logo

SCIENTIA SINICA Terrae, Volume 49 , Issue 10 : 1512-1545(2019) https://doi.org/10.1360/SSTe-2019-0133

中亚增生造山过程与成矿作用研究进展

More info
  • ReceivedJun 18, 2019
  • AcceptedSep 18, 2019
  • PublishedOct 17, 2019

Abstract

中亚造山带作为全球最大的显生宙增生型造山带, 是大陆动力学和成矿作用研究的天然实验室. 文章简要概述新中国成立以来中亚造山带研究发展情况, 并对未来研究提出展望. 20世纪50~70年代是中亚造山带研究的奠基时期, 各地质研究学派理论相继运用于解释中亚地区的地质演化. 改革开放初期, 李春昱先生等开创性地运用板块构造理论解析北疆及兴蒙地区大地构造演化, 提出了西伯利亚、哈萨克斯坦、中朝-塔里木三大板块俯冲-碰撞的认识, 并提出了索伦山至延边缝合线的观点. 20世纪90年代, 中亚造山带研究进入快速发展期, 前苏联学者提出了多陆块碰撞模型; 土耳其学者提出了单一岛弧增生模型, 指出中亚造山带是一种特殊类型的碰撞造山带. 中国学者对中国北方地区的蛇绿岩、高压变质岩等进行了大量开拓性研究, 划分了主要缝合带. 1999年, “中亚成矿域”概念被提出, 并与环太平洋成矿域和特提斯成矿域并称全球三大成矿域. 进入21世纪, 鉴于中亚在大陆增生理论和成矿机制研究领域的重要性, 中亚造山带研究成为国际学术前沿. 中国在中亚地区布局了一系列科研项目, 催生了一大批重要科研成果, 包括微陆块属性、蛇绿岩时代和构造背景、岩浆弧性质、增生楔识别和解剖、区域变质-变形作用、俯冲带(超)高压变质作用、洋中脊俯冲、地幔柱与板块相互作用、多岛海构造古地理与复式增生造山时空格架、大陆增生、增生成矿、构造叠加改造等. 这些成果产生了重要的国际影响. 展望未来, 中亚造山带主要有以下几方面的内容需要进一步深入研究: (1) 古亚洲洋早期演化历史及起始俯冲机制; (2) 古亚洲洋外部造山带(Extroversion)的增生机制; (3) 古亚洲洋地幔属性及其时空分布; (4) 古亚洲洋与特提斯洋相互作用过程; (5) 显生宙大陆增生机制及其全球对比; (6) 中亚成矿域增生成矿机制; (7) 大陆改造机制.


Funded by

国家重点研发计划项目(2017YFC0601201)

国家自然科学基金项目(41888101,41730210,41672219)

IGCP662项目


Acknowledgment

中亚造山带构造演化过程十分复杂, 本文仅为阶段性初步总结. 限于水平, 难以对中亚造山过程与成矿作用的所有研究进展进行详细介绍. 文中参考了大量国内外科研团队的研究成果, 但限于篇幅, 难免漏引. 已故孙枢先生曾对中亚增生过程研究给予了精心指导. 肖序常、李廷栋、张国伟、许志琴、金振民、王成善、郑永飞、吴福元、葛肖虹、许文良、许继峰、刘永江、张进江、周建波、刘伟、A. M. C. Şengör、K. Schulmann、T. Kusky、R. Seltmann等专家对作者开展增生大地构造等研究给予了悉心指导. 成文过程得到了朱茂炎的鼎力支持. 主编和二位评审人对文章给予了详细修改与指导意见. 一并谨致谢忱.


References

[1] 陈国达, 陈家超, 魏柏林, 薛佳谋, 刘以宣, 文善继, 魏洲龄, 胡火炎. 1975. 中国大地构造简述. 地质科学, 10: 205–219. Google Scholar

[2] 程杨, 肖庆辉, 李廷栋, 郭灵俊, 李岩, 范玉须, 罗鹏跃, 庞进力. 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, doi: 10.3799/dqkx.2019.085. Google Scholar

[3] 崔日武. 1988. 新疆克拉麦里蛇绿岩的岩石化学特征及其生成环境探讨. 新疆地质, 6: 70–82. Google Scholar

[4] 初航, 张晋瑞, 魏春景, 王惠初, 任云伟. 2013. 内蒙古温都尔庙群变质基性火山岩构造环境及年代新解. 科学通报, 58: 2958–2965. Google Scholar

[5] 冯志强, 刘永江, 金巍, 蒋立伟, 李伟民, 温泉波, 李小玉, 张铁安, 杜兵盈, 马永非, 张丽. 2019. 东北大兴安岭北段蛇绿岩的时空分布及与区域构造演化关系的研究. 地学前缘, 26: 120–136. Google Scholar

[6] 高俊. 1993. 西南天山板块构造及造山运动动力学. 博士学位论文. 北京: 中国地质科学院. Google Scholar

[7] 高俊. 1997. 西南天山榴辉石的发现及其大地构造意义. 科学通报, 42: 737–740. Google Scholar

[8] 高俊, 何国琦, 李茂松. 1997. 西天山造山带的古生代造山过程. 地球科学, (1): 27–32. Google Scholar

[9] 高俊, 何国琦, 李茂松, 王学潮, 陆书宁. 1996. 新疆南天山大地构造研究新进展. 地质通报, (1): 58–63. Google Scholar

[10] 高俊, 龙灵利, 钱青, 黄德志, 苏文. 2006. 南天山: 晚古生代还是三叠纪碰撞造山带? 岩石学报, 22: 1049–1061. Google Scholar

[11] 高俊, 肖序常. 1994. 新疆西南天山蓝片岩的变质作用pTDt轨迹及构造演化. 地质论评, 40: 544–553. Google Scholar

[12] 高俊, 肖序常, 汤耀庆, 赵民, 王军, 吴汉泉. 1993. 南天山库米什蓝片岩的发现及其大地构造意义. 地质通报, 40: 344–347. Google Scholar

[13] 高俊, 朱明田, 王信水, 洪涛, 李光明, 李继磊, 肖文交, 秦克章, 曾庆栋, 申萍, 徐兴旺, 张招崇, 周建波, 赖勇, 张晓晖, 孙景贵, 万博, 王博. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93: 24–71. Google Scholar

[14] 韩宝福, 郭召杰, 何国琦. 2010. “钉合岩体”与新疆北部主要缝合带的形成时限. 岩石学报, 26: 2233–2246. Google Scholar

[15] 何国琦, 刘建波, 张越迁, 徐新. 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定. 岩石学报, 23: 1573–1576. Google Scholar

[16] 何志超. 1956. 天山地槽和祁连地槽的界线问题. 中国地质, (10): 21–23. Google Scholar

[17] 胡霭琴, 张国新, 李启新, 张前锋, 胡树荣, 范嗣昆, 郭陀珠. 1995. 新疆北部主要地质事件同位素年表. 地球化学, (1): 20–31. Google Scholar

[18] 胡霭琴, 张国新, 张前锋, 陈义兵. 1999. 天山造山带基底时代和地壳增生的Nd同位素制约. 中国科学D辑: 地球科学, 29: 104–112. Google Scholar

[19] 胡冰, 王景斌, 高振家, 陆青, 方孝悌. 1964. 新疆大地构造的几个问题. 地质学报, (2): 28–42. Google Scholar

[20] 黄汲清. 1959. 中国地质构造基本特征的初步探讨. 地质月刊, (7): 24–34. Google Scholar

[21] 黄汲清, 任纪舜, 姜春发, 张之孟, 张正坤. 1974. 对中国大地构造若干特点的新认识. 地质学报, 48: 38–54. Google Scholar

[22] 贾承造, 魏国齐. 2002. 塔里木盆地构造特征与含油气性. 科学通报, 47: 1–8. Google Scholar

[23] 李春昱. 1980. 中国板块构造的轮廓. 中国地质科学院院报, 2: 11–19. Google Scholar

[24] 李春昱, 汤耀庆. 1983. 亚洲古板块划分以及有关问题. 地质学报, (1): 3–12. Google Scholar

[25] 李春昱, 王荃, 刘雪亚, 汤耀庆. 1984. 亚洲大地构造的演化. 中国地质科学院院报, (3): 9–17. Google Scholar

[26] 李会军, 何国琦, 吴泰然, 吴波. 2006. 阿尔泰-蒙古微大陆的确定及其意义. 岩石学报, 22: 803–809. Google Scholar

