logo

SCIENTIA SINICA Terrae, Volume 49 , Issue 11 : 1659-1696(2019) https://doi.org/10.1360/SSTe-2019-0174

70年来中国自然地理与生存环境基础研究的重要进展与展望

More info
  • ReceivedAug 7, 2019
  • AcceptedOct 11, 2019

Abstract

自然环境是人类赖以生存和发展的基础, 探索自然环境及其各要素(如地貌、气候、水文、土壤等)的特征、演变过程、地域分异规律以及驱动机制是自然地理学的重点研究内容. 中国自然地理要素类型丰富且区域差异较大, 为开展自然地理研究提供了难得的机遇. 文章主要围绕青藏高原隆升与亚洲内陆干旱化及河流发育、高原冰冻圈环境演化、全新世多时间尺度季风与西风气候变化、湖泊与湿地、流域模型与土壤侵蚀、过去人-地关系演化、生物地理及中国三维地带性规律等几个方面, 梳理了近70年来中国自然地理与生存环境研究的重大理论进展与重要贡献. 在简要交代国际前沿研究进展的基础上, 回顾并梳理了中国自然地理学各分支领域的研究脉络, 进一步聚焦重大研究成果或具有较大争议、重大影响的学术争鸣问题, 归纳目前研究现状, 并进行未来工作展望. 最后提出在推进生态文明建设的国家需求下, 应发挥中国自然地理研究的优势, 厘清自然地理要素变化的过程、规律与机制, 持续推进中国自然地理研究为国家战略服务, 在全球视野下做出具有中国特色的自然地理学理论贡献.


Funded by

国家自然科学基金项目(41842050)


Acknowledgment

本文是《中国科学: 地球科学》发起为中华人民共和国成立70周年献礼而特邀的学科发展综述论文, 文中自然地理学各分支学科和方向的进展都是相关学科的领军科学家完成的, 多数作者的排名按照学科和单位统筹考虑. 论文在完成过程中, 有非常多的学者先后参与了这项工作, 不能全部列为作者, 在此一并致谢.


References

[1] 蔡运龙. 2010. 当代自然地理学态势. 地理研究, 29: 1–12. Google Scholar

[2] 蔡运龙, 宋长青, 冷疏影. 2009. 中国自然地理学的发展趋势与优先领域. 地理科学, 29: 619–626. Google Scholar

[3] 陈传康, 郑度, 申元村, 杨勤业. 1994. 近10年来自然地理学的新进展. 地理学报, 49: 684–690. Google Scholar

[4] 陈发虎, 范育新, Madsen D B, 春喜, 赵晖, 杨丽萍. 2008a. 河套地区新生代湖泊演化与“吉兰泰-河套”形成机制的初步研究. 第四纪研究, 28: 866–873. Google Scholar

[5] 陈发虎, 范育新, 春喜, Madsen D B, Oviatt C G, 赵晖, 杨丽萍, 孙洋. 2008b. 晚第四纪“吉兰泰-河套”古大湖的初步研究. 科学通报, 53: 1207–1219. Google Scholar

[6] 陈发虎, 黄伟, 靳立亚, 陈建徽, 王劲松. 2011. 全球变暖背景下中亚干旱区降水变化特征及其空间差异. 中国科学: 地球科学, 41: 1647–1657. Google Scholar

[7] 陈建徽, 吕飞亚, 黄小忠, Birks H J B, Telford R J, 张生瑞, 许清海, 赵艳, 王海鹏, 周爱锋, 黄伟, 刘建宝, 魏国英. 2018. 基于孢粉的古气候参数定量重建: 一种新思路及其在中国的应用实例. 中国科学: 地球科学, 48: 42–50. Google Scholar

[8] 陈建徽, 饶志国, 刘建宝, 黄伟, Feng S, 董广辉, 胡玉, 许清海, 陈发虎. 2016. 全新世东亚夏季风最强盛期出现在何时?——兼论中国南方石笋氧同位素的古气候意义. 中国科学: 地球科学, 46: 1494–1504. Google Scholar

