scholar

[37] 滕吉文. 1974. 柴达木东盆地的深层地震反射波和地壳构造. 地球物理学报, 17: 122−135. Google Scholar

[38] 滕吉文, 熊绍柏, 孙克忠. 1981. 西藏高原当雄-亚东地带地壳与上地幔结构和速度分布的爆炸地震研究. 地球物理学报, 24: 155−170. Google Scholar

[39] 滕吉文, 尹周勋, 熊绍柏. 1985. 西藏高原北部地区色林错-蓬错-那曲-索县地带地壳结构与速度分布. 地球物理学报, 28(增刊Ⅰ): 28−43. Google Scholar

[40] 滕吉文. 1994. 康滇构造带岩石圈物理与动力学. 北京: 科学出版社. Google Scholar

[41] 滕吉文, 尹周勋, 刘宏兵, 张中杰, 胡家富, 孙克忠, 魏计春. 1994. 青藏高原岩石层三维和二维结构与大陆动力学. 地球物理学报, 37: 117−130. Google Scholar

[42] 滕吉文, 王谦身, 王光杰, 徐亚, 张雪梅. 2006. 喜马拉雅“东构造结”地区的特异重力场与深部地壳结构, 49: 1045−1052. Google Scholar

[43] 滕吉文. 2007. 青藏高原地球物理研究的第一批重大成果和对几个重要科学问题的认识与思考. 见: 中国地球物理学会, 主编. 辉煌的历程——中国地球物理学会60年. 北京: 地震出版社. Google Scholar

[44] 滕吉文, 阮小敏, 张永谦, 胡国泽, 闫亚芬. 2012. 青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹. 岩石学报, 28: 4077−4100. Google Scholar

[45] 滕吉文, 司芗, 王谦身, 张永谦, 杨辉. 2015. 青藏高原地球科学研究中的核心问题与理念的厘定. 地球物理学报, 58: 103−124. Google Scholar

[46] 滕吉文, 马学英, 张雪梅, 刘有山, 皮娇龙. 2017. 2015年尼泊尔MS8.1大地震孕育的深层过程与发生的动力学响应. 地球物理学报, 60: 123−141. Google Scholar

[47] 滕吉文, 宋鹏汉, 刘有山, 张雪梅,马学英,闫亚芬. 2019. 青藏高原“亚东-东巧-葫芦湖”大陆裂谷带形成的深层动力过程. 地球物理学报, 62: 3321−3339. Google Scholar

[48] 佟伟, 章铭陶, 张知非, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬. 1981. 西藏地热. 北京: 科学出版社. Google Scholar

[49] 王椿镛, 韩渭宾, 吴建平, 楼海, 白志明. 2003. 松潘-甘孜造山带地壳速度结构. 地震学报, 25: 229−241. Google Scholar

[50] 王夫运, 段永红, 杨卓欣, 张成科, 赵金仁, 张建狮, 张先康, 刘启元, 朱艾斓, 徐锡伟, 刘宝峰. 2008. 川西盐源-马边地震带上地壳速度结构和活动断裂研究——高分辨率地震折射实验结果. 中国科学D辑: 地球科学, 38: 611−621. Google Scholar

[51] 王夫运, 潘素珍, 刘兰, 刘宝峰, 张建狮, 邓晓果, 马策军, 张彩军. 2014. 玉溪-临沧剖面宽角地震探测——红河断裂带及滇南地壳结构研究. 地球物理学报, 57: 3247−3258. Google Scholar

[52] 王晓, 周小鹏, 张新彦, 白志明, 滕吉文. 2015. 上地壳纵横波速度结构相关反演成像方法. 地球物理学报, 58: 3553−3570. Google Scholar

[53] 王有学, 韩果花, 姜枚, 袁学诚, Mooney W D, Coleman R G. 2004. 阿尔泰-阿尔金地学断面地壳结构. 地球物理学报, 47: 240−249. Google Scholar

[54] 王有学, Mooney W D, 韩果花, 袁学诚, 姜枚. 2005. 台湾-阿尔泰地学断面阿尔金-龙门山剖面的地壳纵波速度结构. 地球物理学报, 48: 98−106. Google Scholar

[55] 魏斯禹, 滕吉文, 杨秉平, 胡忠义. 1981. 西藏高原地热活动、温泉分布与地球物理场特征. 西北地震学报, 3: 17−25. Google Scholar

[56] 吴功建, 高锐, 余钦范, 程庆云, 孟令顺, 董学斌, 崔作舟, 尹周勋, 沈显杰, 周烑秀等. 1991. 青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究. 地球物理学报, 34: 552−562. Google Scholar

[57] 吴宣志, 吴春玲, 卢杰, 吴杰. 1995. 利用深地震反射剖面研究北祁连-河西走廊地壳细结构. 地球物理学报, 38(增刊Ⅱ): 29−35. Google Scholar

[58] 熊绍柏, 滕吉文, 尹周勋, 赖明惠, 黄一平. 1986. 攀西构造带南部地壳与上地幔结构的爆炸地震研究. 地球物理学报, 29: 235−244. Google Scholar

[59] 熊绍柏, 郑晔, 尹周勋, 曾晓献, 全幼黎, 孙克忠. 1993. 丽江-攀枝花-者海地带二维地壳结构及其构造意义. 地球物理学报, 36: 436−444. Google Scholar

[60] 熊绍柏, 刘宏兵. 1997. 青藏高原西部的地壳结构. 科学通报, 42: 1309−1312. Google Scholar

[61] 熊绍柏, 刘宏兵, 于桂生. 1998. 青藏高原岩石圈结构与构造的人工地震探测研究. 见: 潘裕生, 主编. 青藏高原岩石圈结构演化和动力学. 广州: 广东科技出版社. 1−35. Google Scholar