[27] 李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识. 地质论评, 44: 339–347. Google Scholar

[28] 李锦轶, 肖序常, 汤耀庆, 赵民, 冯益民, 朱宝清. 1992. 新疆北部金属矿产与板块构造. 新疆地质, (2):138–146. Google Scholar

[29] 李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质, 18: 45–54. Google Scholar

[30] 李四光. 1962. 地质力学概论. 北京: 科学出版社. Google Scholar

[31] 李廷栋, 肖庆辉, 潘桂棠, 陆松年, 丁孝忠, 刘勇. 2019. 关于发展样板块地质学的思考. 地球科学, 44: 1441–1451. Google Scholar

[32] 李忠, 彭守涛. 2013. 天山南北麓中-新生界碎屑锆石U-Pb年代学记录、物源体系分析与陆内盆山演化. 岩石学报, 29: 739–755. Google Scholar

[33] 刘希军, 许继峰, 侯青叶, 白正华, 雷敏. 2007. 新疆东准噶尔克拉麦里蛇绿岩地球化学: 洋脊俯冲的产物. 岩石学报, 23: 1591–1602. Google Scholar

[34] 刘雪亚. 1984. 甘肃北山区的钙碱系列岩浆活动及其与板块构造的关系. 地球学报, (3): 157–171. Google Scholar

[35] 刘雪亚, 王荃. 1995. 中国西部北山造山带的大地构造及其演化. 见: 中国地质科学院地质研究所文集(28). Google Scholar

[36] 马永非, 刘永江, 秦涛, 孙巍, 藏延庆. 2018. 大兴安岭中段扎赉特旗地区石炭纪花岗岩的岩石程英、构造背景及对增生造山作用的指示. 岩石学报, 34: 2931–2955. Google Scholar

[37] 毛启贵, 肖文交, 韩春明, 孙敏, 袁超, 闫臻, 李继亮, 雍拥, 张继恩. 2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22: 153–162. Google Scholar

[38] 牛树银, 胡骁, 孙爱群. 1993. 华北地台北侧的古板块构造演化. 地质科技情报, (1): 17–21. Google Scholar

[39] 潘桂棠, 肖庆辉, 张克信, 等. 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44: 1544–1561. Google Scholar

[40] 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36: 1–28. Google Scholar

[41] 潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6), 1–23. Google Scholar

[42] 申萍, 潘鸿迪, Eleonora S. 2016. 中亚成矿域斑岩铜矿床基本特征. 博士学位论文. 北京: 中国科学院地质与地球物理研究所. Google Scholar

[43] 施光海, 刘敦一, 张福勤, 简平, 苗来成, 石玉若, 陶华. 2003. 中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义. 科学通报, 48: 2187–2192. Google Scholar

[44] 孙敏, 龙晓平, 蔡克大, 蒋映德, 王步云, 袁超, 赵国春, 肖文交, 吴福元. 2009. 阿尔泰早古生代末期洋中脊俯冲: 锆石Hf同位素组成突变的启示. 中国科学D辑: 地球科学, 39: 935–948. Google Scholar

[45] 孙新春, 张红军, 魏志军, 黄增保, 高柏年. 2005. 甘蒙北山地区小红山一带变质侵入岩体的时代厘定及其地质意义. 西北地质, 38: 61–67. Google Scholar

[46] 唐克东, 王莹, 何国琦, 邵济安. 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69: 16–30. Google Scholar

[47] 田昌烈, 杨芳林. 1983. 东北地区蛇绿岩岩石学特征. 沈阳地质矿产研究所文集, 6: 34–56. Google Scholar

[48] 汤耀庆. 1989. IGCP第283项(古亚洲构造演化)简介. 中国地质, (11): 32. Google Scholar

[49] 汤耀庆. 1990. 国际地质对比计划(IGCP)283项目及1989年度工作简介. 地球科学进展, (1): 89–90. Google Scholar

[50] 陶钧政, 吕正, 朱诚顺. 1982. 新疆板块构造基本轮廓. 新疆大学学报(自然科学版), (1): 3–20. Google Scholar

[51] 涂光炽. 1999. 初议中亚成矿域. 地质科学, 34: 397–404. Google Scholar

[52] 王作勋, 邬继易, 吕喜朝, 刘成德, 张经国. 1989. 中国天山板块构造. 河北地质大学学报, (1): 54–58. Google Scholar

[53] 王荃, 刘雪亚, 李锦轶. 1991. 中国内蒙古中部的古板块构造. 地球学报——中国地质科学院院报, (1): 1–12. Google Scholar

[54] 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23: 1217–1238. Google Scholar

[55] 吴华, 李华芹, 莫新华, 陈富文, 路远发, 梅玉萍, 邓岗. 2005. 新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义. 地质学报, 79: 498–502. Google Scholar

[56] 肖文交, 李继亮, 宋东方, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 增生型造山带结构解析与时空制约. 地球科学, 44: 1661–1687. Google Scholar

[57] 萧序常, 刘湧泉. 1962. 内蒙地质的几点新认识. 地质学报, (4): 29–96. Google Scholar

[58] 肖序常, 汤耀庆, 王军, 高俊, 赵民. 1994. 中国南天山造山带蓝片岩及其构造意义. 地球学报, (Z2): 54–64. Google Scholar

[59] 兴蒙-北疆研究组. 1991. 中国兴蒙-北疆及邻区古生代岩石圈的研究取得重要进展. 地球科学进展, (4): 89–90. Google Scholar

[60] 谢力, 尹海权, 周洪瑞, 张维杰. 2014. 内蒙古阿拉善地区恩格尔乌苏缝合带二叠纪放射虫及其地质意义. 地质通报, (5): 691–697. Google Scholar

[61] 徐备, 王志伟, 张立杨, 王智慧, 杨振宁, 贺跃. 2018. 兴蒙陆内造山带. 岩石学报, 34: 2819–284. Google Scholar

[62] 许文良, 孙晨阳, 唐杰, 栾金鹏, 王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44: 1620–1646. Google Scholar

[63] 徐国相. 1963. 对内蒙超基性岩石分类和鉴定的初步意见. 中国地质, (5): 17–21. Google Scholar

[64] 徐新. 1979. 新编新疆地区1:100万地质图(初稿)已胜利完成. 西北地质, (3): 72. Google Scholar

[65] 薛怀民, 郭利军, 侯增谦, 周喜文, 童英, 潘晓菲. 2009. 中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据. 岩石学报, 25: 640–650. Google Scholar

[66] 杨经绥, 徐向珍, 李天福, 陈松永, 任玉峰, 李金阳, 刘钊. 2011. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据. 岩石学报, 27: 77–95. Google Scholar

[67] 杨树锋, 陈汉林, 厉子龙, 励因骐, 余星, 李东旭, 孟立峰. 2014. 塔里木早二叠世大火成岩省. 中国科学:地球科学, 44: 187–199. Google Scholar

[68] 姚玉鹏. 1997. 国际地质对比计划IGCP420项目“显生宙大陆增生: 东-中亚地区的证据”简介. 科学通报, 42: 1119–1120. Google Scholar

[69] 袁复礼. 1956. 新疆天山北部山前拗陷带及准噶尔盆地陆台地质初步报告. 地质学报, (2): 23–144. Google Scholar

[70] 张伯声, 吴文奎. 1975. 新疆地壳的波状锒嵌构造. 西北大学学报(自然科学版), (3): 80–91. Google Scholar

[71] 张臣, 吴泰然. 2001. 内蒙古苏左旗南部华北板块北缘中新元古代-古生代裂解-汇聚事件的地质记录. 岩石学报, 17: 199–205. Google Scholar

[72] 张弛. 1981. 新疆蛇绿岩某些地质特征. 地质论评, 27: 307–314. Google Scholar

[73] 张弛, 乌统旦, 鲁友直, 王广瑞. 1975. 新疆含铬超基性岩成矿因素初步探讨. 地质学报, (2): 152–161. Google Scholar

[74] 张国伟, 董云鹏, 姚安平. 2001. 造山带与造山作用及其研究的新起点. 西北地质, 34: 1–9. Google Scholar

[75] 张丽, 刘永江, 李伟明, 韩国卿, 张金带, 郭庆银, 李长华. 2013. 关于额尔古纳地块基底性质和东界的讨论. 地质科学, 48: 227–244. Google Scholar

