logo

SCIENTIA SINICA Terrae, Volume 49 , Issue 12 : 1933-1944(2019) https://doi.org/10.1360/SSTe-2019-0153

海洋微型生物碳泵理论的发展与展望

More info
  • ReceivedJul 15, 2019
  • AcceptedNov 11, 2019
  • PublishedNov 27, 2019

Abstract

微生物是驱动海洋元素循环的主体, 在调节全球气候变化中起着重要作用. 近半个世纪海洋研究的一个谜团就是“为什么有着一个相当于大气CO2碳总量的惰性溶解有机碳(Recalcitrant Dissolved Organic Carbon, RDOC)库在海洋中长期存在?”. 生物泵(Biological Pump, BP)和微食物环(Microbial Loop, ML)研究加深了我们对生物在海洋碳循环中作用的理解, 但直到微型生物碳泵(Microbial Carbon Pump, MCP)理论的提出, 才真正阐释了海洋惰性溶解有机碳来源和存储的生物地球化学机制. MCP是由微型生物介导的溶解有机碳(非沉降)转化和迁移的海洋储碳新机制, 提出了RDOC产生的3个重要途径: (1) 微型生物特别是异氧细菌和古菌在有机质降解代谢过程中改造并分泌RDOC; (2) 病毒颗粒裂解宿主导致细胞的死亡并释放RDOC; (3) 原生动物等捕食者摄食微型生物并释放RDOC. MCP揭示了海洋RDOC的惰性机制, 定义了两类RDOC组分(RDOCc和RDOCt), 为调节气候和改善生态环境提供了可验证的理论. 为纪念中国科学家在海洋碳循环领域的突出贡献, 文章在回顾海洋微型生物与碳循环相关研究基础上, 系统总结并讨论了MCP理论提出以来中国在此领域的国际引领地位和影响力, 并展望了未来研究的方向.


Funded by

国家重点研发计划全球变化及应对重点专项项目(2018YFA0605800)

国家自然科学基金项目(41876134,41606134,41530105)

国家自然科学基金委员会与联合国环境规划署合作研究项目(41861144018)

国家自然科学基金重大研究计划重点支持项目(91851210,91751207)

中国大洋矿产资源研究开发协会项目”(DY135-E2-1-04)

深圳海洋地球古菌组学重点实验室项目(ZDSYS201802081843490)


Acknowledgment

三位审稿人对论文提出了宝贵意见, 在此表示衷心感谢. 中国科学院生态环境研究中心邓晔和山东大学海洋研究院刘洋提供了文字帮助, 在此一并致谢. 该综述文章的写作受益于多个资助机构支持开展的研究项目.


References

[1] 陈泮勤, 等, 著. 2004. 地球系统碳循环. 北京: 科学出版社. Google Scholar

[2] 费修绠. 1964. 应用14C测定浮游生物初级生产力的方法. 海洋与湖沼, 6: 297–308. Google Scholar

[3] 费尊乐, 李武. 1994. 西威佛斯海洋水色研究计划概述. 黄渤海海洋, 12: 51–60. Google Scholar

[4] 郭金海. 2017. 1935年太平洋科学协会海洋学组中国分会的成立与影响. 中国科技史杂志, 38: 266–293, 379. Google Scholar

[5] 焦念志. 2009. 海洋微型生物生态学(第二版). 北京: 现代教育出版社. Google Scholar

[6] 焦念志. 2012. 海洋固碳与储碳——并论微型生物在其中的重要作用. 中国科学: 地球科学, 42: 1473–1486. Google Scholar

[7] 焦念志, 李超, 王晓雪. 2016. 海洋碳汇对气候变化的响应与反馈. 地球科学进展, 31: 668–681. Google Scholar

[8] 焦念志, 王荣. 1993a. 新生产力——一个新的海洋学研究领域. 海洋与湖沼, 24: 205–211. Google Scholar

[9] 焦念志, 王荣. 1993b. 海洋初级生产力的结构. 海洋与湖沼, 24: 340–344. Google Scholar

[10] 焦念志, 王荣. 1994. 海洋初级生产光动力学及产品结构. 海洋学报, 16: 85–91. Google Scholar

[11] 焦念志, 王荣, 黄庆文. 1993. 15N示踪-离子质谱法测定新生产力的研究. 海洋与湖沼, 24: 65–71. Google Scholar

[12] 焦念志, 梁彦韬, 张永雨, 刘纪化, 张瑶, 张锐, 赵美训, 戴民汉, 翟惟东, 高坤山, 宋金明, 袁东亮, 李超, 林光辉, 黄小平, 严宏强, 胡利民, 张增虎, 王龙, 曹纯洁, 罗亚威, 骆庭伟, 王南南, 党宏月, 王东晓, 张偲. 2018. 中国海及邻近区域碳库与通量综合分析. 中国科学: 地球科学, 48: 1393–1421. Google Scholar