[9] 陈灵芝, 孙航, 郭柯. 2014. 中国植物区系与植被地理. 北京: 科学出版社. 596. Google Scholar

[10] 陈宜瑜, 吕宪国. 2003. 湿地功能与湿地科学的研究方向. 湿地科学, 1: 7–11. Google Scholar

[11] 程国栋, 李新. 2015. 流域科学及其集成研究方法. 中国科学: 地球科学, 45: 811–819. Google Scholar

[12] 程国栋, 吴青柏, 马巍. 2009. 青藏铁路主动冷却路基的工程效果. 中国科学: 技术科学, 39: 16–22. Google Scholar

[13] 崔之久. 1958. 贡嘎山现代冰川的初步观察-纪念为征服贡嘎山而英勇牺牲的战友. 地理学报, 24: 318–342. Google Scholar

[14] 德日进, 杨钟健. 1930. 山西西部陕西西北部蓬蒂纪后黄土期前之地层观察. 地质专报甲种8号, 1–19. Google Scholar

[15] 邓根云. 1979. 水面蒸发量的一种气候学计算方法. 气象学报, 37: 87–96. Google Scholar

[16] 董光荣. 2002. 中国沙漠形成演化气候变化与沙漠化研究. 北京: 海洋出版社. 734. Google Scholar

[17] 董广辉, 杨谊时, 韩建业, 王辉, 陈发虎. 2017a. 农作物传播视角下的欧亚大陆史前东西方文化交流. 中国科学: 地球科学, 47: 530–543. Google Scholar

[18] 董广辉, 刘峰文, 陈发虎. 2017b. 不同空间尺度影响古代社会演化的环境和技术因素探讨. 中国科学: 地球科学, 47: 1383–1394. Google Scholar

[19] 董治宝, 苏志珠, 钱广强, 罗万银, 张正偲, 吴晋峰. 2011. 库姆塔格沙漠风沙地貌. 北京: 科学出版社. 484. Google Scholar

[20] 方小敏, 李吉均, 朱俊杰, 陈怀录, 曹继秀. 1997. 甘肃临夏盆地新生代地层绝对年代测定与划分. 科学通报, 42: 1457–1471. Google Scholar

[21] 傅抱璞. 1981. 土壤蒸发的计算. 气象学报, 39: 23–31. Google Scholar

[22] 傅伯杰. 2018. 新时代自然地理学发展的思考. 地理科学进展, 37: 1–7. Google Scholar

[23] 葛全胜. 2011. 中国历朝气候变化. 北京: 科学出版社. 709. Google Scholar

[24] 龚时旸, 蒋德麒. 1978. 黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理. 中国科学A辑, 21: 671–678. Google Scholar

[25] 郭忠升, 邵明安. 2003. 半干旱区人工林草地土壤旱化与土壤水分植被承载力. 生态学报, 23: 1640–164. Google Scholar

[26] 黄秉维. 1955. 编制黄河中游流域土壤侵蚀分区图的经验教训. 科学通报, 12: 15–21. Google Scholar

[27] 黄秉维. 1959. 中国综合自然区划草案. 科学通报, 18: 594–602. Google Scholar

[28] 黄秉维. 1960. 自然地理学一些最主要的趋势. 地理学报, 26: 149–154. Google Scholar

[29] 黄慰文, 陈克造, 袁宝印. 1987. 青海小柴达湖的旧石器. 见: 中国-澳大利亚第四纪学术讨论会论文集. 北京: 科学出版社. 168–175. Google Scholar

[30] 黄锡畴. 1962. 欧亚大陆温带山地垂直带结构类型. 中国地理学会和中国科学院地学部, 编. 一九六0年全国地理学术会议论文选集. 北京: 科学出版社. 356. Google Scholar

[31] 姜明, 邹元春, 章光新, 佟守正, 武海涛, 刘晓辉, 张仲胜, 薛振山, 吕宪国. 2018. 中国湿地科学研究进展与展望——纪念中国科学院东北地理与农业生态研究所建所60周年. 湿地科学, 16: 279–287. Google Scholar

[32] 孔繁翔, 高光. 2005. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考. 生态学报, 25: 589–595. Google Scholar