[76] 张梅生, 彭向东, 孙晓猛. 1998. 中国东北区古生代构造古地理格局. 国土资源, 2: 91–96. Google Scholar

[77] 张文佑, 曹义纯, 姜春潮, 宁奇生, 孙枢, 王秀璋, 李廷栋, 高凤煜. 1959. 从中国大地构造单位的划分和命名原则谈东北北部地区大地构造单位的特征. 地质科学, 2: 99–103. Google Scholar

[78] 张扬, 何国琦. 1988. 甘肃北山早古生代蛇绿岩带的特征及演化. 上海地质, 27: 10–23. Google Scholar

[79] 张元元, 郭召杰. 2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义. 岩石学报, 24: 803–809. Google Scholar

[80] 赵振华, 王强, 熊小林, 张海祥, 牛贺才, 许继峰, 白正华, 乔玉楼. 2006. 新疆北部的两类埃达克岩. 岩石学报, 22: 1249–1265. Google Scholar

[81] 赵芝, 迟效国, 刘建峰, 王铁夫, 胡兆初. 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据. 岩石学报, 26: 3245–3258. Google Scholar

[82] 中国科学院地质研究所大地构造编图组. 1974. 中国大地构造基本特征及其发展的初步探讨. 地质科学, 9: 1–17. Google Scholar

[83] 朱宝清, 王来生, 王连晓. 1987. 西准噶尔西南地区古生代蛇绿岩, 中国地质科学院西安地质矿产研究所所刊. 3–64. Google Scholar

[84] 左国朝, 何国琦. 1990. 北山板块构造及成矿规律. 北京: 北京大学出版社. 226. Google Scholar

[85] 左国朝, 张淑玲, 何国琦, 张杨. 1990. 北山地区早古生代板块构造特征. 地质科学, 25: 305–314. Google Scholar

[86] Ai Y, Zhang L, Li X, Qu J. Geochemical characteristics and tectonic implications of HP-UHP eclogites and blueschists in Southwestern Tianshan, China. Prog Nat Sci, 2006, 16: 624-632 CrossRef Google Scholar

[87] Ao S J, Xiao W J, Han C M, Li X H, Qu J F, Zhang J E, Guo Q Q, Tian Z H. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: Implications for the architecture of the Southern Altaids. Geol Mag, 2012, 149: 606-625 CrossRef ADS Google Scholar

[88] Ao S J, Xiao W J, Han C M, Mao Q G, Zhang J E. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Res, 2010, 18: 466-478 CrossRef ADS Google Scholar

[89] Banerjee S, Matin A. Evolution of microstructures in Precambrian shear zones: An example from eastern India. J Struct Geol, 2013, 50: 199-208 CrossRef ADS Google Scholar

[90] Beinlich A, Klemd R, John T, Gao J. Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochim Cosmochim Acta, 2010, 74: 1892-1922 CrossRef ADS Google Scholar

[91] Briggs S M, Yin A, Manning C E, Chen Z L, Wang X F. Tectonic development of the southern Chinese Altai Range as determined by structural geology, thermobarometry, 40Ar/39Ar thermochronology, and Th/Pb ion-microprobe monazite geochronology. Geol Soc Am Bull, 2009, 121: 1381-1393 CrossRef ADS Google Scholar

[92] Cai K, Sun M, Yuan C, Zhao G, Xiao W, Long X, Wu F. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Res, 2010, 18: 638-652 CrossRef ADS Google Scholar

[93] Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 2007, 82: 217-256 CrossRef ADS Google Scholar

[94] Charvet J, Shu L, Laurent-Charvet S. 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates. Episodes, 30: 162–186. Google Scholar

[95] Charvet J, Shu L S, Laurent-Charvet S, Wang B, Faure M, Cluzel D, Chen Y, De Jong K. 2011. Paleozoic tectonic evolution of the Tianshan belt, NW China. Sci China Earth Sci, 54: 166–184. Google Scholar

[96] Chen H Y, Chen Y J, Baker M. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: Implications for ore genesis and mineral exploration. Chem Geol, 2012, 310-311: 1-11 CrossRef ADS Google Scholar

[97] Chen C M, Lu H F, Jia D, Cai D S, Wu S M. 1999. Closing history of the southern Tianshan oceanic basin, western China: An oblique collisional orogeny. Tectonophysics, 302: 23–40. Google Scholar

[98] Chen X, Shu L, Santosh M, Zhao X. Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: Geochemistry, zircon U-Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia. Lithos, 2013, 168-169: 48-66 CrossRef ADS Google Scholar

[99] Chen Y, Xiao W, Windley B F, Zhang J, Zhou K, Sang M. Structures and detrital zircon ages of the Devonian-Permian Tarbagatay accretionary complex in west Junggar, China: Imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB. Int Geol Rev, 2017, 59: 1097-1115 CrossRef Google Scholar

[100] Chu H, Zhang J R, Wei C J, Wang H C, Ren Y W. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia. Chin Sci Bull, 2013, 58: 3580-3587 CrossRef ADS Google Scholar

[101] Cocks L R M, Torsvik T H. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth-Sci Rev, 2007, 82: 29-74 CrossRef ADS Google Scholar

[102] Cui F H, Zheng C Q, Xu X C, Yao W G, Ding X, Shi L, Li J. Detrital zircon ages of the Jiageda and Woduhe formations: Constrains on the tectonic attribute of the Xing’ an terrane in the central Great Xing’ an Range, NE China. J Asian Earth Sci, 2015, 113: 427-442 CrossRef Google Scholar

[103] de Jong K, Wang B, Faure M, Shu L, Cluzel D, Charvet J, Ruffet G, Chen Y. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress. Int J Earth Sci-Geol Rundsch, 2009, 98: 1239-1258 CrossRef ADS Google Scholar

[104] de Jong K, Xiao W, Windley B F, Masago H, Lo C. Ordovician 40Ar/39Ar phengite ages from the blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) and implications for the early Paleozoic history of continental blocks in China and adjacent areas. Am J Sci, 2006, 306: 799-845 CrossRef ADS Google Scholar

[105] Ding L, Kapp P, Wan X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 2005, 24: TC3001 CrossRef ADS Google Scholar

[106] Dobretsov N L, Berzin N A, Buslov M M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int Geol Rev, 1995, 37: 335-360 CrossRef Google Scholar

[107] Dong Y, Zhang G, Neubauer F, Liu X, Hauzenberger C, Zhou D, Li W. Syn- and post-collisional granitoids in the Central Tianshan orogen: Geochemistry, geochronology and implications for tectonic evolution. Gondwana Res, 2011, 20: 568-581 CrossRef ADS Google Scholar

[108] Du J, Zhang L, Lü Z, Chu X. Lawsonite-bearing chloritoid-glaucophane schist from SW Tianshan, China: Phase equilibria and P-T path. J Asian Earth Sci, 2011, 42: 684-693 CrossRef ADS Google Scholar

[109] Ducea M N, Saleeby J B, Bergantz G. The architecture, chemistry, and evolution of continental magmatic arcs. Annu Rev Earth Planet Sci, 2015, 43: 299-331 CrossRef ADS Google Scholar

[110] Eizenhöfer P R, Zhao G, Zhang J, Sun M. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 2014, 33: 441-463 CrossRef ADS Google Scholar

[111] Feng J, Xiao W, Windley B, Han C, Wan B, Zhang J, Ao S, Zhang Z, Lin L. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids. J Asian Earth Sci, 2013, 78: 114-142 CrossRef ADS Google Scholar

[112] Feng Z Q, Liu Y J, Li Y L, Li W M, Wen Q B, Liu B Q, Zhou J P, Zhao Y L. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing’an Range, NE China. J Asian Earth Sci, 2017, 144: 5-21 CrossRef ADS Google Scholar

[113] Furnes H, Safonova I. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geosci Front, 2019, 10: 1255-1284 CrossRef Google Scholar

[114] Gao J, Klemd R, Zhang M, Wang Q, Xiao X. P-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China. J Metamorph Geol, 1999, 17: 621-636 CrossRef ADS Google Scholar

[115] Gao J, Klemd R. Eclogite occurrences in the Southern Tianshan High-Pressure Belt, Xinjiang, Western China. Gondwana Res, 2000, 3: 33-38 CrossRef ADS Google Scholar

