logo

SCIENTIA SINICA Terrae, Volume 49, Issue 10: 1590-1606(2019) https://doi.org/10.1360/SSTe-2019-0167

探索南海深部的回顾与展望

More info
  • ReceivedJul 31, 2019
  • AcceptedAug 28, 2019
  • PublishedSep 9, 2019

Abstract

中国深海的科学探索, 起步晚、发展快, 仅二十多年的努力, 就使南海成为深海研究的国际前沿. 深海科学钻探、长期观测系统和海底深潜, 被喻为探索深海的“三深”技术, 三者为南海深部探索提供了技术基础, 取得了突破性的科学进展. 南海五次国际大洋钻探航次, 在三四千米的深海区取芯上万米, 其中6处钻进了岩浆岩基底, 揭示了南海成因的奥秘. 通过南海深海沉积的研究, 发现了低纬区水、碳循环直接响应地球轨道变化的证据, 从而提出了低纬过程也能驱动全球气候变化的新认识, 质疑北极冰盖决定一切的传统观点. 通过洋陆过渡带基底的探索, 发现作为西太平洋俯冲带产生的边缘海盆地, 南海有着岩浆活动始终活跃、岩石圈破裂迅速等一系列特色, 从而提出板缘张裂的新概念, 质疑大西洋模式作为海盆成因机制的普适性, 指出“南海不是小大西洋”. 通过深水锚系长期观测和深潜技术的应用, 发现了南海深海环流的气旋式结构特征, 实现了深海沉积的等深流和浊流搬运的现场观测, 取得了微型生物碳泵和碳、氮耦合等生物地球化学方面的研究突破, 发现了南海的锰结核、古热液口和深海冷水珊瑚林. 南海的深海探索历来具有国际规模与重要影响, 而近二十年来的研究进展主要是在中国科学家主持下取得, 其中国家自然科学基金委员会为期八年的“南海深部过程演变”研究计划(2011~2018), 在科学探索中起了核心作用.


Funded by

国家自然科学基金项目(91128000)


References

[1] 丁仲礼. 2018. 中国大洋钻探二十年. 科学通报, 63: 3866–3867. Google Scholar

[2] 广州海洋地质调查局. 2015. 南海地质地球物理图系(1:200万). 天津: 中国航海图书出版社. Google Scholar

[3] 翦知湣. 2018. 进军深海科学前沿——中国参与大洋钻探的进展. 科学通报, 63: 3877–3882. Google Scholar

[4] 李家彪, 丁巍伟, 吴自银, 张洁, 董崇志. 2012. 南海西南海盆的渐进式扩张. 科学通报, 57: 1896–1905. Google Scholar

[5] 刘志飞, 马鹏飞, 吴家望. 2018. 大洋钻探的发展历史. 中国大洋钻探发现计划办公室、海洋地质国家重点实验室编著. 大洋钻探五十年. 上海: 同济大学出版社. 2–49. Google Scholar

[6] 上海海洋科技研究中心(筹), 海洋地质国家重点实验室(同济大学). 2011. 海底观测——科学与技术的结合. 上海: 同济大学出版社. 272. Google Scholar

[7] 汪品先. 2012. 追踪边缘海的生命史——“南海深部计划”的科学目标. 科学通报, 57: 1807–1826. Google Scholar

[8] 汪品先, 赵泉鸿, 翦知湣, 成鑫荣, 黄维, 田军, 王吉良, 李前裕, 李保华, 苏新. 2003. 南海三千万年的深海记录. 科学通报, 48: 2206–2215. Google Scholar

[9] 姚伯初, 曾维军, 陈艺中, 张锡林, Hayes D E, Diebold J, Buhl P, Spangler S. 1994. 南海北部陆缘东部的地壳结构. 地球物理学报. 37: 27–35. Google Scholar