[33] 李炳元. 2000. 青藏高原大湖期. 地理学报, 55: 174–182. Google Scholar

[34] 李吉均. 1990. 中国西北地区晚更新世以来环境变迁模式. 第四纪研究, 3: 197–204. Google Scholar

[35] 李吉均, 方小敏, 马海洲, 朱俊杰, 潘保田, 陈怀录. 1996. 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学D辑: 地球科学, 26: 316–322. Google Scholar

[36] 李吉均, 方小敏. 1998. 青藏高原隆起与环境变化研究. 科学通报, 43: 1569–1574. Google Scholar

[37] 李吉均, 文世宣, 张青松, 王富葆, 郑本兴, 李炳元. 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学, 6: 608–616. Google Scholar

[38] 李吉均, 郑本兴, 杨锡金. 1986. 西藏冰川. 北京: 科学出版社. 328. Google Scholar

[39] 李四光. 1947. 冰期之庐山. 国立中央研究院地质研究所专刊. 乙种第二号, 1–60. Google Scholar

[40] 李文朝. 1996. 浅型富营养湖泊的生态恢复——五里湖水生植被重建实验. 湖泊科学, 8: 1–10. Google Scholar

[41] 刘昌明. 2013. “绿水”研究与生态维护的探讨. 北京: 流域水环境保护与技术创新论坛. Google Scholar

[42] 刘昌明, 洪宝鑫, 曾明煊, 程义. 1965. 黄土高原暴雨径流预报关系初步实验研究. 科学通报, 2: 158–161. Google Scholar

[43] 刘昌明, 王中根, 郑红星, 张橹, 吴险峰. 2008. HIMS系统及其定制模型的开发与应用. 中国科学E辑: 技术科学, 48: 350–360. Google Scholar

[44] 刘东生. 1985. 黄土与环境. 北京: 科学出版社. 497. Google Scholar

[45] 刘东生, 郑绵平, 郭正堂. 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 18: 194–204. Google Scholar

[46] 刘建宝, 陈发虎, 陈建徽, 许清海, 夏敦胜, 王宗礼, 李月丛. 2011. 山西宁武公海湖泊岩芯的环境磁学特征及中世纪暖期湿润气候探讨. 科学通报, 56: 2580–2590. Google Scholar

[47] 刘善建. 1953. 天水水土流失测验的初步分析. 科学通报, 12: 59–65. Google Scholar

[48] 刘时银, 姚晓军, 郭万钦, 许君利, 上官冬辉, 魏俊锋, 鲍伟佳, 吴立宗. 2015. 基于第二次冰川编目的中国冰川现状. 地理学报, 70: 3–16. Google Scholar

[49] 刘焱序, 杨思琪, 赵文武, 傅伯杰. 2018. 变化背景下的当代中国自然地理学——2017全国自然地理学大会述评. 地理科学进展, 37: 163–171. Google Scholar

[50] 刘禹, 安芷生, Linderholm H S, Chen D, 宋慧明, 蔡秋芳, 孙军艳, 田华. 2009. 青藏高原中东部过去2485年以来温度变化的树轮记录. 中国科学D辑: 地球科学, 39: 166–176. Google Scholar

[51] 隆浩, 沈吉. 2015. 青藏高原及其邻区晚更新世高湖面事件的年代学问题——以柴达木盆地和腾格里沙漠为例. 中国科学: 地球科学, 45: 52–65. Google Scholar

[52] 隆浩, 张静然. 2016. 晚第四纪湖泊演化光释光测年. 第四纪研究, 36: 1191–1203. Google Scholar

[53] 吕宪国. 2008. 中国湿地与湿地研究. 石家庄: 河北科学技术出版社. 922. Google Scholar

[54] 马柱国, 符淙斌. 2006. 1951~2004年中国北方干旱化的基本事实. 科学通报, 51: 2429–2439. Google Scholar

[55] 潘保田. 1991. 黄河发育与青藏高原隆起问题. 博士学位论文. 兰州: 兰州大学. Google Scholar

[56] 濮培民, 王国祥, 胡春华, 胡维平, 范成新. 2000. 底泥疏浚能控制湖泊富营养化吗? 湖泊科学, 12: 269–279. Google Scholar