[62] 熊盛青, 周伏洪, 姚正煦, 薛典军. 2007. 青藏高原中西部航磁概查. 物探与化探, 31: 404−407. Google Scholar

[63] 徐涛, 张明辉, 田小波, 郑勇, 白志明, 武澄泷, 张忠杰, 滕吉文. 2014. 丽江-清镇剖面上地壳速度结构及其与鲁甸Ms6.5级地震孕震环境的关系. 地球物理学报, 57: 3069−3079. Google Scholar

[64] 杨文采, 孙艳云, 于常青. 2015. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58: 4115−4128. Google Scholar

[65] 杨文采, 瞿辰, 任浩然, 黄联捷, 胥颐, 于常青. 2019. 青藏高原地壳地震纵波速度的层析成像. 地质论评, 65: 2−14. Google Scholar

[66] 尹周勋, 滕吉文, 熊绍柏. 1987. 渡口及其邻近地区地壳浅层结构的研究. 地球物理学报, 30: 22−30. Google Scholar

[67] 曾融生, 阚荣举, 何传大, 李彭年. 1960. 柴达木盆地低频地震探测结晶基底的工作方法. 地球物理学报, 9: 155−168. Google Scholar

[68] 曾融生, 何傳大, 阚荣举. 1961a. 柴达木盆地低頻地震探測的“迴折”波和多次波. 地球物理学报, 10: 39−53. Google Scholar

[69] 曾融生, 阚荣举, 何传大. 1961b. 柴达木盆地低頻地震探測的基岩首波和大角度反射波. 地球物理学报, 10: 54−66. Google Scholar

[70] 曾融生, 阚荣举. 1961. 柴达木盆地西部地壳深界面的反射波. 地球物理学报, 10: 120−125. Google Scholar

[71] 曾融生, 滕吉文, 阚荣举, 张家茹. 1965. 我国西北地区地壳中的高速夹层. 地球物理学报, 14: 94−106. Google Scholar

[72] 张健, 石耀霖. 2002. 青藏高原隆升及伸展变形中的重力位能. 地球物理学报, 45: 226−232. Google Scholar

[73] 张培震, 邓起东, 张竹琪, 李海兵. 2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学: 地球科学, 43: 1607−1620. Google Scholar

[74] 张先, 赵丽. 2003. 青藏高原航磁异常及居里面研究. 大地测量与地球动力学, 23: 14−20. Google Scholar

[75] 张先康, 嘉世旭, 赵金仁. 2008. 西秦岭-东昆仑及邻近地区地壳结构——深地震宽角反射/折射剖面结果. 地球物理学报, 51: 439−450. Google Scholar

[76] 张燕, 程顺有, 赵炳坤, 董云鹏, 韩革命, 张明华, 杨亚斌, 崔丽艳. 2013. 青藏高原构造结构特点: 新重力异常成果的启示. 地球物理学报, 56: 1369−1380. Google Scholar

[77] 张智, 赵兵, 张晰, 刘财. 2006. 云南思茅-中旬地震剖面的地壳结构. 地球物理学报, 49: 1377−1384. Google Scholar

[78] 张中杰, 滕吉文, 杨立强, 李英康. 2002. 藏南地壳速度结构与地壳物质东西向“逃逸”——以佩枯错-普莫雍错宽角反射剖面为例. 中国科学D辑: 地球科学, 32: 793−798. Google Scholar

[79] 张中杰, 白志明, 王椿镛, 滕吉文,吕庆田, 李继亮, 刘一峰, 刘振宽. 2005. 三江地区地壳结构及动力学意义: 云南遮放-宾川地震反射/折射剖面的启示. 中国科学D辑: 地球科学, 35: 314−319. Google Scholar

[80] 赵文津. 2012. 青藏高原深剖面研究20年回顾与展望——INDEPTH项目20周年纪念会文集. 北京: 地质出版社. Google Scholar

[81] 祝恒宾, 周文虎, 武立高. 1985. 喜马拉雅地区的均衡重力异常与地震活动性. 地震学报, 7: 74−79. Google Scholar

[82] 朱露培, 曾融生, 吴大铭. 1992. 利用宽频带远震体波波形研究青藏高原地壳上地幔速度结构的初步成果. 地震学报, 14: 580−591. Google Scholar

[83] Achache J, Courtillot V, Xiu Z Y. Paleogeographic and tectonic evolution of southern Tibet since middle Cretaceous time: New paleomagnetic data and synthesis. J Geophys Res, 1984, 89: 10311-10339 CrossRef ADS Google Scholar

[84] Bai D, Unsworth M J, Meju M A, Ma X, Teng J, Kong X, Sun Y, Sun J, Wang L, Jiang C, Zhao C, Xiao P, Liu M. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci, 2010, 3: 358-362 CrossRef ADS Google Scholar

[85] Bao X, Song X, Li J. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet Sci Lett, 2015, 417: 132-141 CrossRef ADS Google Scholar

[86] Chen G M, Ren A H, Li Z S, Shi Y J, Li H Z, Yang Z W, Huang B M. 1981. Amagnetotelluric study on the earth’s crust and upper mantle at Nagqu and Pagri, Xizang Plateau. In: Liu D S, ed. Geological and Ecological Studies of Qinghai-Xizang Plateau (Vol.1). Beijing: Science Press. 771−782. Google Scholar

[87] Chen J, Huang B, Sun L. New constraints to the onset of the India–Asia collision: paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489: 189-209 CrossRef ADS Google Scholar