[116] Gao J, Klemd R. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: Geochemical and age constraints. Lithos, 2003, 66: 1-22 CrossRef ADS Google Scholar

[117] Gao J, Klemd R, Qian Q, Zhang X, Li J, Jiang T, Yang Y. The collision between the Yili and Tarim blocks of the Southwestern Altaids: Geochemical and age constraints of a leucogranite dike crosscutting the HP-LT metamorphic belt in the Chinese Tianshan Orogen. Tectonophysics, 2011, 499: 118-131 CrossRef ADS Google Scholar

[118] Gao J, Klemd R, Zhu M, Wang X, Li J, Wan B, Xiao W, Zeng Q, Shen P, Sun J, Qin K, Campos E. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review. J Asian Earth Sci, 2018, 165: 7-36 CrossRef ADS Google Scholar

[119] Gao J, Li M, Xiao X, Tang Y, He G. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 1998, 287: 213-231 CrossRef Google Scholar

[120] Gao J, Long L, Klemd R, Qian Q, Liu D, Xiong X, Su W, Liu W, Wang Y, Yang F. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. Int J Earth Sci-Geol Rundsch, 2009, 98: 1221-1238 CrossRef ADS Google Scholar

[121] Gao J, Wang X S, Klemd R, Jiang T, Qian Q, Mu L X, Ma Y Z. Record of assembly and breakup of Rodinia in the Southwestern Altaids: Evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen. J Asian Earth Sci, 2015, 113: 173-193 CrossRef Google Scholar

[122] Geng H, Sun M, Yuan C, Xiao W, Xian W, Zhao G, Zhang L, Wong K, Wu F. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chem Geol, 2009, 266: 364-389 CrossRef ADS Google Scholar

[123] Gordienko I V, Bulgatov A N, Lastochkin N I, Sitnikova V S. Composition and U-Pb isotopic age determinations (SHRIMP II) of the ophiolitic assemblage from the Shaman paleospreading zone and the conditions of its formation (North Transbaikalia). Dokl Earth Sci, 2009, 429: 1420-1425 CrossRef ADS Google Scholar

[124] Gu P, Li Y, Zhang B. 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China. Acta Petrol Sin, 25: 1364–1372. Google Scholar

[125] Guo F X. 2000. Affinity between Paleozoic blocks of Xinjiang and their suturing ages (in Chinese with English abstarct). Acta Geol Sin, 74: 1–6. Google Scholar

[126] Han B F, Guo Z J, Zhang Z C, Zhang L, Chen J F, Song B. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geol Soc Am Bull, 2010, 122: 627-640 CrossRef ADS Google Scholar

[127] Han B F, He G Q, Wang X C, Guo Z J. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Sci Rev, 2011, 109: 74-93 CrossRef ADS Google Scholar

[128] Han C, Xiao W, Zhao G, Qu W, Du A. Re-Os dating of the Kalatongke Cu-Ni deposit, Altay Shan, NW China, and resulting geodynamic implications. Ore Geol Rev, 2007, 32: 452-468 CrossRef Google Scholar

[129] Han G Q, Liu Y J, Neubauer F, Bartel E, Genser J, Feng Z Q, Zhang L, Yang M C. U-Pb age and Hf isotopic data of detrital zircons from the Devonian and Carboniferous sandstones in Yimin area, NE China: New evidences to the collision timing between the Xing’an and Erguna blocks in eastern segment of Central Asian Orogenic Belt. J Asian Earth Sci, 2015, 97: 211-228 CrossRef ADS Google Scholar

[130] He Z Y, Klemd R, Yan L L, Lu T Y, Zhang Z M. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon. Sci Rep, 2018a, 8: 5054 CrossRef PubMed ADS Google Scholar

[131] He Z Y, Klemd R, Yan L L, Zhang Z M. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt. Earth-Sci Rev, 2018b, 185: 1-14 CrossRef Google Scholar

[132] Hegner E, Klemd R, Kroner A, Corsini M, Alexeiev D V, Iaccheri L M, Zack T, Dulski P, Xia X, Windley B F. Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of melange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan. Am J Sci, 2010, 310: 916-950 CrossRef ADS Google Scholar

[133] Hsü K J, Wang Q C, Li J L, Hao J. 1991. Geologic evolution of the Neimonides: A working hypothesis. Eclogae Geologicae Helvetiae, 84: 1–35. Google Scholar

[134] Hu A, Jahn B, Zhang G, Chen Y, Zhang Q. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 2000, 328: 15-51 CrossRef ADS Google Scholar

[135] Huang B C, Zhou Y X, Zhu R X. 2008. Discussions on Phanerozoic evolution and formation of continental China, based on paleo- magnetic studies. Earth Sci Front, 15: 348–359. Google Scholar

[136] Jahn B, Wu F, Chen B. 2000a. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23: 82–92. Google Scholar

[137] Jahn B M, Griffin W L, Windley B. Continental growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics, 2000b, 328: vii-x CrossRef ADS Google Scholar

[138] Jahn B, Wu F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ Sci Trans R Soc Edinburgh, 2000c, 91: 181-193 CrossRef Google Scholar

[139] Jian P, Kröner A, Jahn B, Windley B F, Shi Y, Zhang W, Zhang F, Miao L, Tomurhuu D, Liu D. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt. Earth-Sci Rev, 2014, 133: 62-93 CrossRef ADS Google Scholar

[140] Jian P, Liu D, Kröner A, Windley B F, Shi Y, Zhang F, Shi G, Miao L, Zhang W, Zhang Q, Zhang L, Ren J. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos, 2008, 101: 233-259 CrossRef ADS Google Scholar

[141] Jian P, Liu D, Kröner A, Windley B F, Shi Y, Zhang W, Zhang F, Miao L, Zhang L, Tomurhuu D. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 2010, 118: 169-190 CrossRef ADS Google Scholar

[142] Jiang T, Gao J, Klemd R, Qian Q, Zhang X, Xiong X, Wang X, Tan Z, Chen B. Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: Geological, geochemical and geochronological implications for the geodynamic setting. Tectonophysics, 2014, 612-613: 106-127 CrossRef ADS Google Scholar

[143] Jiang Y, Sun M, Zhao G, Yuan C, Xiao W, Xia X, Long X, Wu F. The 390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction?. Am J Sci, 2010, 310: 1421-1452 CrossRef ADS Google Scholar

[144] Jiang Y D, Schulmann K, Sun M, Weinberg R F, Štípská P, Li P F, Zhang J, Chopin F, Wang S, Xia X P, Xiao W J. Structural and geochronological constraints on Devonian suprasubduction tectonic switching and Permian collisional dynamics in the Chinese Altai, Central Asia. Tectonics, 2019, 38: 253-280 CrossRef ADS Google Scholar

[145] Khain E V, Bibikova E V, Kröner A, Zhuravlev D Z, Sklyarov E V, Fedotova A A, Kravchenko-Berezhnoy I R. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet Sci Lett, 2002, 199: 311-325 CrossRef ADS Google Scholar

[146] Klemd R, Gao J, Li J L, Meyer M. Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): Geodynamic implications. Gondwana Res, 2015, 28: 1-25 CrossRef ADS Google Scholar

[147] Klemd R, Hegner E, Bergmann H, Pfänder J A, Li J L, Hentschel F. Eclogitization of transient crust of the Aktyuz Complex during Late Palaeozoic plate collisions in the Northern Tianshan of Kyrgyzstan. Gondwana Res, 2014, 26: 925-941 CrossRef ADS Google Scholar

[148] Konopelko D, Kullerud K, Apayarov F, Sakiev K, Baruleva O, Ravna E, Lepekhina E. SHRIMP zircon chronology of HP-UHP rocks of the Makbal metamorphic complex in the Northern Tien Shan, Kyrgyzstan. Gondwana Res, 2012, 22: 300-309 CrossRef ADS Google Scholar

[149] Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikova E B, Larin A M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. J Asian Earth Sci, 2004, 23: 605-627 CrossRef ADS Google Scholar

[150] Kröner A, Alexeiev D V, Kovach V P, Rojas-Agramonte Y, Tretyakov A A, Mikolaichuk A V, Xie H, Sobel E R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3–1.8 Ga Kuilyu Complex, East Kyrgyzstan—The oldest continental basement fragment in the Tianshan orogenic belt. J Asian Earth Sci, 2017, 135: 122-135 CrossRef ADS Google Scholar