[10] 尹赞勋. 1959. 下海, 入地, 上天. 科学家谈21世纪. 上海: 少年儿童出版社. 21–26. Google Scholar

[11] 中国大洋发现计划办公室, 海洋地质国家重点实验室. 2018. 大洋钻探五十年. 上海: 同济大学出版社. 396. Google Scholar

[12] 中国地质调查局. 2000. 新中国海洋地质工作大事记(1949–1999). 北京: 海洋出版社. 259. Google Scholar

[13] 朱伟林, 钟锴, 李友川, 徐强, 房殿勇. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57: 1833–1841. Google Scholar

[14] Beaufort L, de Garidel-Thoron T, Mix A C, Pisias N G. ENSO-like forcing on oceanic primary production during the late Pleistocene. Science, 2001, 293: 2440-2444 CrossRef PubMed ADS Google Scholar

[15] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. J Geophys Res, 1993, 98: 6299-6328 CrossRef ADS Google Scholar

[16] Brune S, Williams S E, Müller R D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 2017, 10: 941-946 CrossRef ADS Google Scholar

[17] Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. The Asian monsoon over the past 640000 years and ice age terminations. Nature, 2016, 534: 640-646 CrossRef PubMed ADS Google Scholar

[18] Childress L, and the Expedition 368X Scientists. 2019. Expedition 368X Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program. Google Scholar

[19] CLIMAP Project. The surface of the ice-age Earth. Science, 1976, 191: 1131-1137 CrossRef PubMed ADS Google Scholar

[20] Dai M H, Cao Z M, Guo X H, Zhai W D, Liu Z Y, Yin Z Q, Xu Y P, Gan J P, Hu J Y, Du C J. Why are some marginal seas sources of atmospheric CO2?. Geophys Res Lett, 2013, 40: 2154-2158 CrossRef ADS Google Scholar

[21] Dang H, Jian Z, Kissel C, Bassinot F. Precessional changes in the western equatorial Pacific Hydroclimate: A 240 kyr marine record from the Halmahera Sea, East Indonesia. Geochem Geophys Geosyst, 2015, 16: 148-164 CrossRef ADS Google Scholar

[22] Du C, Liu Z, Kao S J, Dai M. Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: The South China Sea. Geophys Res Lett, 2017, 44: 11,510-11,518 CrossRef ADS Google Scholar

[23] Hall R. Reconstructing Cenozoic SE Asia. Geol Soc Lond Spec Publ, 1996, 106: 153-184 CrossRef ADS Google Scholar

[24] Herbert T D. A long marine history of carbon cycle modulation by orbital-climatic changes. Proc Natl Acad Sci USA, 1997, 94: 8362-8369 CrossRef PubMed ADS Google Scholar

[25] Huang C Y, Wang P X, Yu M M, You C F, Liu C S, Zhao X X, Shao L, Yumul G P Jr. 2019. Mechanism and processes for opening up the South China Sea. Natl Sci Rev, https://doi.org/10.1093/nsr/nwz119. Google Scholar

[26] Huismans R, Beaumont C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 2011, 473: 74-78 CrossRef PubMed ADS Google Scholar

[27] Imbrie J, Berger A, Boyle E A, Clemens S C, Duffy A, Howard W R, Kukla G, Kutzbach J, Martinson D G, McIntyre A, Mix A C, Molfino B, Morley J J, Peterson L C, Pisias N G, Prell W L, Raymo M E, Shackleton N J, Toggweiler J R. On the structure and origin of major glaciation cycles 2. The 100000-year cycle. Paleoceanography, 1993, 8: 699-735 CrossRef ADS Google Scholar

[28] Jia G, Peng P, Zhao Q, Jian Z. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology, 2003, 31: 1093-1096 CrossRef ADS Google Scholar

[29] Jian Z M, Yu Y, Li B, Wang J, Zhang X, Zhou Z. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 230: 251-263 CrossRef ADS Google Scholar

[30] Jian Z M, Jin H Y, Kaminski M A, Ferreira F, Li B H, Yu P S. 2019. Discovery of the marine Eocene in the northern South China Sea. Natl Sci Rev, https://doi.org/10.1093/nsr/nwz084. Google Scholar

[31] Jiao N, Tang K, Cai H, Mao Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat Rev Microbiol, 2011, 9: 75 CrossRef Google Scholar