[88] Chen L, Booker J R, Jones A G, Wu N, Unsworth M J, Wei W, Tan H. Electrically conductive crust in Southern Tibet from INDEPTH Magnetotelluric surveying. Science, 1996, 274: 1694-1696 CrossRef PubMed ADS Google Scholar

[89] Chen M, Niu F, Tromp J, Lenardic A, Lee C T A, Cao W, Ribeiro J. Lithospheric foundering and underthrusting imaged beneath Tibet. Nat Commun, 2017, 8: 15659 CrossRef PubMed ADS Google Scholar

[90] Chen W P, Yang Z. Earthquakes beneath the Himalayas and Tibet: Evidence for strong lithospheric mantle. Science, 2004, 304: 1949-1952 CrossRef PubMed ADS Google Scholar

[91] Chen W P, Nábělek J L, Fitch T J, Molnar P. An intermediate depth earthquake beneath Tibet: Source characteristics of the event of September 14, 1976. J Geophys Res, 1981, 86: 2863-2876 CrossRef ADS Google Scholar

[92] Chen Y, Badal J, Hu J. Love and rayleigh wave tomography of the Qinghai-Tibet Plateau and surrounding areas. Pure Appl Geophys, 2010, 167: 1171-1203 CrossRef ADS Google Scholar

[93] Chen Y, Li W, Yuan X, Badal J, Teng J. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet Sci Lett, 2015, 413: 13-24 CrossRef ADS Google Scholar

[94] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28: 703-706 CrossRef Google Scholar

[95] Dasgupta S, Mukhopadhyay M, Bhattacharya A, Jana T K. The geometry of the Burmese-Andaman subducting lithosphere. J Seismol, 2003, 7: 155-174 CrossRef ADS Google Scholar

[96] Deng Y, Shen W, Xu T, Ritzwoller M H. Crustal layering in northeastern Tibet: A case study based on joint inversion of receiver functions and surface wave dispersion. Geophys J Int, 2015, 203: 692-706 CrossRef ADS Google Scholar

[97] Deng Y, Li J, Song X, Li H, Xu T. The lithospheric-scale deformation in NE Tibet from joint inversion of receiver function and surface wave dispersion. Terr Atmos Ocean Sci, 2019, 30: 127-137 CrossRef Google Scholar

[98] Dewey J, Cande S, Iii Pitman W C. 1989. Tectonic evolution of the India/Eurasia Collision Zone. Eclogae Geol Helv, 82: 717−734. Google Scholar

[99] Fei D, Cheng S X, Hao C R. 1981. On the structural feature in the central part of Xizang and obduction of the Indian plate. In: Liu D S, ed. Geological and Ecological Studies of Qinghai-Xizang Plateau(Vol.1). Beijing: Science Press. 747−756. Google Scholar

[100] Gao R, Huang D, Lu D, Qian G, Li Y, Kuang C, Li Q, Li P, Feng R, Guan Y. Deep seismic reflection profile across the juncture zone between the Tarim basin and the west Kunlun mountains. Chin Sci Bull, 2000, 45: 2281-2286 CrossRef ADS Google Scholar

[101] Gao R, Chen C, Lu Z, Brown L D, Xiong X, Li W, Deng G. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 2013a, 606: 160-170 CrossRef ADS Google Scholar

[102] Gao R, Hou H, Cai X, Knapp J H, He R, Liu J, Xiong X, Guan Y, Li W, Zeng L, Roecker S W. Fine crustal structure beneath the junction of the southwest Tian Shan and Tarim Basin, NW China. Lithosphere, 2013b, 5: 382-392 CrossRef ADS Google Scholar

[103] Gao R, Lu Z, Klemperer S L, Wang H, Dong S, Li W, Li H. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat Geosci, 2016, 9: 555-560 CrossRef ADS Google Scholar

[104] Gao S S, Liu K H. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem Geophys Geosyst, 2009, 10: Q02008 CrossRef ADS Google Scholar

[105] Guo X, Gao R, Randy Keller G, Xu X, Wang H, Li W. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range. Earth Planet Sci Lett, 2013, 379: 72-80 CrossRef ADS Google Scholar

[106] Guo X, Gao R, Wang H, Li W, Keller G, Xu X, Li H, Encarnacion J. Crustal architecture beneath the Tibet-Ordos transition zone, NE Tibet, and the implications for plateau expansion. Geophys Res Lett, 2015, 42: 10631-10639 CrossRef ADS Google Scholar

[107] Guo X, Li W, Gao R, Xu X, Li H, Huang X, Ye Z, Lu Z, Klemperer S L. Nonuniform subduction of the Indian crust beneath the Himalayas. Sci Rep, 2017, 7: 12497 CrossRef PubMed ADS Google Scholar

[108] Guo X, Gao R, Zhao J, Xu X, Lu Z, Klemperer S L, Liu H. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau. Earth Sci Rev, 2018, 185: 751-762 CrossRef Google Scholar

[109] Harris N. Channel flow and the Himalayan-Tibetan orogen: A critical review. J Geological Soc, 2007, 164: 511-523 CrossRef ADS Google Scholar

[110] Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Zhong Xin X, En Yuan G, Xiang Jing W, Ji Wen T, Shao Bai X, Pandey M R, Tater J M. Crustal structure and variability of the Himalayan border of Tibet. Nature, 1984a, 307: 23-25 CrossRef ADS Google Scholar

[111] Hirn A, Nercessian A, Sapin M, Jobert G, Xin X Z, Yuan G E, Yuan L D, Wen T J. Lhasa block and bordering sutures—A continuation of a 500-km Moho traverse through Tibet. Nature, 1984b, 307: 25-27 CrossRef ADS Google Scholar