[151] Kröner A, Alexeiev D V, Rojas-Agramonte Y, Hegner E, Wong J, Xia X, Belousova E, Mikolaichuk A V, Seltmann R, Liu D, Kiselev V V. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Res, 2013, 23: 272-295 CrossRef ADS Google Scholar

[152] Kusky T M, Windley B F, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res, 2013, 24: 501-547 CrossRef ADS Google Scholar

[153] Lei R X, Wu C Z, Gu L X, Zhang Z Z, Chi G X, Jiang Y H. Zircon U-Pb chronology and Hf isotope of the Xingxingxia granodiorite from the Central Tianshan zone (NW China): Implications for the tectonic evolution of the southern Altaids. Gondwana Res, 2011, 20: 582-593 CrossRef ADS Google Scholar

[154] Lei Z, He G. Geochronology and geochemistry of the Cambrian (~518 Ma) Chagantaolegai ophiolite in northern West Junggar (NW China): Constraints on spatiotemporal characteristics of the Chingiz-Tarbagatai megazone. Int Geol Rev, 2014, 56: 1181-1196 CrossRef Google Scholar

[155] Levashova N M, Meert J G, Gibsher A S, Grice W C, Bazhenov M L. The origin of microcontinents in the Central Asian Orogenic Belt: Constraints from paleomagnetism and geochronology. Precambrian Res, 2011, 185: 37-54 CrossRef ADS Google Scholar

[156] Li D P, Jin Y, Hou K J, Chen Y L, Lu Z. Late Paleozoic final closure of the Paleo-Asian Ocean in the eastern part of the Xing-Meng Orogenic Belt: Constrains from Carboniferous-Permian (meta-) sedimentary strata and (meta-) igneous rocks. Tectonophysics, 2015, 665: 251-262 CrossRef ADS Google Scholar

[157] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci, 2006, 26: 207-224 CrossRef ADS Google Scholar

[158] Li J, Zhang J, Zhao X, Jiang M, Li Y, Zhu Z, Feng Q, Wang L, Sun G, Liu J, Yang T. Mantle subduction and uplift of intracontinental mountains: A case study from the Chinese Tianshan Mountains within Eurasia. Sci Rep, 2016, 6: 28831 CrossRef PubMed ADS Google Scholar

[159] Li Y, Xu W L, Tang J, Pei F P, Wang F, Sun C Y. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos, 2018, 304-307: 57-73 CrossRef ADS Google Scholar

[160] Li Y, Zhou H, Brouwer F M, Wijbrans J R, Zhong Z, Liu H. Tectonic significance of the Xilin Gol Complex, Inner Mongolia, China: Petrological, geochemical and U-Pb zircon age constraints. J Asian Earth Sci, 2011, 42: 1018-1029 CrossRef ADS Google Scholar

[161] Liu W, Liu X J, Xiao W J. Massive granitoid production without massive continental-crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry. Am J Sci, 2012, 312: 629-684 CrossRef ADS Google Scholar

[162] Liu X, Chen B, Jahn B, Wu G, Liu Y. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt. J Asian Earth Sci, 2010, 42: 715-731 CrossRef ADS Google Scholar

[163] Liu X, Wu G, Chen B, Shu B. 2002. Metamorphic history of eclogites from Beishan, Gansu Province. Acta Geosicientia Sin, 23: 25–29. Google Scholar

[164] Liu X, Xiao W, Xu J, Castillo P R, Shi Y. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China. Gondwana Res, 2017, 48: 34-49 CrossRef ADS Google Scholar

[165] Liu X, Xu J, Xiao W, Castillo P R, Shi Y, Wang S, Huo Q, Feng Z. The boundary between the Central Asian Orogenic belt and Tethyan tectonic domain deduced from Pb isotopic data. J Asian Earth Sci, 2015, 113: 7-15 CrossRef Google Scholar

[166] Liu Y, Li W, Feng Z, Wen Q, Neubauer F, Liang C. A review of the paleozoic tectonics in the eastern part of central asian orogenic belt. Gondwana Res, 2017, 43: 123-148 CrossRef ADS Google Scholar

[167] Long L, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang J, Jiang T. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos, 2011, 126: 321-340 CrossRef ADS Google Scholar

[168] Long X, Sun M, Yuan C, Xiao W, Cai K. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sediment Geol, 2008, 208: 88-100 CrossRef ADS Google Scholar

[169] Long X, Sun M, Yuan C, Xiao W, Lin S, Wu F, Xia X, Cai K. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 2007, 26: TC5015 CrossRef ADS Google Scholar

[170] Long X, Yuan C, Sun M, Xiao W, Zhao G, Wang Y, Cai K, Xia X, Xie L. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophysics, 2010, 480: 213-231 CrossRef ADS Google Scholar

[171] Luo Z W, Xu B, Shi G Z, Zhao P, Faure M, Chen Y. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite. Lithos, 2016, 261: 72-91 CrossRef ADS Google Scholar

[172] Lü Z, Zhang L F. Coesite in the eclogite and schist of the Atantayi Valley, southwestern Tianshan, China. Chin Sci Bull, 2012, 57: 1467-1472 CrossRef ADS Google Scholar

[173] Lü Z, Zhang L, Du J, Bucher K. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism. Am Miner, 2008, 93: 1845-1850 CrossRef ADS Google Scholar

[174] Lü Z, Zhang L, Du J, Bucher K. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication. J Metamorph Geol, 2009, 27: 773-787 CrossRef ADS Google Scholar

[175] Lü Z, Zhang L, Du J, Yang X, Tian Z, Xia B. Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan, China: Fluid processes and elemental mobility during exhumation in a cold subduction zone. Lithos, 2012, 136–139: 168-186 CrossRef ADS Google Scholar

[176] Ma C, Xiao W, Windley B F, Zhao G, Han C, Zhang J, Luo J, Li C. Tracing a subducted ridge–transform system in a late Carboniferous accretionary prism of the southern Altaids: Orthogonal sanukitoid dyke swarms in Western Junggar, NW China. Lithos, 2012, 140-141: 152-165 CrossRef ADS Google Scholar

[177] Ma X, Shu L, Meert J G, Li J. The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence. Gondwana Res, 2014, 25: 797-819 CrossRef ADS Google Scholar

[178] Ma X H, Zhu W P, Zhou Z H, Qiao S L. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China. J Asian Earth Sci, 2017, 144: 261-286 CrossRef ADS Google Scholar

[179] Mao J W, Pirajno F, Zhang Z H, Chai F M, Wu H, Chen S P, Cheng L S, Yang J M, Zhang C Q. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. J Asian Earth Sci, 2008, 32: 184-203 CrossRef ADS Google Scholar

[180] Mao Q, Xiao W, Fang T, Wang J, Han C, Sun M, Yuan C. Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China: Implications for early Paleozoic slab-melting and crustal growth in the southern Altaids. Gondwana Res, 2012a, 22: 534-553 CrossRef ADS Google Scholar

[181] Mao Q, Xiao W, Windley B F, Han C, Qu J, Ao S, Zhang J E, Guo Q. The Liuyuan complex in the Beishan, NW China: A Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids. Geol Mag, 2012b, 149: 483-506 CrossRef ADS Google Scholar

[182] Mao Y J, Qin K Z, Li C, Tang D M. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China. Miner Depos, 2015, 50: 65-82 CrossRef ADS Google Scholar

[183] Meyer M, Klemd R, Hegner E, Konopelko D. Subduction and exhumation mechanisms of ultra-high and high-pressure oceanic and continental crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan). J Meta Geol, 2014, 32: 861-884 CrossRef ADS Google Scholar

[184] Meyer M, Klemd R, Konopelko D. High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): Implications for the metamorphic evolution of a fossil subduction zone. Lithos, 2013, 177: 207-225 CrossRef ADS Google Scholar

[185] Miao L, Fan W, Liu D, Zhang F, Shi Y, Guo F. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. J Asian Earth Sci, 2008, 32: 348-370 CrossRef ADS Google Scholar

[186] Miao L, Zhang F, Jiao S. Age, protoliths and tectonic implications of the Toudaoqiao blueschist, Inner Mongolia, China. J Asian Earth Sci, 2015, 105: 360-373 CrossRef ADS Google Scholar

[187] Miao L, Zhang F, Fan W M, Liu D. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: Constraints from geochronology of ophiolites and associated formations. Geol Soc Lond Spec Publ, 2007, 280: 223-237 CrossRef ADS Google Scholar