[32] Jiao N, Cai R, Zheng Q, Tang K, Liu J, Jiao F, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev, 2018, 5: 459-463 CrossRef Google Scholar

[33] Karig D E. Origin and development of marginal basins in the Western Pacific. J Geophys Res, 1971, 76: 2542-2561 CrossRef ADS Google Scholar

[34] Komiya T, Maruyama S. A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Res, 2007, 11: 132-147 CrossRef ADS Google Scholar

[35] Kopf A, Camerlenghi A, Canals M, Ferdelman T, Mevel C, Pälike H, Roest W, Ask M, Barker-Jørgensen B, Boetius A, De Santis A, Früh-Green G, Lykousis V, McKenzie J, Mienert J, Parkes J, Schneider R, Weaver P. 2012. The Deep Sea and Sub-Seafloor Frontier. Germany: European Commission. 1–57. Google Scholar

[36] Larsen H C, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, Klaus A, Alvarez-Zarikian C A, Boaga J, Bowden S A, Briais A, Chen Y, Cukur D, Dadd K, Ding W, Dorais M, Ferré E C, Ferreira F, Furusawa A, Gewecke A, Hinojosa J, Höfig T W, Hsiung K H, Huang B, Huang E, Huang X L, Jiang S, Jin H, Johnson B G, Kurzawski R M, Lei C, Li B, Li L, Li Y, Lin J, Liu C, Liu C, Liu Z, Luna A J, Lupi C, McCarthy A, Ningthoujam L, Osono N, Peate D W, Persaud P, Qiu N, Robinson C, Satolli S, Sauermilch I, Schindlbeck J C, Skinner S, Straub S, Su X, Su C, Tian L, van der Zwan F M, Wan S, Wu H, Xiang R, Yadav R, Yi L, Yu P S, Zhang C, Zhang J, Zhang Y, Zhao N, Zhong G, Zhong L. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat Geosci, 2018, 11: 782-789 CrossRef ADS Google Scholar

[37] Li B, Wang J, Huang B, Li Q, Jian Z, Zhao Q, Su X, Wang P. South China Sea surface water evolution over the last 12 Myr: A south-north comparison from Ocean Drilling Program Sites 1143 and 1146. Paleoceanography, 2004, 19: PA1009 CrossRef ADS Google Scholar

[38] Li C F, Xu X, Lin J, Sun Z, Zhu J, Yao Y, Zhao X, Liu Q, Kulhanek D K, Wang J, Song T, Zhao J, Qiu N, Guan Y, Zhou Z, Williams T, Bao R, Briais A, Brown E A, Chen Y, Clift P D, Colwell F S, Dadd K A, Ding W, Almeida I H, Huang X L, Hyun S, Jiang T, Koppers A A P, Li Q, Liu C, Liu Z, Nagai R H, Peleo-Alampay A, Su X, Tejada M L G, Trinh H S, Yeh Y C, Zhang C, Zhang F, Zhang G L. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem Geophys Geosyst, 2014, 15: 4958-4983 CrossRef ADS Google Scholar

[39] Li C F, Lin J, Kulhanek D K and the Expedition 349 Scientists. 2015. South China Sea Tectonics. Proceedings of the International Ocean Discovery Program (IODP), 2015.3.30, 349: 1–300. Google Scholar

[40] Lin J, Xu Y G, Sun Z, Zhou Z Y, 2019. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems. Natl Sci Rev, https://doi.org/10.1093/nsr/nwz123. Google Scholar

[41] Ma W, Chai F, Xiu P, Xue H J, Tian J. Simulation of export production and biological pump structure in the South China Sea. Geo-Mar Lett, 2014, 34: 541-554 CrossRef ADS Google Scholar

[42] Menard H W. Transitional types of crust under small ocean basins. J Geophys Res, 1967, 72: 3061-3073 CrossRef ADS Google Scholar

[43] Murphy J B, Nance R D. The Pangea conundrum. Geology, 2008, 36: 703-706 CrossRef ADS Google Scholar

[44] Pälike H, Norris R D, Herrle J O, Wilson P A, Coxall H K, Lear C H, Shackleton N J, Tripati A K, Wade B S. The heartbeat of the Oligocene climate system. Science, 2006, 314: 1894-1898 CrossRef PubMed ADS Google Scholar