[112] Hoke L, Lamb S, Hilton D R, Poreda R J. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implications for lithospheric structure. Earth Planet Sci Lett, 2000, 180: 297-308 CrossRef ADS Google Scholar

[113] Huang W C, Ni J F, Tilmann F, Nelson D, Guo J, Zhao W, Mechie J, Kind R, Saul J, Rapine R, Hearn T M. Seismic polarization anisotropy beneath the central Tibetan Plateau. J Geophys Res, 2000, 105: 27979-27989 CrossRef ADS Google Scholar

[114] Huang Z, Wang L, Xu M, Ding Z, Wu Y, Wang P, Mi N, Yu D, Li H. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth Planet Sci Lett, 2015, 432: 354-362 CrossRef ADS Google Scholar

[115] Jia S X, Liu B J, Xu Z F, Liu Z, Feng S Y, Zhang J S, Lin J Y, Tian X F, Liu Q X, Guo W B. The crustal structures of the central Longmenshan along and its margins as related to the seismotectonics of the 2008 Wenchuan Earthquake. Sci China Earth Sci, 2014, 57: 777-790 CrossRef Google Scholar

[116] Kan R J, Hu H X, Zeng R S, Mooney W D, McEvilly T V. Crustal structure of Yunnan Province, People’s Republic of China, from seismic refraction profiles. Science, 1986, 234: 433-437 CrossRef PubMed ADS Google Scholar

[117] Karplus M, Klemperer S, Wenjin Z, Zhenhan W, Danian S, Heping S, Brown L, Chen C, Mechie J, Kind R, Tilmann F, Makovsky Y, Meissner R. Northeast Tibetan crustal structure from INDEPTH IV controlled-source seismic data. Himalayan J Sci, 2008, 5: 76-77 CrossRef Google Scholar

[118] Karplus M S, Zhao W, Klemperer S L, Wu Z, Mechie J, Shi D, Brown L D, Chen C. Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. J Geophys Res, 2011, 116: B07301 CrossRef ADS Google Scholar

[119] Kind R, Ni J, Zhao W, Wu J, Yuan X, Zhao L, Sandvol E, Reese C, Nabelek J, Hearn T. Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science, 1996, 274: 1692-1694 CrossRef PubMed ADS Google Scholar

[120] Kind R, Yuan X, Saul J, Nelson D, Sobolev S V, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, Jiang M. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 2002, 298: 1219-1221 CrossRef PubMed ADS Google Scholar

[121] Klemperer S L. Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geol Soc London Spec Publ, 2006, 268: 39-70 CrossRef ADS Google Scholar

[122] Kosarev G, Kind R, Sobolev S V, Yuan X, Hanka W, Oreshin S. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 1999, 283: 1306-1309 CrossRef PubMed ADS Google Scholar

[123] Langin W R, Brown L D, Sandvol E A. Seismicity of central Tibet from Project INDEPTH III seismic recordings. Bull Seismol Soc Am, 2003, 93: 2146-2159 CrossRef Google Scholar

[124] Le Dain A Y, Tapponnier P, Molnar P. Active faulting and tectonics of Burma and surrounding regions. J Geophys Res, 1984, 89: 453-472 CrossRef ADS Google Scholar

[125] Li C, van der Hilst R D, Meltzer A S, Engdahl E R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett, 2008, 274: 157-168 CrossRef ADS Google Scholar

[126] Li H, Shen Y, Huang Z, Li X, Gong M, Shi D, Sandvol E, Li A. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J Geophys Res Solid Earth, 2014, 119: 1954-1970 CrossRef ADS Google Scholar

[127] Li J, Song X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet. Proc Natl Acad Sci USA, 2018, 115: 8296-8300 CrossRef PubMed ADS Google Scholar

[128] Li W, Chen Y, Yuan X, Schurr B, Mechie J, Oimahmadov I, Fu B. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush. Earth Planet Sci Lett, 2018, 482: 478-489 CrossRef ADS Google Scholar

[129] Liang C, Song X. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography. Geophys Res Lett, 2006, 33: L22306 CrossRef ADS Google Scholar

[130] Liang X, Zhou S, Chen Y J, Jin G, Xiao L, Liu P, Fu Y, Tang Y, Lou X, Ning J. Earthquake distribution in southern Tibet and its tectonic implications. J Geophys Res, 2008, 113: B12409 CrossRef ADS Google Scholar

[131] Liang X, Chen Y, Tian X, Chen Y J, Ni J, Gallegos A, Klemperer S L, Wang M, Xu T, Sun C, Si S, Lan H, Teng J. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet Sci Lett, 2016, 443: 162-175 CrossRef ADS Google Scholar

[132] Liao Z. 1981. The Setting of geothermal activities in Xizang and discussion on the heat source. In: Liu D S, ed. Geological and Ecological Studies of Qinghai-Xizang Plateau. Beijing: Science Press. 925−930. Google Scholar

[133] Liu D S. 1981. Geological and Ecological Studies of Qinghai-Xizang Plateau (Vol. 1&2). Beijing: Science Press. Google Scholar

[134] Liu M, Mooney W D, Li S, Okaya N, Detweiler S. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 2006, 420: 253-266 CrossRef ADS Google Scholar

[135] Liu Q Y, van der Hilst R D, Li Y, Yao H J, Chen J H, Guo B, Qi S H, Wang J, Huang H, Li S C. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat Geosci, 2014, 7: 361-365 CrossRef ADS Google Scholar

[136] Liu Z, Tian X, Gao R, Wang G, Wu Z, Zhou B, Tan P, Nie S, Yu G, Zhu G, Xu X. New images of the crustal structure beneath eastern Tibet from a high-density seismic array. Earth Planet Sci Lett, 2017, 480: 33-41 CrossRef ADS Google Scholar