[188] Niu H, Sato H, Zhang H, Ito J, Yu X, Nagao T, Terada K, Zhang Q. Juxtaposition of adakite, boninite, high-TiO2 and low-TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China. J Asian Earth Sci, 2006, 28: 439-456 CrossRef ADS Google Scholar

[189] Niu H, Shan Q, Zhang H, Yu X. 2007. 40Ar/39Ar geochronology of the ultrahigh-pressure metamorphic quartz-magnesitite in Zaheba, eastern Junggar, Xinjiang. Acta Petrol Sin, 23: 1627–1634. Google Scholar

[190] Pei Q M, Zhang S T, Hayashi K, Cao H W, Li D, Tang L, Hu X K, Li H X, Fang D R. Permo-Triassic granitoids of the Xing’an-Mongolia segment of the Central Asian Orogenic Belt, Northeast China: Age, composition, and tectonic implications. Int Geol Rev, 2018, 60: 1172-1194 CrossRef Google Scholar

[191] Qu J F, Xiao W J, Windley B F, Han C M, Mao Q G, Ao S J, Zhang J E. Ordovician eclogites from the Chinese Beishan: Implications for the tectonic evolution of the southern Altaids. J Metamorph Geol, 2011, 29: 803-820 CrossRef ADS Google Scholar

[192] Ren R, Han B F, Xu Z, Zhou Y Z, Liu B, Zhang L, Chen J F, Su L, Li J, Li X H, Li Q L. When did the subduction first initiate in the southern Paleo-Asian Ocean: New constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China. Earth Planet Sci Lett, 2014, 388: 222-236 CrossRef ADS Google Scholar

[193] Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu Z, Yang J. Geochronological and geochemical constraints on Mesozoic suturing in east Central Tibet. Tectonics, 2003, 22: 1037 CrossRef ADS Google Scholar

[194] Rojas-Agramonte Y, Herwartz D, García-Casco A, Kröner A, Alexeiev D V, Klemd R, Buhre S, Barth M. Early Palaeozoic deep subduction of continental crust in the Kyrgyz North Tianshan: Evidence from Lu-Hf garnet geochronology and petrology of mafic dikes. Contrib Mineral Petrol, 2013, 166: 525-543 CrossRef ADS Google Scholar

[195] Rong J Y, Zhang Z X. A southward extension of the Silurian Tuvaella brachiopod fauna. Lethaia, 1982, 15: 133-147 CrossRef Google Scholar

[196] Rong J Y, Boucot A J, Su Y Z, Strusz D. Biogeographical analysis of Late Silurian brachiopod faunas, chiefly from Asia and Australia. Lethaia, 1995, 28: 39-60 CrossRef Google Scholar

[197] Safonova I, Biske G, Romer R L, Seltmann R, Simonov V, Maruyama S. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res, 2016, 30: 236-256 CrossRef ADS Google Scholar

[198] Safonova I, Kotlyarov A, Krivonogov S, Xiao W. Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res, 2017, 50: 167-194 CrossRef ADS Google Scholar

[199] Safonova I Y, Santosh M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res, 2014, 25: 126-158 CrossRef ADS Google Scholar

[200] Saktura W M, Buckman S, Nutman A P, Belousova E A, Yan Z, Aitchison J C. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos, 2017, 294-295: 20-38 CrossRef ADS Google Scholar

[201] Salnikova E B, Kozakov I K, Kotov A B, Kröner A, Todt W, Bibikova E V, Nutman A, Yakovleva S Z, Kovach V P. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: Loss of a Precambrian microcontinent. Precambrian Res, 2001, 110: 143-164 CrossRef ADS Google Scholar

[202] Sang M, Xiao W, Bakirov A, Orozbaev R, Sakiev K, Zhou K. Oblique wedge extrusion of UHP/HP complexes in the Late Triassic: Structural analysis and zircon ages of the Atbashi Complex, South Tianshan, Kyrgyzstan. Int Geol Rev, 2017, 59: 1369-1389 CrossRef Google Scholar

[203] Schulmann K, Paterson S. Asian continental growth. Nat Geosci, 2011, 4: 827-829 CrossRef ADS Google Scholar

[204] Seltmann R, Porter T M, Pirajno F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. J Asian Earth Sci, 2014, 79: 810-841 CrossRef ADS Google Scholar

[205] Şengör A M C, Natal’in B A. Turkic-type orogeny and its role in the making of the continental crust. Annu Rev Earth Planet Sci, 1996, 24: 263-337 CrossRef ADS Google Scholar

[206] Şengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 1993, 364: 299-307 CrossRef ADS Google Scholar

[207] Şengör A M C, Natal’in B A, Sunal G, van der Voo R. The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma ago. Annu Rev Earth Planet Sci, 2018, 46: 439-494 CrossRef ADS Google Scholar

[208] Shen P, Pan H, Xiao W, Shen Y. An Ordovician intra-oceanic subduction system influenced by ridge subduction in the West Junggar, Northwest China. Int Geol Rev, 2014, 56: 206-223 CrossRef Google Scholar

[209] Shen X, Zhang H, Wang Q, Wyman D A, Yang Y. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites. J Asian Earth Sci, 2011, 42: 986-1007 CrossRef ADS Google Scholar

[210] Shen X M, Zhang H X, Wang Q, Saha A, Ma L, Santosh M. Zircon U-Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geol J, 2018, 53: 1886-1905 CrossRef Google Scholar

[211] Shi Y, Liu D, Miao L, Zhang F, Jian P, Zhang W, Hou K, Xu J. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China. Gondwana Res, 2010, 17: 632-641 CrossRef ADS Google Scholar

[212] Shu L, Charvet J, Lu H, Laurent S C. 2002. Paleozoic acretion-collision events and Kinematics of ductile deformation in the eastern part of the southern-central Tianshan belt, China. Acta Geol Sin, 76: 308–323. Google Scholar

[213] Simonov V A, Sakiev K S, Volkova N I, Stupakov S I, Travin A V. Conditions of formation of the Atbashi Ridge eclogites (South Tien Shan). Rus Geol Geophys, 2008, 49: 803-815 CrossRef ADS Google Scholar

[214] Song D, Xiao W, Collins A S, Glorie S, Han C, Li Y. Final subduction processes of the Paleo-Asian Ocean in the Alxa Tectonic Belt (NW China): Constraints from field and chronological data of Permian arc-related volcano-sedimentary rocks. Tectonics, 2018, 37: 1658-1687 CrossRef ADS Google Scholar

[215] Song D, Xiao W, Han C, Li J, Qu J, Guo Q, Lin L, Wang Z. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes. Precambrian Res, 2013, 227: 368-388 CrossRef ADS Google Scholar

[216] Song D, Xiao W, Han C, Tian Z. Polyphase deformation of a Paleozoic forearc-arc complex in the Beishan orogen, NW China. Tectonophysics, 2014, 632: 224-243 CrossRef ADS Google Scholar

[217] Song D, Xiao W, Windley B F, Han C, Tian Z. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt. Lithos, 2015, 224-225: 195-213 CrossRef ADS Google Scholar

[218] Song D, Xiao W, Windley B F, Han C, Yang L. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt. Tectonophysics, 2016, 688: 135-147 CrossRef ADS Google Scholar

[219] Song S, Wang M M, Xu X, Wang C, Niu Y, Allen M B, Su L. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics, 2015, 34: 2221-2248 CrossRef ADS Google Scholar

[220] Song X Y, Li X R. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Miner Depos, 2009, 44: 303-327 CrossRef ADS Google Scholar

[221] Su W, Gao J, Klemd R, Li J L, Zhang X, Li X H, Chen N S, Zhang L. U-Pb zircon geochronology of Tianshan eclogites in NW China: Implication for the collision between the Yili and Tarim blocks of the southwestern Altaids. Eur J Mineral, 2010, 22: 473-478 CrossRef ADS Google Scholar

[222] Sun J, Zhang Z. Syntectonic growth strata and implications for late Cenozoic tectonic uplift in the northern Tian Shan, China. Tectonophysics, 2009, 463: 60-68 CrossRef ADS Google Scholar

[223] Sun M, Yuan C, Xiao W, Long X, Xia X, Zhao G, Lin S, Wu F, Kröner A. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chem Geol, 2008, 247: 352-383 CrossRef ADS Google Scholar