[13] 焦念志, 骆庭伟, 张瑶, 张锐, 汤凯, 陈锋, 曾永辉, 张永雨, 赵艳琳, 郑强, 李彦玲. 2011. 海洋微型生物碳泵-从微型生物生态过程到碳循环机制效应. 厦门大学学报, 50: 387–401. Google Scholar

[14] 焦念志, 张传伦, 李超, 王晓雪, 党宏月, 曾庆路, 张锐, 张瑶, 汤凯, 张子莲, 徐大鹏. 2013. 海洋微型生物碳泵储碳机制及气候效应. 中国科学: 地球科学, 43: 1–18. Google Scholar

[15] 金心, 石广玉. 2000a. 海洋环流模式模拟自然和核辐14C的分布. 大气科学, 24: 341–354. Google Scholar

[16] 金心, 石广玉. 2000b. 海洋对人为CO2吸收的三维模式研究. 气象学报, 58: 40–48. Google Scholar

[17] 金心, 石广玉. 2001. 生物泵在海洋碳循环中的作用. 大气科学, 25: 683–688. Google Scholar

[18] 李永祺, 吴宝铃. 1991. 生物海洋学的研究状况. 黄渤海海洋, 4: 45–50. Google Scholar

[19] 刘诚刚, 宁修仁, 郝锵, 乐凤凤. 2010. 海洋浮游植物溶解有机碳释放研究进展. 地球科学进展, 25: 123–132. Google Scholar

[20] 刘纪化, 张飞, 焦念志. 2015. 陆海统筹研发碳汇. 科学通报, 60: 3399–3405. Google Scholar

[21] 刘茜, 郭香会, 尹志强, 周宽波, Roberts E G, 戴民汉. 2018. 中国邻近边缘海碳通量研究现状与展望. 中国科学: 地球科学, 48: 1422–1443. Google Scholar

[22] 宁修仁. 1984. 西太平洋初级生产力和对国内研究工作的几点建议. 东海海洋, 2: 78–83, 72. Google Scholar

[23] 宁修仁. 1997. 微型生物食物环. 东海海洋, 15: 67–69. Google Scholar

[24] 彭作圣, 李丕廉, 费修绠. 1964. 14C安瓿的封装技术. 海洋与湖沼, 6 : 433–434, 436. Google Scholar

[25] 浦一芬, 王明星. 2000. 海洋碳循环模式(I)——一个包括海洋动力学环流、化学过程和生物过程的二维碳模式的建立. 气候与环境研究, 5: 129–140. Google Scholar

[26] 秦大河, Stocker T. 2014. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 10: 1–6. Google Scholar

[27] 司徒尚纪. 2009. 中国南海海洋文化. 广州: 中山大学出版社. Google Scholar

[28] 孙军. 2011. 海洋浮游植物与生物碳汇. 生态学报, 31: 5372–5378. Google Scholar

[29] 孙军. 2013. 海洋浮游植物与渔业碳汇计量. 渔业科学进展, 34: 90–96. Google Scholar

[30] 孙军, 刘东艳, 钱树本. 1999. 浮游植物生物量研究I. 浮游植物生物量细胞体积转化法. 海洋学报, 21: 75–85. Google Scholar

[31] 孙军, 刘东艳, 钱树本. 2000. 浮游植物生物量研究II. 胶州湾网采浮游植物细胞体积转换生物量. 海洋学报, 22: 102–109. Google Scholar

[32] 孙军, 刘东艳, 钟华, 张利永. 2003. 浮游植物粒级研究方法的比较. 青岛海洋大学学报, 33: 917–924. Google Scholar

[33] 孙军, 宁修仁. 2005. 海洋浮游植物群落的比生长率. 地球科学进展, 20: 939–945. Google Scholar

[34] 孙军, 李晓倩, 陈建芳, 郭术津. 2016. 海洋生物泵研究进展. 海洋学报, 38: 1–21. Google Scholar

[35] 唐启升. 1993. 正在发展的全球海洋生态系统动态研究计划(GLOBEC). 地球科学进展, 8: 62–65. Google Scholar

[36] 唐启升, 范元炳, 林海. 1996. 中国海洋生态系统动力学研究发展战略初探. 地球科学进展, 11: 160–168. Google Scholar

[37] 唐启升, 苏纪兰, 张经. 2005. 我国近海生态系统食物产出的关键过程及其可持续机理. 地球科学进展, 20: 1280–1287. Google Scholar