[137] Lu Z, Gao R, Li Y, Xue A, Li Q, Wang H, Kuang C, Xiong X. The upper crustal structure of the Qiangtang Basin revealed by seismic reflection data. Tectonophysics, 2013, 606: 171-177 CrossRef ADS Google Scholar

[138] Lu Z, Gao R, Li H, Li W, Kuang C, Xiong X. Large explosive shot gathers along the Sinoprobe deep seismic reflection profile and Moho depth beneath the Qiangtang Terrane in central Tibet. Episodes, 2015, 38: 169-178 CrossRef Google Scholar

[139] McNamara D E, Owens T J, Silver P G, Wu F T. Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res, 1994, 99: 13655-13665 CrossRef ADS Google Scholar

[140] McNamara D E, Owens T J, Walter W R. Observations of regional phase propagation across the Tibetan Plateau. J Geophys Res, 1995, 100: 22215-22229 CrossRef ADS Google Scholar

[141] Molnar P, Chen W P. Focal depths and fault plane solutions of earthquakes under the Tibetan Plateau. J Geophys Res, 1983, 88: 1180-1196 CrossRef ADS Google Scholar

[142] Molnar P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philos Trans R Soc A-Math Phys Eng Sci, 1988, 326: 33-88 CrossRef ADS Google Scholar

[143] Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B S, Huang B S. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 2009, 325: 1371-1374 CrossRef PubMed ADS Google Scholar

[144] Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science, 1996, 274: 1684-1688 CrossRef PubMed ADS Google Scholar

[145] Owens T J, Randall G E, Wu F T, Zeng R. 1993. PASSCAL instrument performance during the Tibetan Plateau passive seismic experiment. Bull Seismol Soc Am, 83: 1959−1970. Google Scholar

[146] Priestley K, Debayle E, McKenzie D, Pilidou S. Upper mantle structure of eastern Asia from multimode surface waveform tomography. J Geophys Res, 2006, 111: B10304 CrossRef ADS Google Scholar

[147] Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M R, Sapkota S, Bilham R, Wu F. Imaging the Indian subcontinent beneath the Himalaya. Nature, 2005, 435: 1222-1225 CrossRef PubMed ADS Google Scholar

[148] Royden , Burchfiel , King , Wang , Chen , Shen , Liu . Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276: 788-790 CrossRef PubMed Google Scholar

[149] Sandvol E, Ni J, Kind R, Zhao W. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. J Geophys Res, 1997, 102: 17813-17823 CrossRef ADS Google Scholar

[150] Schurr B, Ratschbacher L, Sippl C, Gloaguen R, Yuan X, Mechie J. Seismotectonics of the Pamir. Tectonics, 2014, 33: 1501-1518 CrossRef ADS Google Scholar

[151] Shi D, Shen Y, Zhao W, Li A. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth Planet Sci Lett, 2009, 288: 329-334 CrossRef ADS Google Scholar

[152] Singh A, Kumar M R, Raju P S. Seismic structure of the underthrusting Indian crust in Sikkim Himalaya. Tectonics, 2010, 29: TC6021 CrossRef ADS Google Scholar

[153] Sippl C, Schurr B, Yuan X, Mechie J, Schneider F M, Gadoev M, Orunbaev S, Oimahmadov I, Haberland C, Abdybachaev U, Minaev V, Negmatullaev S, Radjabov N. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data. J Geophys Res-Solid Earth, 2013, 118: 1438-1457 CrossRef ADS Google Scholar

[154] Tang B, Liu Y, Zhang L, Zhou W, Wang Q. 1981. Isostatic gravity anomalies in the central portion of the Himalayas. In: Liu D S, ed. Geological and Ecological Studies of Qinghai-Xizang Plateau(Vol.1). Beijing: Science Press. 683−689. Google Scholar

[155] Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y. Oblique stepwise rise and growth of the Tibet plateau. Science, 2001, 294: 1671-1677 CrossRef PubMed ADS Google Scholar

[156] Teng J W, Xiong S B, Sun K Z, Yin Z X, Yao H, Chen L F, Mu T, Lai M H, Chu W M, Yuan S D. 1981a. Explosion seismological study for velocity distribution and structure of the crust and upper mantle from Damxung to Yadong of the Xizang Plateau. In: Liu D S, ed. Geological and Ecological studies of Qinghai-Xizang Plateau(Vol.1). Beijing: Science Press: 691−709. Google Scholar

[157] Teng J W, Wang S Z, Yao Z X. 1981b. Characteristics of the geophysical fields and plate tectonics of the Qinghai-Xizang Plateau and its neighboring regions. In: Liu D S, ed. Geological and Ecological studies of Qinghai-Xizang Plateau (Vol.1). Beijing: Science Press. 633−650. Google Scholar

[158] Teng J W, Sun K Z, Xiong S B, Yin Z X, Yao H, Chen L F. Deep seismic reflection waves and structure of the crust from Dangxung to Yadong on the Xizang Plateau (Tibet). Phys Earth Planet Inter, 1983, 31: 293-306 CrossRef ADS Google Scholar

[159] Teng J, Xiong S, Yin Z, Xu Z, Wang X, Lu D. Structure of the crust and upper mantle pattern and velocity distributional characteristics in the northern Himalayan mountain region. J Phys Earth, 1985, 33: 157-171 CrossRef Google Scholar

[160] Teng J, Wei S, Sun K, Xue C. The characteristics of the seismic activity in the Qinghai-Xizang (Tibet) Plateau of China. Tectonophysics, 1987, 134: 129-144 CrossRef ADS Google Scholar