[57] 钱宁, 王可钦, 闫林德, 府仁寿. 1980. 黄河中游粗泥沙来源区对黄河下游冲淤的影响. 第一次河流泥沙国际学术讨论会论文集. 53–62. Google Scholar

[58] 强小科, 安芷生, 宋友桂, 常宏, 孙有斌, 刘卫国, 敖红, 董吉宝, 符超峰, 吴枫, 卢凤艳, 蔡演军, 周卫健, 曹军骥, 徐新文, 艾莉. 2010. 晚渐新世以来中国黄土高原风成红粘土序列的发现: 亚洲内陆干旱化起源的新记录. 中国科学: 地球科学, 40: 1469–1488. Google Scholar

[59] 秦伯强, 胡维平, 陈伟民. 2004. 太湖水环境演化过程与机理. 北京: 科学出版社. 397. Google Scholar

[60] 秦伯强, 谢平. 2005. 长江中下游地区湖泊内源营养负荷、循环与富营养化. 中国科学D辑: 地球科学, 35(增刊): 1–202. Google Scholar

[61] 秦伯强, 杨桂军, 马健荣, 邓建明, 李未, 吴挺峰, 刘丽贞, 高光, 朱广伟, 张运林. 2016. 太湖蓝藻水华“暴发”的动态特征及其机制. 科学通报, 61: 759–770. Google Scholar

[62] 任美锷. 2006. 黄河的输沙量: 过去、现在和将来——距今15万年以来的黄河泥沙收支表. 地球科学进展, 21: 551–563. Google Scholar

[63] 邵明安, 郭忠升, 夏永秋, 王延平. 2010. 黄土高原土壤水分植被承载力研究. 北京: 科学出版社. 342. Google Scholar

[64] 施雅风. 2005. 简明中国冰川目录. 上海: 上海科学普及出版社. 194. Google Scholar

[65] 施雅风, 崔之久, 李吉均. 1989. 中国东部第四纪冰川与环境问题. 北京: 科学出版社. 462. Google Scholar

[66] 施雅风, 孔昭宸, 王苏民, 唐领余, 王富葆, 姚檀栋, 赵希涛, 张丕远, 施少华. 1993. 中国全新世大暖期鼎盛阶段的气候与环境. 中国科学B辑, 23: 865–873. Google Scholar

[67] 施雅风, 刘时银. 2000. 中国冰川对21世纪全球变暖响应的预估. 科学通报, 45: 434–438. Google Scholar

[68] 施雅风, 曲耀光. 1989. 柴窝堡-达坂城地区水资源与环境. 北京: 科学出版社. 192. Google Scholar

[69] 施雅风, 汤懋苍, 马玉贞. 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨. 中国科学D辑: 地球科学, 28: 263–271. Google Scholar

[70] 孙航, 邓涛, 陈永生, 周卓. 2017. 植物区系地理研究现状与发展趋势. 生物多样性, 25: 111–122. Google Scholar

[71] 孙鸿烈, 郑度, 姚檀栋, 张镱锂. 2012. 青藏高原国家生态安全屏障保护与建设. 地理学报, 67: 3–12. Google Scholar

[72] 唐克丽. 1985. 黄河泥沙与黄土高原水土流失综合治理问题. 中国水土保持, 12: 10–12. Google Scholar

[73] 田均良, 周佩华, 刘普灵, 吴普特, 郑世清, 李雅琦, 武春龙. 1992. 土壤侵蚀REE示踪法研究初报. 水土保持学报, 6: 23–27. Google Scholar

[74] 田立德, 姚檀栋. 2016. 青藏高原冰芯高分辨率气候环境记录研究进展. 科学通报, 61: 926–937. Google Scholar

[75] 汪品先. 2009. 全球季风的地质演变. 科学通报, 5: 535–556. Google Scholar

[76] 王浩, 贾仰文, 杨贵羽, 周祖昊, 仇亚琴, 牛存稳, 彭辉. 2013. 海河流域二元水循环及其伴生过程综合模拟. 科学通报, 58: 1064–1077. Google Scholar

[77] 王金亭, 陈伟烈, 李渤生. 1994. 青藏高原植物生态学研究的回顾与展望. 见: 姜恕, 编. 植被生态学研究. 北京: 科学出版社. 112–119. Google Scholar