[38] 王荣. 1991. 发展生物海洋学研究. 海洋科学, 15: 17–21. Google Scholar

[39] 王荣. 1993. 生物海洋学. 地球科学进展, 8: 70–71. Google Scholar

[40] 邢如楠. 2000. 带生物泵三维全球海洋碳循环模式. 大气科学, 24: 333–340. Google Scholar

[41] 徐永福, 王明星, 金向泽. 1997. 二维海洋温盐环流碳循环模式. 大气科学, 21: 62–69. Google Scholar

[42] 薛攀皋. 1992. 中国科学社生物研究所-中国最早的生物学研究机构. 中国科技史料, 13: 47–57. Google Scholar

[43] 张传伦. 2018. 微型生物碳泵-海洋生物地球化学研究的新模式. 中国科学: 地球科学, 48: 805–808. Google Scholar

[44] 张正斌, 宫海东, 刘莲生, 张闯. 2005. 海洋碳循环过程中的海水微表层泵. 中国科学B辑: 化学, 35: 459–465. Google Scholar

[45] 朱树屏, 郭玉洁. 1959. 十年来我国海洋浮游植物的研究. 海洋与湖沼, 2: 223–229. Google Scholar

[46] Arrieta J M, Mayol E, Hansman R L, Herndl G J, Dittmar T, Duarte C M. Dilution limits dissolved organic carbon utilization in the deep ocean. Science, 2015, 348: 331-333 CrossRef PubMed Google Scholar

[47] Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-263 CrossRef Google Scholar

[48] Bacastow R, Maier-Reimer E. Ocean-circulation model of the carbon cycle. Clim Dyn, 1990, 4: 95-125 CrossRef Google Scholar

[49] Barber R T. Dissolved organic carbon from deep waters resists microbial oxidation. Nature, 1968, 220: 274-275 CrossRef PubMed Google Scholar

[50] Benner R, Pakulski J D, McCarthy M, Hedges J I, Hatcher P G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 1992, 255: 1561-1564 CrossRef PubMed Google Scholar

[51] Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc Natl Acad Sci USA, 2011, 108: 19473-19481 CrossRef PubMed Google Scholar

[52] Cai R, Zhou W, He C, Tang K, Guo W, Shi Q, Gonsior M, Jiao N. 2019. Microbial processing of sediment-derived dissolved organic matter: Implications for its subsequent biogeochemical cycling in overlying seawater. J Geophys Res-Biogeosci, doi: 10.1029/2019JG005212. Google Scholar

[53] Church M J, Ducklow H W, Karl D M. Multiyear increases in dissolved organic matter inventories at Station ALOHA in the North Pacific Subtropical Gyre. Limnol Oceanogr, 2002, 47: 1-10 CrossRef Google Scholar

[54] Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods, 2008, 6: 230-235 CrossRef Google Scholar

[55] Giese M. Joint global ocean flux study (JGOFS). Environ Sci Pollut Res, 1994, 1: 177 CrossRef PubMed Google Scholar

[56] Hansell D A. Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci, 2013, 5: 421-445 CrossRef PubMed Google Scholar

[57] Hansell D A, Carlson C A. 2015. Biogeochemistry of Marine Dissolved Organic Matter. 2nd ed. Amsterdam: Elsevier. Google Scholar

[58] Hedges J I. Global biogeochemical cycles: Progress and problems. Mar Chem, 1992, 39: 67-93 CrossRef Google Scholar

[59] Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta, 2006, 70: 2990-3010 CrossRef Google Scholar

[60] Hertkorn N, Harir M, Koch B P, Michalke B, Schmitt-Kopplin P. High-field NMR spectroscopy and FTICR mass spectrometry: Powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences, 2013, 10: 1583-1624 CrossRef Google Scholar

[61] Hwang J, Druffel E R M. Lipid-like material as the source of the uncharacterized organic carbon in the ocean?. Science, 2003, 299: 881-884 CrossRef PubMed Google Scholar

[62] Jiao N, Zhang Y, Chen Y. Time series observation based InfraRed Epifluorescence Microscopic (TIREM) approach for accurate enumeration of bacteriochlorophyll-containing microbes in marine environments. J Microbiol Methods, 2006, 65: 442-452 CrossRef PubMed Google Scholar

[63] Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol, 2007, 9: 3091-3099 CrossRef PubMed Google Scholar

[64] Jiao N, Zhang C, Chen F, Kan J, Zhang F. 2008. Frontiers and technological advances in microbial processes and carbon cycling in the ocean. In: Mertens L P, ed. Biological Oceanography Research Trends. New York: NOVA Science Publishers Inc. 217–267. Google Scholar

[65] Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 2010, 8: 593-599 CrossRef PubMed Google Scholar

[66] Jiao N, Tang K, Cai H, Mao Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat Rev Microbiol, 2011, 9: 75 CrossRef Google Scholar

[67] Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 2014, 11: 5285-5306 CrossRef Google Scholar