[161] Teng J W. 1989. Geophysical criteria for “Resuscitating” of the Panxi ancient rift tectonic zone. Sci China-Ser B, 32: 117−128, doi: 10.1360/yb1989-32-1-117. Google Scholar

[162] Teng J W, Yin Z X, Sun K Z. 1994. The lithophere structure and deep internal processes of Xizang Plateau in China. Processings of International Symposium on the Karrakokum and Kunlun Mountains. 72–88. Google Scholar

[163] Teng J, Zhang Z, Zhang X, Wang C, Gao R, Yang B, Qiao Y, Deng Y. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 2013, 609: 202-216 CrossRef ADS Google Scholar

[164] Tian X, Chen Y, Tseng T L, Klemperer S L, Thybo H, Liu Z, Xu T, Liang X, Bai Z, Zhang X, Si S, Sun C, Lan H, Wang E, Teng J. Weakly coupled lithospheric extension in southern Tibet. Earth Planet Sci Lett, 2015, 430: 171-177 CrossRef ADS Google Scholar

[165] Tilmann F, Ni J, Ni J. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science, 2003, 300: 1424-1427 CrossRef PubMed ADS Google Scholar

[166] Tong W, Zhang J. 1981, Characteristics of geothermal activities in Xizang Plateau and their controlling influence on Plateau’s tectonic model. In: Liu D S, ed. Geological and Ecological Studies of Quinghai-Xizang Plateau. 841−846. Google Scholar

[167] Tseng T L, Chen W P, Nowack R L. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys Res Lett, 2009, 36: L24304 CrossRef ADS Google Scholar

[168] Unsworth M J, Jones A G, Wei W, Marquis G, Gokarn S G, Spratt J E, Bedrosian P, Booker J, Leshou C, Clarke G, Shenghui L, Chanhong L, Ming D, Sheng J, Solon K, Handong T, Ledo J, Roberts B, Roberts B. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 2005, 438: 78-81 CrossRef PubMed ADS Google Scholar

[169] Vergne J, Wittlinger G, Hui Q, Tapponnier P, Poupinet G, Mei J, Herquel G, Paul A. Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau. Earth Planet Sci Lett, 2002, 203: 25-33 CrossRef ADS Google Scholar

[170] Wang C, Gao R, Yin A, Wang H, Zhang Y, Guo T, Li Q, Li Y. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth Planet Sci Lett, 2011, 306: 279-288 CrossRef ADS Google Scholar

[171] Wang C Y, Han W B, Wu J P, Lou H, Chan W W. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J Geophys Res, 2007, 112: B07307 CrossRef ADS Google Scholar

[172] Wang C Y, Flesch L M, Silver P G, Chang L J, Chan W W. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 2008, 36: 363-366 CrossRef ADS Google Scholar

[173] Wang X, Chen L, Ai Y, Xu T, Jiang M, Ling Y, Gao Y. Crustal structure and deformation beneath eastern and northeastern Tibet revealed by P-wave receiver functions. Earth Planet Sci Lett, 2018, 497: 69-79 CrossRef ADS Google Scholar

[174] Wei S, Teng J, Yang B, Hu Z. 1981. Distribution of geothermal activity and characteristics of geophysical fields on the Xizang plateau. In: Liu D S, ed. Geological and Ecological Studies of Qinghai-Xizang Plateau. 865−874. Google Scholar

[175] Wei W, Unsworth M, Jones A, Booker J, Tan H, Nelson D, Chen L, Li S, Solon K, Bedrosian P, Jin S, Deng M, Ledo J, Kay D, Roberts B. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 2001, 292: 716-719 CrossRef PubMed Google Scholar

[176] Wei W B, Jin S, Ye G F, Deng M, Jing J E, Unsworth M, Jones A G. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magnetotelluric sounding. Sci China Earth Sci, 2010, 53: 189-202 CrossRef Google Scholar

[177] Wu C, Xu T, Badal J, Wu Z, Teng J. Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet. Tectonophysics, 2015, 659: 91-101 CrossRef ADS Google Scholar

[178] Wu C, Tian X, Xu T, Liang X, Chen Y, Taylor M, Badal J, Bai Z, Duan Y, Yu G, Teng J. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: New evidence based on shear wave splitting measurements. Earth Planet Sci Lett, 2019, 514: 75-83 CrossRef ADS Google Scholar

[179] Wu J, Zhang Z J, Kong F S, Yang B B, Yu Y Q, Liu K H, Gao S S. 2015. Complex seismic anisotropy and its geodynamic implications. Earth Planet Sci Lett, 413: 167–175. Google Scholar

[180] Wu Z, Xu T, Badal J, Yao H, Wu C, Teng J. Crustal shear-wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions. Gondwana Res, 2017, 41: 400-410 CrossRef ADS Google Scholar

[181] Wu Z, Xu T, Liang C, Wu C, Liu Z. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions. Geophys J Int, 2018, 212: 1920-1931 CrossRef ADS Google Scholar

[182] Xu Q, Zhao J, Yuan X, Liu H, Pei S. Mapping crustal structure beneath southern Tibet: Seismic evidence for continental crustal underthrusting. Gondwana Res, 2015, 27: 1487-1493 CrossRef ADS Google Scholar

[183] Xu Q, Zhao J, Yuan X, Liu H, Pei S. Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images. J Geophys Res-Solid Earth, 2017, 122: 8257-8269 CrossRef ADS Google Scholar

[184] Xu T, Wu Z, Zhang Z, Tian X, Deng Y, Wu C, Teng J. Crustal structure across the Kunlun fault from passive source seismic profiling in east Tibet. Tectonophysics, 2014, 627: 98-107 CrossRef Google Scholar