[78] 王乃梁. 1956. 对于张伯声先生“从黄土线说明黄河河道的发育”一文的意见. 科学通报, 7: 67–72. Google Scholar

[79] 王苏民. 1998. 中国湖泊志. 北京: 科学出版社. 580. Google Scholar

[80] 王鑫, Brain K, 孟津, Carrapa B, Decelles P, Clementz M, Abdulov S, 陈发虎. 2016. 塔吉克盆地东北缘海相-风成沉积序列与中亚晚始新世-早中新世干旱化的初步研究. 中国科学: 地球科学, 46: 674–690. Google Scholar

[81] 吴征镒. 1965. 中国植物区系的热带亲缘. 科学通报, 1: 25–33. Google Scholar

[82] 吴征镒. 1979. 论中国植物区系的分区问题. 云南植物研究, 1: 1–24. Google Scholar

[83] 吴征镒, 路安民, 汤彦承, 陈之端, 李德铢. 2003. 中国被子植物科属综论. 北京: 科学出版社. 1209. Google Scholar

[84] 吴征镒, 王荷生. 1983. 中国自然地理-植物地理. 北京: 科学出版社. 129. Google Scholar

[85] 夏军, 王纲, 吕爱锋, 谈戈. 2003. 分布式时变增益流域水循环模拟. 地理学报, 5: 789–796. Google Scholar

[86] 夏军, 王纲胜, 谈戈, 叶爱中, 黄国和. 2004. 水文非线性系统与分布式时变增益模型. 中国科学D辑: 地球科学, 34: 1062–1071. Google Scholar

[87] 姚檀栋. 2007. 青藏高原及毗邻地区冰川湖泊图. 西安: 西安地图出版社. Google Scholar

[88] 姚檀栋, Thompson L, 施雅风, 秦大河, 焦克勤, 杨志红, 田立德, Mosley-Thompson E. 1997. 古里雅冰芯中末次间冰期以来气候变化记录研究. 中国科学D辑: 地球科学, 27: 447–452. Google Scholar

[89] 姚檀栋, Thompson L. 1992. 敦德冰芯记录与过去5ka温度变化. 中国科学B辑: 化学 生命科学 地学, 10: 1089–1093. Google Scholar

[90] 姚檀栋, 陈发虎, 崔鹏, 马耀明, 徐柏青, 朱立平, 张凡, 王伟财, 艾丽坤, 杨晓新. 2017. 从青藏高原到第三极和泛第三极. 中国科学院院刊, (9): 12–19. Google Scholar

[91] 杨少华, 石耀霖. 2015. 冰川槽谷形成过程的三维数值模拟. 中国科学: 地球科学, 45: 1208–1219. Google Scholar

[92] 张百平, 姚永慧. 2015. 山体效应研究. 北京: 中国环境出版社. 250. Google Scholar

[93] 张保升. 1957. 黄河河道地形的发育. 科学通报, 8: 231–237. Google Scholar

[94] 张伯声. 1956. 从黄土线说明黄河河道发育. 科学通报, 3: 5–10. Google Scholar

[95] 张东菊, 董广辉, 王辉, 任晓燕, 哈比布, 强明瑞, 陈发虎. 2016. 史前人类向青藏高原扩散的历史过程和可能驱动机制. 中国科学: 地球科学, 46: 1007–1023. Google Scholar

[96] 张荣祖. 2011. 中国自然地理系列专著: 中国动物地理. 北京: 科学出版社. 330. Google Scholar

[97] 张新时. 1994. 中国山地植被垂直带的基本生态地理类型. 见: 姜恕, 编. 植被生态学研究. 北京: 科学出版社. 77–92. Google Scholar

[98] 张信宝, 李少龙, 王成华, 谭万沛, 赵庆昌, 张一云, 严美琼, 刘亚伦, 蒋锦江. 1988. 137Cs法测算梁峁坡农耕地土壤侵蚀量的初探. 水土保持通报, 8 : 18–22. Google Scholar