[224] Sun S, Li J L, Lin J L, Wang Q C, Chen H H. 1991. Indosinides in China and the consumption of Eastern Paleotethys. In: Muller D W, McKenzie J A, Weissert H, eds. Controversies in Modern Geology. London: Academic Press. 363–384. Google Scholar

[225] Sun W, Chi X G, Zhao Z, Pan S Y, Liu J F, Zhang R, Quan J Y. Zircon geochronology constraints on the age and nature of ‘Precambrian metamorphic rocks’ in the Xing’an block of Northeast China. Int Geol Rev, 2014, 56: 672-694 CrossRef Google Scholar

[226] Tang G, Wang Q, Wyman D A, Li Z X, Zhao Z H, Jia X H, Jiang Z Q. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chem Geol, 2010, 277: 281-300 CrossRef ADS Google Scholar

[227] Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Yang Y H. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 2012, 140-141: 86-102 CrossRef ADS Google Scholar

[228] Tian Z, Xiao W, Shan Y, Windley B, Han C, Zhang J, Song D. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. J Struct Geol, 2013, 52: 119-135 CrossRef ADS Google Scholar

[229] Tian Z, Xiao W, Sun J, Windley B F, Glen R, Han C, Zhang Z, Zhang J ’, Wan B, Ao S, Song D. Triassic deformation of Permian Early Triassic arc-related sediments in the Beishan (NW China): Last pulse of the accretionary orogenesis in the southernmost Altaids. Tectonophysics, 2015, 662: 363-384 CrossRef ADS Google Scholar

[230] Tian Z, Xiao W, Windley B F, Lin L, Han C, Zhang J, Wan B, Ao S, Song D, Feng J. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Res, 2014, 25: 820-841 CrossRef ADS Google Scholar

[231] Tian Z L, Wei C J. Coexistence of garnet blueschist and eclogite in South Tianshan, NW China: Dependence of P-T evolution and bulk-rock composition. J Meta Geol, 2014, 32: 743-764 CrossRef ADS Google Scholar

[232] Torsvik T H, Cocks L R M. Earth geography from 400 to 250 Ma: A palaeomagnetic, faunal and facies review. J Geol Soc, 2004, 161: 555-572 CrossRef ADS Google Scholar

[233] van der Straaten F, Schenk V, John T, Gao J. Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): Implications for fluid-rock interaction in the subduction channel. Chem Geol, 2008, 255: 195-219 CrossRef ADS Google Scholar

[234] van der Voo R. Presidential address: Paleomagnetism, oroclines, and growth of the continental crust. GSA Today, 2004, 14: 4-9 CrossRef Google Scholar

[235] Wakita K, Metcalfe I. Ocean plate stratigraphy in East and Southeast Asia. J Asian Earth Sci, 2005, 24: 679-702 CrossRef ADS Google Scholar

[236] Wan B, Li S, Xiao W, Windley B F. Where and when did the Paleo-Asian ocean form?. Precambrian Res, 2018, 317: 241-252 CrossRef ADS Google Scholar

[237] Wan B, Zhang L, Xiang P. The Ashele VMS-type Cu-Zn deposit in Xinjiang, NW China formed in a rifted arc setting. Resour Geol, 2010, 60: 150-164 CrossRef Google Scholar

[238] Wang B, Shu L, Faure M, Jahn B, Cluzel D, Charvet J, Chung S, Meffre S. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 2011, 497: 85-104 CrossRef ADS Google Scholar

[239] Wang C S, Dai J G, Zhao X X, Li Y, Graham S A, He D, Ran B, Meng J. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 2014, 621: 1-43 CrossRef ADS Google Scholar

[240] Wang T, Guo L, Zhang L, Yang Q, Zhang J, Tong Y, Ye K. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. J Asian Earth Sci, 2015, 97: 365-392 CrossRef ADS Google Scholar

[241] Wang T, Jahn B M, Kovach V P, Tong Y, Hong D W, Han B F. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 2009, 110: 359-372 CrossRef ADS Google Scholar

[242] Wei C J, Powell R, Zhang L F. Eclogites from the south Tianshan, NW China: Petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. J Metamorph Geol, 2003, 21: 163-179 CrossRef ADS Google Scholar

[243] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Res, 2003, 122: 311-327 CrossRef ADS Google Scholar

[244] Windley B F, Allen M B, Zhang C, Zhao Z Y, Wang G R. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia. Geology, 1990, 18: 128-131 CrossRef Google Scholar

[245] Windley B F, Alexeiev D, Xiao W, Kröner A, Badarch G. Tectonic models for accretion of the Central Asian orogenic belt. J Geol Soc, 2007, 164: 31-47 CrossRef ADS Google Scholar

[246] Windley B F, Xiao W. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Res, 2018, 61: 73-87 CrossRef ADS Google Scholar

[247] Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci, 2011, 41: 1-30 CrossRef ADS Google Scholar

[248] Wu F Y, Yang J H, Lo C H, Wilde S A, Sun D Y, Jahn B M. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Isl Arc, 2007, 16: 156-172 CrossRef Google Scholar

[249] Xiao W, Han C, Yuan C, Sun M, Lin S, Chen H, Li Z, Li J, Sun S. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. J Asian Earth Sci, 2008, 32: 102-117 CrossRef ADS Google Scholar

[250] Xiao W, Han C, Yuan C, Sun M, Zhao G, Shan Y. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. Geol Soc Lond Spec Publ, 2010a, 338: 35-53 CrossRef ADS Google Scholar

[251] Xiao W, Windley B F, Badarch G, Sun S, Li J, Qin K, Wang Z. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. J Geol Soc, 2004a, 161: 339-342 CrossRef ADS Google Scholar

[252] Xiao W, Windley B F, Allen M B, Han C. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res, 2013, 23: 1316-1341 CrossRef ADS Google Scholar

[253] Xiao W, Windley B F, Han C, Liu W, Wan B, Zhang J, Ao S, Zhang Z, Song D. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Sci Rev, 2018, 186: 94-128 CrossRef Google Scholar

[254] Xiao W, Windley B F, Hao J, Zhai M. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 2003, 22: 1069 CrossRef ADS Google Scholar

[255] Xiao W, Windley B F, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci, 2015, 43: 477-507 CrossRef ADS Google Scholar

[256] Xiao W, Zhang L, Qin K, Sun S, Li J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. Am J Sci, 2004b, 304: 370-395 CrossRef ADS Google Scholar

[257] Xiao W J, Mao Q G, Windley B F, Han C M, Qu J F, Zhang J E, Ao S J, Guo Q Q, Cleven N R, Lin S F, Shan Y H, Li J L. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am J Sci, 2010b, 310: 1553-1594 CrossRef ADS Google Scholar

[258] Xiao W J, Windley B F, Huang B C, Han C M, Yuan C, Chen H L, Sun M, Sun S, Li J L. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci-Geol Rundsch, 2009a, 98: 1189-1217 CrossRef ADS Google Scholar

[259] Xiao W J, Windley B F, Yuan C, Sun M, Han C M, Lin S F, Chen H L, Yan Q R, Liu D Y, Qin K Z, Li J L, Sun S. Paleozoic multiple subduction-accretion processes of the southern Altaids. Am J Sci, 2009b, 309: 221-270 CrossRef ADS Google Scholar

[260] Xie W, Xu Y G, Chen Y B, Luo Z Y, Hong L B, Ma L, Liu H Q. High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 2016, 256-257: 165-181 CrossRef ADS Google Scholar

[261] Xu B, Charvet J, Chen Y, Zhao P, Shi G. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res, 2013, 23: 1342-1364 CrossRef ADS Google Scholar

[262] Xu M, Xu W, Wang F, Gao F. Age, association and provenance of the “Neoproterozoic” Fengshuigouhe Group in the Northwestern Lesser Xing’an Range, NE China: Constraints from zircon U-Pb geochronology. J Earth Sci, 2012, 23: 786-801 CrossRef Google Scholar

[263] Xu W L, Pei F P, Wang F, Meng E, Ji W Q, Yang D B, Wang W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci, 2013, 74: 167-193 CrossRef ADS Google Scholar

[264] Xu X, Li X, Zhongping M, Xia L, Xia Z. 2006. LA-ICPMS zircon U-Pb dating of gabbro from the bayingou ophiolite in the Northern Tianshan Mountains. Acta Geol Sin, 80: 1168–1176. Google Scholar