[185] Xu T, Zhang Z J, Liu B F, Chen Y, Zhang M H, Tian X B, Xu Y G, Teng J W. Crustal velocity structure in the Emeishan Large Igneous Province and evidence of the Permian mantle plume activity. Sci China Earth Sci, 2015, 58: 1133-1147 CrossRef Google Scholar

[186] Yang Y, Ritzwoller M H, Zheng Y, Shen W, Levshin A L, Xie Z. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J Geophys Res, 2012, 117: B04303 CrossRef ADS Google Scholar

[187] Yao H, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys J Int, 2008, 166: 732-744 CrossRef ADS Google Scholar

[188] Yi Z, Huang B, Chen J, Chen L, Wang H. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett, 2011, 309: 153-165 CrossRef ADS Google Scholar

[189] Zhang X, Teng J, Sun R, Romanelli F, Zhang Z, Panza G F. Structural model of the lithosphere-asthenosphere system beneath the Qinghai-Tibet Plateau and its adjacent areas. Tectonophysics, 2014, 634: 208-226 CrossRef ADS Google Scholar

[190] Zhang Z, Klemperer S L. West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. J Geophys Res, 2005, 110: B09403 CrossRef ADS Google Scholar

[191] Zhang Z, Klemperer S. Crustal structure of the Tethyan Himalaya, southern Tibet: new constraints from old wide-angle seismic data. Geophys J Int, 2010, 307: 1247-1260 CrossRef ADS Google Scholar

[192] Zhang Z J, Deng Y F, Teng J W, Wang C Y, Gao R, Chen Y, Fan W M. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. J Asian Earth Sci, 2011a, 40: 977-989 CrossRef ADS Google Scholar

[193] Zhang Z, Klemperer S, Bai Z, Chen Y, Teng J. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Res, 2011b, 19: 994-1007 CrossRef ADS Google Scholar

[194] Zhang Z, Bai Z, Klemperer S L, Tian X, Xu T, Chen Y, Teng J. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 2013, 606: 140-159 CrossRef ADS Google Scholar

[195] Zhang Z, Teng J, Romanelli F, Braitenberg C, Ding Z, Zhang X, Fang L, Zhang S, Wu J, Deng Y, Ma T, Sun R, Panza G F. Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton. Earth Sci Rev, 2014a, 130: 1-48 CrossRef ADS Google Scholar

[196] Zhang Z, Wang Y, Chen Y, Houseman G A, Tian X, Wang E, Teng J. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys Res Lett, 2009, 36: L17310 CrossRef ADS Google Scholar

[197] Zhang Z, Wang Y, Houseman G A, Xu T, Wu Z, Yuan X, Chen Y, Tian X, Bai Z, Teng J. The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust. Earth Planet Sci Lett, 2014b, 408: 370-377 CrossRef ADS Google Scholar

[198] Zhao G, Unsworth M J, Zhan Y, Wang L, Chen X, Jones A G, Tang J, Xiao Q, Wang J, Cai J, Li T, Wang Y, Zhang J. Crustal structure and rheology of the Longmenshan and Wenchuan Mw7.9 earthquake epicentral area from magnetotelluric data. Geology, 2012, 40: 1139-1142 CrossRef ADS Google Scholar

[199] Zhao J, Mooney W D, Zhang X, Li Z, Jin Z, Okaya N. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications. Earth Planet Sci Lett, 2006, 241: 804-814 CrossRef ADS Google Scholar

[200] Zhao J, Murodov D, Huang Y, Sun Y, Pei S, Liu H, Zhang H, Fu Y, Wang W, Cheng H, Tang W. Upper mantle deformation beneath central-southern Tibet revealed by shear wave splitting measurements. Tectonophysics, 2014, 627: 135-140 CrossRef Google Scholar

[201] Zhao J, Yuan X, Liu H, Kumar P, Pei S, Kind R, Zhang Z, Teng J, Ding L, Gao X, Xu Q, Wang W. The boundary between the Indian and Asian tectonic plates below Tibet. Proc Natl Acad Sci USA, 2010, 107: 11229-11233 CrossRef PubMed ADS Google Scholar

[202] Zhao J, Jin Z, Mooney W D, Okaya N, Wang S, Gao X, Tang L, Pei S, Liu H, Xu Q. Crustal structure of the central Qaidam basin imaged by seismic wide-angle reflection/refraction profiling. Tectonophysics, 2013, 584: 174-190 CrossRef ADS Google Scholar

[203] Zhao W L, Morgan W J. Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study. Tectonics, 1987, 6: 489-504 CrossRef ADS Google Scholar

[204] Zhao W, Mechie J, Brown L D, Guo J, Haines S, Hearn T, Klemperer S L, Ma Y S, Meissner R, Nelson K D, Ni J F, Pananont P, Rapine R, Ross A, Saul J. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys J Int, 2001, 145: 486-498 CrossRef Google Scholar

[205] Zhao W, Kumar P, Mechie J, Kind R, Meissner R, Wu Z, Shi D, Su H, Xue G, Karplus M, Tilmann F. Tibetan plate overriding the Asian plate in central and northern Tibet. Nat Geosci, 2011, 4: 870-873 CrossRef ADS Google Scholar

[206] Zhao W, Nelson K D, Che J, Quo J, Lu D, Wu C, Liu X. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 1993, 366: 557-559 CrossRef ADS Google Scholar

[207] Zhou H, Murphy M A. Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau. J Asian Earth Sci, 2005, 25: 445-457 CrossRef ADS Google Scholar

[208] Zhou W H, Yang Z S, Zhu H B, Wu L G. 1981. Characteristics of the gravity field and the crustal structure in the eastern and central regions of the Xizang plateau. In: Liu D S, ed. Geological and Ecological Studies of Qinghai-Xizang Plateau (Vol. 1). 673−682. Beijing: Science Press. Google Scholar