[99] 张镱锂. 2012. 青藏高原土地利用与土地覆被变化及区域适应. 北京: 气象出版社. 740. Google Scholar

[100] 张镱锂, 吴雪, 郑度. 2019. 喜马拉雅山脉中段土地覆被的垂直分异. 地理学报, 出版中. Google Scholar

[101] 赵人俊. 1984. 流域水文模拟-新安江模型与陕北模型. 北京: 水利电力出版社. 106–130. Google Scholar

[102] 赵人俊, 庄一翎. 1963. 降雨径流关系的区域规律. 华东水利学院学报: 水文分册, S2: 53–68. Google Scholar

[103] 赵松乔. 1956. 中国三大景观地带交汇处的天祝. 地理知识, 7: 249–252. Google Scholar

[104] 郑度. 1996. 青藏高原自然地域系统研究. 中国科学D辑: 地球科学, 26: 336–341. Google Scholar

[105] 郑度, 陈述彭. 2001. 地理学研究进展与前沿领域. 地球科学进展, 16: 599–606. Google Scholar

[106] 郑度, 李炳元. 1990. 青藏高原自然环境的演化与分异. 地理研究, 9: 1–9. Google Scholar

[107] 郑度, 杨勤业, 吴绍洪. 2015. 中国自然地理总论. 北京: 科学出版社. 767. Google Scholar

[108] 郑景云, 郝志新, 狄小春. 2002. 历史环境变化数据库的建设与应用. 地理研究, 21: 146–154. Google Scholar

[109] 郑绵平, 袁鹤然, 赵希涛, 刘喜方. 2006. 青藏高原第四纪泛湖期与古气候. 地质学报, 80: 170–180. Google Scholar

[110] 中国科学技术协会. 2012. 生态学学科发展报告(2011–2012). 北京: 中国科学技术出版社. 215. Google Scholar

[111] 钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨. 中国科学D辑: 地球科学, 26: 289–295. Google Scholar

[112] 周幼吾, 郭东信. 1982. 中国多年冻土的主要特征. 冰川冻土, 4: 1–19. Google Scholar

[113] 周幼吾, 邱国庆, 郭东信, 程国栋, 李树德. 2000. 中国冻土. 北京: 科学出版社. 1–450. Google Scholar

[114] 朱大岗, 孟宪刚, 赵希涛, 邵兆刚, 杨朝斌, 马志邦, 吴中海, 王建平. 2004. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁. 中国地质, 31: 269–277. Google Scholar

[115] 朱显谟. 1956. 黄土区土壤侵蚀的分类. 土壤学报, 4: 99–115. Google Scholar

[116] 朱震达, 陈治平, 吴正, 李钜章, 李炳元, 吴功成. 1981. 塔克拉玛干沙漠风沙地貌研究. 北京: 科学出版社. 100. Google Scholar

[117] 朱震达, 郭恒文, 吴劝成. 1964. 塔克拉玛干沙漠西南地区绿洲附近沙丘移动的研究. 地理学报, 30: 35–50. Google Scholar

[118] 竺可桢. 1925. 中国历史上气候之变迁. 东方杂志, 22: 58–68. Google Scholar

[119] 竺可桢. 1934. 东南季风与中国之雨量. 地理学报, 1: 1–28. Google Scholar

[120] 竺可桢. 1972. 中国近五千年来气候变迁的初步研究. 考古学报, 1: 15–38. Google Scholar

[121] An Z S, Clemens S C, Shen J, Qiang X K, Jin Z D, Sun Y B, Prell W L, J J, Wang S M, Xu H, Cai Y J, Zhou W J, Liu X D, Liu W G, Shi Z G, Yan L B, Xiao X Y, Chang H, Wu F, Ai L, Lu F Y. Glacial-Interglacial Indian summer monsoon dynamics. Science, 2011, 333: 719-723 CrossRef PubMed ADS Google Scholar

[122] An Z S, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[123] An Z S, Porter S C, Kutzbach J E, Wu X H, Wang S M, Liu X D, Zhou W J. Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev, 2000, 19: 743-762 CrossRef ADS Google Scholar

[124] Barton L, Newsome S D, Chen F H, Wang H, Guilderson T P, Bettinger R L. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA, 2009, 106: 5523-5528 CrossRef PubMed ADS Google Scholar