[68] Jiao N, Legendre L, Robinson C, Thomas H, Luo Y W, Dang H, Liu J, Zhang R, Tang K, Luo T, Li C, Wang X, Zhang C. Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”. Science, 2015, 350: 1483 CrossRef PubMed Google Scholar

[69] Jiao N, Cai R, Zheng Q, Tang K, Liu J, Jiao F, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev, 2018a, 5: 459-463 CrossRef Google Scholar

[70] Jiao N, Wang H, Xu G, Aricò S. Blue carbon on the rise: Challenges and opportunities. Natl Sci Rev, 2018b, 5: 464-468 CrossRef Google Scholar

[71] Koch B P, Dittmar T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom, 2006, 20: 926-932 CrossRef Google Scholar

[72] Koch B P, Kattner G, Witt M, Passow U. Molecular insights into the microbial formation of marine dissolved organic matter: Recalcitrant or labile?. Biogeosciences, 2014, 11: 4173-4190 CrossRef Google Scholar

[73] Lechtenfeld O J, Hertkorn N, Shen Y, Witt M, Benner R. Marine sequestration of carbon in bacterial metabolites. Nat Commun, 2015, 6: 6711 CrossRef PubMed Google Scholar

[74] Li P, Tao J, Lin J, He C, Shi Q, Li X, Zhang C. Stratification of dissolved organic matter in the upper 2000 m water column at the Mariana Trench. Sci Total Environ, 2019, 668: 1222-1231 CrossRef PubMed Google Scholar

[75] Medeiros P M, Seidel M, Powers L C, Dittmar T, Hansell D A, Miller W L. Dissolved organic matter composition and photochemical transformations in the northern North Pacific Ocean. Geophys Res Lett, 2015, 42: 863-870 CrossRef Google Scholar

[76] Ridgwell A. Evolution of the ocean’s “biological pump”. Proc Natl Acad Sci USA, 2011, 108: 16485-16486 CrossRef PubMed Google Scholar

[77] Robinson C, Wallace D, Hyun J H, Polimene L, Benner R, Zhang Y, Cai R, Zhang R, Jiao N. An implementation strategy to quantify the marine microbial carbon pump and its sensitivity to global change. Natl Sci Rev, 2018, 5: 474-480 CrossRef Google Scholar

[78] Roshan S, Devries T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat Commun, 2017, 8: 2036 CrossRef PubMed Google Scholar

[79] Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 2003, 100: 8124-8129 CrossRef PubMed Google Scholar

[80] Šantl-Temkiv T, Finster K, Dittmar T, Hansen B M, Thyrhaug R, Nielsen N W, Karlson U G, Bertilsson S. Hailstones: A window into the microbial and chemical inventory of a storm cloud. PLoS ONE, 2013, 8: e53550 CrossRef PubMed Google Scholar

[81] Sexton P F, Norris R D, Wilson P A, Pälike H, Westerhold T, Röhl U, Bolton C T, Gibbs S. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature, 2011, 471: 349-352 CrossRef PubMed Google Scholar

[82] Shen Y, Benner R. Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Sci Rep, 2018, 8: 2542 CrossRef PubMed Google Scholar

[83] Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res, 2003, 25: 1331-1346 CrossRef Google Scholar

[84] Stone R. The invisible hand behind a vast carbon reservoir. Science, 2010, 328: 1476-1477 CrossRef PubMed Google Scholar

[85] Taylor P G, Townsend A R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature, 2010, 464: 1178-1181 CrossRef PubMed Google Scholar

[86] Volk T, Hoffert M I. 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union. 99–110. Google Scholar

[87] Wang N, Luo Y W, Polimene L, Zhang R, Zheng Q, Cai R, Jiao N. Contribution of structural recalcitrance to the formation of the deep oceanic dissolved organic carbon reservoir. Environ Microbiol Rep, 2018, 10: 711-717 CrossRef PubMed Google Scholar

[88] Zhang C, Dang H, Azam F, Benner R, Legendre L, Passow U, Polimene L, Robinson C, Suttle C A, Jiao N. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev, 2018, 5: 481-499 CrossRef Google Scholar

[89] Zhao Z, Gonsior M, Luek J, Timko S, Ianiri H, Hertkorn N, Schmitt-Kopplin P, Fang X, Zeng Q, Jiao N, Chen F. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat Commun, 2017, 8: 15284 CrossRef PubMed Google Scholar

[90] Zheng Q, Chen Q, Cai R, He C, Guo W, Wang Y, Shi Q, Chen C, Jiao N. Molecular characteristics of microbially mediated transformations of Synechococcus‐derived dissolved organic matter as revealed by incubation experiments. Environ Microbiol, 2019, 21: 2533-2543 CrossRef PubMed Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号