[45] Pierrehumbert R T. The hydrologic cycle in deep-time climate problems. Nature, 2002, 419: 191-198 CrossRef PubMed ADS Google Scholar

[46] Ruan A, Wei X, Niu X, Zhang J, Dong C, Wu Z, Wang X. Crustal structure and fracture zone in the Central Basin of the South China Sea from wide angle seismic experiments using OBS. Tectonophysics, 2016, 688: 1-10 CrossRef ADS Google Scholar

[47] Shu Y, Xue H, Wang D, Xie Q, Chen J, Li J, Chen R, He Y, Li D. Observed evidence of the anomalous South China Sea western boundary current during the summers of 2010 and 2011. J Geophys Res-Oceans, 2016, 121: 1145-1159 CrossRef ADS Google Scholar

[48] Sun X, Luo Y, Huang F, Tian J, Wang P. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Mar Geol, 2003, 201: 97-118 CrossRef ADS Google Scholar

[49] Sun Z, Lin J, Qiu N, Jian Z M, Wang P X, Pang X, Zheng J Y, Zhu B D. 2019. Why did the “magma-poor” South China Sea margin have so much magma? Natl Sci Rev, https://doi.org/10.1093/nsr/nwz116. Google Scholar

[50] Sun Z, Jian Z, Stock J M, Larsen H C, Klaus A, Alvarez Zarikian C A, the Expedition 367/368 Scientists. 2018. South China Sea Rifted Margin. In: Proceedings of the International Ocean Discovery Program. 367/368. College Station, TX (IODP). Google Scholar

[51] Sun Z, Stock J, Jian Z, McIntosh K, Alvarez-Zarikian C A, Klaus A. 2016. Expedition 367/368 Scientific Prospectus: South China Sea Rifted Margin. International Ocean Discovery Program. Google Scholar

[52] Tamaki K, Honza E. 1991. Global tectonics and formation of marginal basins: Role of the western Pacific. Episodes, 14: 224–230. Google Scholar

[53] Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 1982, 10: 611-616 CrossRef Google Scholar

[54] Taylor B, Karner G D. On the evolution of marginal basins. Rev Geophys, 1983, 21: 1727-1741 CrossRef ADS Google Scholar

[55] Tian J, Pak D K, Wang P, Lea D, Cheng X, Zhao Q. Late Pliocene monsoon linkage in the tropical South China Sea. Earth Planet Sci Lett, 2006, 252: 72-81 CrossRef ADS Google Scholar

[56] Tian J, Wang P, Cheng X. Development of the East Asian monsoon and Northern Hemisphere glaciation: Oxygen isotope records from the South China Sea. Quat Sci Rev, 2004, 23: 2007-2016 CrossRef ADS Google Scholar

[57] Tian J, Ma W T, Lyle M W, Shackford J K. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth Planet Sci Lett, 2014, 406: 72-80 CrossRef ADS Google Scholar

[58] Tian J W, Qu T D. 2012. Advances in research on the deep South China Sea circulation. Chin Sci Bull, 57: 3115–3120. Google Scholar

[59] Wan S M, Li A C, Clift P D, Jiang H Y. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 241: 139-159 CrossRef ADS Google Scholar

[60] Wan S M, Li A C, Clift P D, Stuut J B W. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 561-582 CrossRef ADS Google Scholar

[61] Wan X S, Sheng H X, Dai M, Zhang Y, Shi D, Trull T W, Zhu Y, Lomas M W, Kao S J. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nat Commun, 2018, 9: 915 CrossRef PubMed ADS Google Scholar

[62] Wang P X, Huang C Y, Lin J, Jian Z M, Sun Z, Zhao M H. 2019. The South China Sea is not a mini-Atlantic—Plate-edge rifting vs intra-plate rifting. Natl Sci Rev, doi: 10.1093/nsr/nwz135. Google Scholar

[63] Wang P X, Li Q, Tian J, He J, Jian Z, Ma W, Dang H. Monsoon influence on planktic δ18O records from the South China Sea. Quat Sci Rev, 2016, 142: 26-39 CrossRef ADS Google Scholar