[125] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years. Quat Sci Rev, 1991, 10: 297-317 CrossRef ADS Google Scholar

[126] Beven K J. 2001. Rainfall-Rainoff Modelling. Chichester: John Wiley&Sons. 359. Google Scholar

[127] Biskaborn B K, Smith S L, Noetzli J, Matthes H, Vieira G, Streletskiy D A, Schoeneich P, Romanovsky V E, Lewkowicz A G, Abramov A, Allard M, Boike J, Cable W L, Christiansen H H, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman J P, Luo D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel A B K, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M, Lantuit H. Permafrost is warming at a global scale. Nat Commun, 2019, 10: 264 CrossRef PubMed ADS Google Scholar

[128] Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K, Scheel M, Bajracharya S, Stoffel M. The state and fate of Himalayan glaciers. Science, 2012, 336: 310-314 CrossRef PubMed ADS Google Scholar

[129] Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Demenocal P, Priore P, Cullen H, Hajdas I, Bonani G. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science, 1997, 278: 1257-1266 CrossRef ADS Google Scholar

[130] Borrelli P, Robinson D A, Fleischer L R, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V, Oost K V, Montanarella L, Panagos P. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun, 2017, 8: 1-3 CrossRef PubMed ADS Google Scholar

[131] Brantingham P J, Xing G. Peopling of the northern Tibetan Plateau. World Archaeol, 2006, 38: 387-414 CrossRef Google Scholar

[132] Brun F, Berthier E, Wagnon P, Kääb A, Treichler D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat Geosci, 2017, 10: 668-673 CrossRef PubMed ADS Google Scholar

[133] Burbank D W, Blythe A E, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha T P. Decoupling of erosion and precipitation in the Himalayas. Nature, 2003, 426: 652-655 CrossRef PubMed ADS Google Scholar

[134] Cai Z C, Xing G X, Yan X Y, Xu H, Tsuruta H, Yagi K, Minami K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil, 1997, 196: 7-14 CrossRef Google Scholar

[135] Cai Z C, Tsuruta H, Minami K. Methane emission from rice fields in China: Measurements and influencing factors. J Geophys Res, 2000, 105: 17231-17242 CrossRef ADS Google Scholar

[136] Cao B, Zhang T, Wu Q, Sheng Y, Zhao L, Zou D. Permafrost zonation index map and statistics over the Qinghai-Tibet Plateau based on field evidence. Permafrost Periglac Process, 2019, 30: 178-194 CrossRef Google Scholar

[137] Chang C F, Chen N S, Coward M P, Deng W M, Dewey J F, Gansser A, Harris N B W, Jin C W, Kidd W S F, Leeder M R, Li H, Lin J L, Liu C J, Mei H J, Molnar P, Pan Y, Pan Y S, Pearce J A, Shackleton R M, Smith A B, Sun Y Y, Wardllll M, Watts D R, Xu J T, Xu R H, Yin J X, Zhang Y Q. Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, 1986, 323: 501-507 CrossRef ADS Google Scholar

[138] Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 2010, 29: 1055-1068 CrossRef ADS Google Scholar

[139] Chen F H, Chen X M, Chen J H, Zhou A F, Wu D, Tang L Y, Zhang X J, Huang X Z, Yu J Q. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. J Quat Sci, 2014, 29: 661-674 CrossRef ADS Google Scholar

[140] Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 2015b, 347: 248-250 CrossRef PubMed ADS Google Scholar

[141] Chen F H, Welker F, Shen C C, Bailey S E, Bergmann I, Davis S, Xia H, Fischer R, Freidline S E, Yu T L, Skinner M M, Stelzer S, Dong G R, Fu Q M, Dong G H, Wang J, Zhang D J, Hublin J J. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 2019b, 569: 409-412 CrossRef PubMed ADS Google Scholar

[142] Chen F H, Xu Q H, Chen J H, Birks H J B, Liu J B, Zhang S R, Jin L Y, An C B, Telford R J, Cao X Y, Wang Z L, Zhang X J, Selvaraj K, Lü H Y, Li Y C, Zheng Z, Wang H P, Zhou A F, Dong G H, Zhang J W, Huang X Z, Bloemendal J, Rao Z G. East Asian summer monsoon precipitation variability since the last deglaciation. Sci Rep, 2015a, 5: 11186 CrossRef PubMed ADS Google Scholar