[265] Xu Z, Wang Q, Pêcher A, Liang F, Qi X, Cai Z, Li H, Zeng L, Cao H. Orogen-parallel ductile extension and extrusion of the greater himalaya in the late oligocene and miocene. Tectonics, 2013, 32: 191-215 CrossRef ADS Google Scholar

[266] Yang G, Li Y, Kerr A C, Tong L. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt. J Asian Earth Sci, 2018, 153: 223-237 CrossRef ADS Google Scholar

[267] Yang G, Li Y, Xiao W, Tong L. OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth-Sci Rev, 2015, 150: 477-496 CrossRef Google Scholar

[268] Yang J, Zhang Z, Chen Y, Yu H, Qian X. Ages and origin of felsic rocks from the Eastern Erenhot ophiolitic complex, southeastern Central Asian Orogenic Belt, Inner Mongolia China. J Asian Earth Sci, 2017, 144: 126-140 CrossRef ADS Google Scholar

[269] Ye X T, Zhang C L, Zou H B, Yao C Y, Dong Y G. Age and geochemistry of the Zhaheba ophiolite complex in eastern Junggar of the Central Asian Orogenic Belt (CAOB): Implications for the accretion process of the Junggar terrane. Geol Mag, 2017, 154: 419-440 CrossRef ADS Google Scholar

[270] Yin A. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 2010, 488: 293-325 CrossRef ADS Google Scholar

[271] Yin A, Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press. 442–485. Google Scholar

[272] Yin A, Nie S, Craig P, Harrison T M, Ryerson F J, Xianglin Q, Geng Y. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 1998, 17: 1-27 CrossRef ADS Google Scholar

[273] Yin J, Chen W, Xiao W, Yuan C, Sun M, Tang G, Yu S, Long X, Cai K, Geng H, Zhang Y, Liu X. Petrogenesis of Early-Permian sanukitoids from West Junggar, Northwest China: Implications for Late Paleozoic crustal growth in Central Asia. Tectonophysics, 2015, 662: 385-397 CrossRef ADS Google Scholar

[274] Yin J, Long X, Yuan C, Sun M, Zhao G, Geng H. A Late Carboniferous–Early Permian slab window in the West Junggar of NW China: Geochronological and geochemical evidence from mafic to intermediate dikes. Lithos, 2013, 175-176: 146-162 CrossRef ADS Google Scholar

[275] Zeng Q, Qin K, Liu J, Li G, Zhai M, Chu S, Guo Y. Porphyry molybdenum deposits in the Tianshan-Xingmeng orogenic belt, northern China. Int J Earth Sci-Geol Rundsch, 2015, 104: 991-1023 CrossRef ADS Google Scholar

[276] Zhang C L, Li Z X, Li X H, Xu Y G, Zhou G, Ye H M. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume?. Geol Soc Am Bull, 2010, 122: 2020-2040 CrossRef ADS Google Scholar

[277] Zhang J, Cunningham D. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China. Tectonics, 2012, 31: TC3009 CrossRef ADS Google Scholar

[278] Zhang J, Sun M, Schulmann K, Zhao G, Wu Q, Jiang Y, Guy A, Wang Y. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process. J Struct Geol, 2015a, 73: 64-82 CrossRef ADS Google Scholar

[279] Zhang J, Wei C, Chu H. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China. J Asian Earth Sci, 2015b, 97: 352-364 CrossRef ADS Google Scholar

[280] Zhang J E, Xiao W J, Han C M, Ao S J, Yuan C, Sun M, Geng H Y, Zhao G C, Guo Q Q, Ma C. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Res, 2011a, 19: 958-974 CrossRef ADS Google Scholar

[281] Zhang J E, Xiao W J, Han C M, Mao Q G, Ao S J, Guo Q Q, Ma C. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos, 2011b, 125: 592-606 CrossRef ADS Google Scholar

[282] Zhang J E, Xiao W J, Luo J, Chen Y C, Windley B F, Song D F, Han C M, Safonova I. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids. J Asian Earth Sci, 2018, 159: 259-278 CrossRef ADS Google Scholar

[283] Zhang L, Ai Y, Li X, Rubatto D, Song B, Williams S, Song S, Ellis D, Liou J G. Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos, 2007, 96: 266-280 CrossRef ADS Google Scholar

[284] Zhang L, Chen H, Chen Y, Qin Y, Liu C, Zheng Y, Jansen N H. Geology and fluid evolution of the Wangfeng orogenic-type gold deposit, Western Tian Shan, China. Ore Geol Rev, 2012, 49: 85-95 CrossRef Google Scholar

[285] Zhang L, Jin Z. High-temperature metamorphism of the Yushugou ophiolitic slice: Late Devonian subduction of seamount and mid-oceanic ridge in the South Tianshan orogen. J Asian Earth Sci, 2016, 132: 75-93 CrossRef ADS Google Scholar

[286] Zhang L, Ellis D J, Jiang W. Ultrahigh-pressure metamorphism in western Tianshan, China: Part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. Am Miner, 2002a, 87: 853-860 CrossRef ADS Google Scholar

[287] Zhang L, Ellis D J, Williams S, Jiang W. Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am Miner, 2002b, 87: 861-866 CrossRef ADS Google Scholar

[288] Zhang S H, Zhao Y. Mid-crustal emplacement and deformation of plutons in an Andean-style continental arc along the northern margin of the North China Block and tectonic implications. Tectonophysics, 2013, 608: 176-195 CrossRef ADS Google Scholar

[289] Zhang S H, Zhao Y, Kröner A, Liu X M, Xie L W, Chen F K. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int J Earth Sci-Geol Rundsch, 2009a, 98: 1441-1467 CrossRef ADS Google Scholar

[290] Zhang S H, Zhao Y, Song B, Hu J M, Liu S W, Yang Y H, Chen F K, Liu X M, Liu J. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol Soc Am Bull, 2009b, preprint: 1 CrossRef Google Scholar

[291] Zhang S H, Zhao Y, Song B, Yang Z Y, Hu J M, Wu H. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Palaeozoic active continental margin. J Geol Soc, 2007, 164: 451-463 CrossRef ADS Google Scholar

[292] Zheng R, Wu T, Zhang W, Xu C, Meng Q. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt. J Asian Earth Sci, 2013, 62: 463-475 CrossRef ADS Google Scholar

[293] Zheng R, Wu T, Zhang W, Xu C, Meng Q, Zhang Z. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidences from ophiolites. Gondwana Res, 2014, 25: 842-858 CrossRef ADS Google Scholar

[294] Zheng R, Xiao W, Li J, Wu T, Zhang W. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China. J Asian Earth Sci, 2018, 153: 75-99 CrossRef ADS Google Scholar

[295] Zhou J B, Cao J L, Wilde S A, Zhao G C, Zhang J J, Wang B. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 2014, 33: 2444-2466 CrossRef ADS Google Scholar

[296] Zhou J B, Li L. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. J Asian Earth Sci, 2017, 145: 91-100 CrossRef ADS Google Scholar

[297] Zhou J B, Wang B, Wilde S A, Zhao G C, Cao J L, Zheng C Q, Zeng W S. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists in the Great Xing’an Range, northeast China, and tectonic implications. J Asian Earth Sci, 2015, 97: 197-210 CrossRef ADS Google Scholar

[298] Zhou J B, Wilde S A, Zhang X Z, Zhao G C, Liu F L, Qiao D W, Ren S M, Liu J H. A >1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications. Tectonophysics, 2011, 509: 280-292 CrossRef ADS Google Scholar

[299] Zhou J B, Wilde S A, Zhang X Z, Zhao G C, Zheng C Q, Wang Y J, Zhang X H. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 2009, 478: 230-246 CrossRef ADS Google Scholar

[300] Zhou J B, Wilde S A, Zhao G C, Han J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci Rev, 2018, 186: 76-93 CrossRef Google Scholar

[301] Zhu Y, Guo X, Song B, Zhang L, Gu L. Petrology, Sr–Nd–Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. J Geol Soc, 2009, 166: 1085-1099 CrossRef ADS Google Scholar

[302] Zonenshain L P, Kuz’min M I, Natapov L M, Page BM. 1990. Geology of the USSR: A plate-tectonic synthesis. Amer Geophysical Union. Google Scholar

[303] Zuza A V, Yin A. Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, 2017, 13: 1664-1712 CrossRef ADS Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号