[209] Zhu G, Liang X, Tian X, Yang H, Wu C, Duan Y, Li W, Zhou B. Analysis of the seismicity in central Tibet based on the SANDWICH network and its tectonic implications. Tectonophysics, 2017, 702: 1-7 CrossRef ADS Google Scholar

[210] Zhu L, Helmberger D V. Intermediate depth earthquakes beneath the India-Tibet collision zone. Geophys Res Lett, 1996, 23: 435-438 CrossRef ADS Google Scholar

[211] Zhu L, Helmberger D V. Moho offset across the northern margin of the Tibetan Plateau. Science, 1998, 281: 1170-1172 CrossRef PubMed ADS Google Scholar

  • 图 1

    青藏高原及邻区地质构造轮廓展布图

  • 图 2

    青藏高原宽角反射/折射(黑线)和近垂直反射地震探测剖面(蓝线)位置分布图

  • 图 3

    青藏高原地壳与上地幔平均速度结构分层模型(修改自滕吉文等(2012))

  • 图 4

    由宽角反射/折射地震探测资料获得的青藏高原Moho面深度(修改自Zhang等(2011a))

  • 图 5

    青藏高原宽频带地震探测流动台站位置图

  • 图 6

    青藏高原岩石圈厚度(修改自Zhang等(2014))

  • 图 7

    青藏高原远震剪切波分裂结果

  • 表 1   青藏高原主要宽角反射/折射地震探测剖面一览表(剖面位置见)

    编号

    剖面名称

    执行部门

    年份

    资料来源

    1

    亚东-当雄

    中国科学院

    1975

    Teng等, 1981a, 1983

    2

    佩枯错-普莫雍错

    中法合作

    1981

    Teng等, 1983; 张中杰等, 2002; Zhang和Klemperer, 2010

    3

    色林错-雅安多

    中法合作

    1982

    滕吉文等, 1985; Zhang和Klemperer, 2005

    4

    沱沱河-格尔木

    国土资源部

    1988

    卢德源和王香泾, 1990; 李秋生等, 2004

    5

    盐源-马边

    中国地震局

    2005

    王夫运等, 2008

    6

    拉鲊-长河坝

    中国科学院

    1984

    崔作舟等, 1987; 滕吉文, 1994

    7

    丽江-者海

    中国科学院

    1984

    熊绍柏等, 1993

    8

    阿勒泰-阿尔金

    国土资源部

    1988

    王有学等, 2004

    9

    阿尔金-龙门山

    国土资源部

    1989

    王有学等, 2005

    10

    格尔木-额济纳旗

    国土资源部

    1992

    崔作舟等, 1995

    11

    帕里-达吉

    中美合作

    1998

    Zhao等, 2001

    12

    措勤-三个湖

    中国科学院

    1994

    熊绍柏和刘宏兵, 1997; 熊绍柏等, 1998

    13

    玛沁-靖边

    中国地震局

    1997

    李松林等, 2002

    14

    西昆仑-塔里木

    国土资源部

    1995~2000

    李秋生等, 2000

    15

    唐克-奔子栏

    中国地震局

    2000

    Wang等, 2007

    16

    竹巴笼-资中

    中国地震局

    2000

    Wang等, 2007

    17

    下察隅-共和

    中国科学院

    2001

    张忠杰等(个人交流)

    18

    措勤-樟木

    中国科学院

    1994

    刘宏兵等(个人交流)

    19

    遮放-宾川

    中国地震局

    1982

    胡鸿翔等, 1986; Kan等, 1986; 白志明和王椿镛, 2004

    20

    思茅-中甸

    中国地震局

    2002

    林中洋等, 1993; 张智等, 2006

    21

    洱源-江川

    中国地震局

    2002

    Kan等, 1986

    22

    孟连-马龙

    中国地震局

    1982

    胡鸿翔和李学清, 1994; 白志明和王椿镛, 2004; 张中杰等, 2005

    23

    马尔康-古浪

    中国地震局

    2004

    张先康等, 2008

    24

    札达-泉水沟

    中国科学院

    2011

    王晓等, 2015

  • 表 2   青藏高原主要近垂直反射地震剖面一览表(剖面位置见)

    编号

    剖面名称

    执行部门

    年份

    资料来源

    A

    鱼卡-甘森

    中国科学院

    1958

    曾融生等, 1961a, 1961b; 滕吉文, 1974

    B

    格尔木-大柴旦

    中国科学院

    1958

    曾融生等, 1961b; 滕吉文, 1974

    C

    帕里-羊八井

    INDEPTH

    1992

    Zhao等, 1993

    D

    吊大板-花海

    INDEPTH

    1993

    吴宣志等, 1995

    E

    西昆仑-塔里木

    中国地质科学院

    1998

    高锐等, 2000

    F

    阿尔金-塔里木

    中国地质科学院

    1999

    高锐等, 2001

    G

    靖远-新庄集

    中国地震局

    2008

    张先康等(个人交流)

    H

    同心-新庄集

    中国地震局

    2008

    张先康等(个人交流)

    I

    合作-唐克

    国土资源部

    2004

    高锐等, 2006

    J

    西南缘剖面段

    SinoProbe

    2011

    Gao等, 2016

    K

    南缘短剖面

    SinoProbe

    2011

    Guo等, 2017

    L

    北缘短剖面

    INDEPTH IV

    2008

    Karplus等, 2011

    M

    色林错-双湖

    国土资源部

    2009

    Gao等, 2013a; Lu等, 2015; 卢占武等, 2016

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1