[64] Wang P X, Li Q Y, Tian J, Jian Z M, Liu C L, Li L, Ma W T. Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea. Natl Sci Rev, 2014b, 1: 119-143 CrossRef Google Scholar

[65] Wang P, Li Q, Tian J. Pleistocene paleoceanography of the South China Sea: Progress over the past 20 years. Mar Geol, 2014a, 352: 381-396 CrossRef ADS Google Scholar

[66] Wang P X, Min Q B, Bain Y H, Feng W K. 1986. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130,000 years and their paleo-oceanographic implications. Acta Geol Sin, 60: 1–11. Google Scholar

[67] Wang P X, Prell W, Blum P, et al. 2000. Proceeding, Ocean Drilling Program, Initial Reports, 184. ODP, Texas A&M, College Station, USA. Google Scholar

[68] Wang P X, Tian J, Cheng X, Liu C, Xu J. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 2004, 19: PA4005 CrossRef ADS Google Scholar

[69] Wang P X, Tian J, Cheng X, Liu C, Xu J. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 2003, 31: 239-242 CrossRef Google Scholar

[70] Wang P X, Tian J, Lourens L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet Sci Lett, 2010, 290: 319-330 CrossRef ADS Google Scholar

[71] Wang P X, Wang B, Cheng H, Fasullo J, Guo Z T, Kiefer T, Liu Z Y. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci Rev, 2017, 174: 84-121 CrossRef Google Scholar

[72] Webster P J. The role of hydrological processes in ocean-atmosphere interactions. Rev Geophys, 1994, 32: 427-476 CrossRef ADS Google Scholar

[73] Wei G J, Li X H, Liu Y, Shao L, Liang X. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 2006, 21: PA4214 CrossRef ADS Google Scholar

[74] Wu J, Suppe J, Lu R, Kanda R. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J Geophys Res-Solid Earth, 2016, 121: 4670-4741 CrossRef ADS Google Scholar

[75] Xia S, Zhao D, Sun J, Huang H. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res, 2016, 36: 46-56 CrossRef ADS Google Scholar

[76] Zhai W D, Dai M H, Chen B S, Guo X H, Li Q, Shang S L, Zhang C Y, Cai W J, Wang D X. Seasonal variations of sea-air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences, 2013, 10: 7775-7791 CrossRef ADS Google Scholar

[77] Zhang Y, Liu Z, Zhao Y, Colin C, Zhang X, Wang M, Zhao S, Kneller B. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 2018, 46: 675-678 CrossRef ADS Google Scholar

[78] Zhang Y, Liu Z, Zhao Y, Li J, Liang X. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea. Deep-Sea Res Part II-Top Stud Oceanogr, 2015, 122: 6-14 CrossRef ADS Google Scholar

[79] Zhao M H, Sibuet J C, Wu J. 2019. The South China Sea and Philippine Sea plate intermingled fates. Natl Sci Rev, https://doi.org/10.1093/nsr/nwz107. Google Scholar

[80] Zhao X H, Zhou C, Zhao W, Tian J, Xu X. Deepwater overflow observed by three bottom-anchored moorings in the Bashi Channel. Deep-Sea Res Part I-Oceanogr Res Pap, 2016, 110: 65-74 CrossRef ADS Google Scholar

[81] Zhao Y, Liu Z, Zhang Y, Li J, Wang M, Wang W, Xu J. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport. Earth Planet Sci Lett, 2015, 430: 477-485 CrossRef ADS Google Scholar

[82] Zhao M H, He E, Sibuet J C, Sun L, Qiu X, Tan P, Wang J. Postseafloor spreading volcanism in the central East South China Sea and its formation through an extremely thin oceanic crust. Geochem Geophys Geosyst, 2018, 19: 621-641 CrossRef ADS Google Scholar

[83] Zhou C, Zhao W, Tian JW, Zhao X, Zhu Y, Yang Q, Qu T. 2017. Deep western boundary current in the South China Sea. Sci Report, 7: 9303. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1