[143] Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wunnemann B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 2008, 27: 351-364 CrossRef ADS Google Scholar

[144] Chen F Z, Chen M J, Kong F X, Wu X D, Wu Q L. Species-dependent effects of crustacean plankton on a microbial community, assessed using an enclosure experiment in Lake Taihu, China. Limnol Oceanogr, 2012, 57: 1711-1720 CrossRef ADS Google Scholar

[145] Chen F, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev, 2019a, 192: 337-354 CrossRef Google Scholar

[146] Chen F, Jia J, Chen J, Li G, Zhang X, Xie H, Xia D, Huang W, An C. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat Sci Rev, 2016, 146: 134-146 CrossRef ADS Google Scholar

[147] Chen J H, Chen F H, Feng S, Huang W, Liu J B, Zhou A F. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat Sci Rev, 2015, 107: 98-111 CrossRef ADS Google Scholar

[148] Chen K, Bowler J. Late pleistocene evolution of salt lakes in the Qaidam basin, Qinghai province, China. Palaeogeogr Palaeoclimatol Palaeoecol, 1986, 54: 87-104 CrossRef ADS Google Scholar

[149] Chen Y S, Deng T, Zhou Z, Sun H. Is the East Asian flora ancient or not?. Natl Sci Rev, 2018, 5: 920-932 CrossRef Google Scholar

[150] Cheng G D, Li X, Zhao W Z, Xu Z M, Feng Q, Xiao S C, Xiao H L. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Natl Sci Rev, 2014, 1: 413-428 CrossRef Google Scholar

[151] Cheng G D. The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Regions Sci Tech, 1983, 8: 57-66 CrossRef Google Scholar

[152] Clapp F G. The Hwang Ho, Yellow River. Geogr Rev, 1922, 12: 1-8 CrossRef Google Scholar

[153] Clift P D, Blusztajn J. Reorganization of the western Himalayan river system after five million years ago. Nature, 2005, 438: 1001-1003 CrossRef PubMed ADS Google Scholar

[154] Clift P D, Blusztajn J, Nguyen A D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys Res Lett, 2006, 33: 1-5 CrossRef ADS Google Scholar

[155] Craddock W H, Kirby E, Harkins N W, Zhang H, Shi X, Liu J. Rapid fluvial incision along the Yellow River during headward basin integration. Nat Geosci, 2010, 3: 209-213 CrossRef ADS Google Scholar

[156] Creamean J M, Suski K J, Rosenfeld D, Cazorla A, DeMott P J, Sullivan R C, White A B, Ralph F M, Minnis P, Comstock J M, Tomlinson J M, Prather K A. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 2013, 339: 1572-1578 CrossRef PubMed ADS Google Scholar

[157] Cui H, Wang J, Yu B, Hu Z, Yao P, Harbor J M. Marine Isotope Stage 3 paleotemperature inferred from reconstructing the Die Shan ice cap, northeastern Tibetan Plateau. Quat Res, 2018, 89: 494-504 CrossRef ADS Google Scholar

[158] Dansgaard W, Johnsen S J, Clausen H B, Dahl-Jensen D, Gundestrup N S, Hammer C U, Hvidberg C S, Steffensen J P, Sveinbjörnsdottir A E, Jouzel J, Bond G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 1993, 364: 218-220 CrossRef ADS Google Scholar

[159] Deng J, Paerl H W, Qin B, Zhang Y, Zhu G, Jeppesen E, Cai Y, Xu H. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Sci Total Environ, 2018, 645: 1361-1370 CrossRef PubMed ADS Google Scholar

[160] Deng Y, Gou X, Gao L, Yang M, Zhang F. Spatiotemporal drought variability of the eastern Tibetan Plateau during the last millennium. Clim Dyn, 2017, 49: 2077-2091 CrossRef ADS Google Scholar

[161] Deng Z, Qin L, Gao Y, Weisskopf A R, Zhang C, Fuller D Q, Parida S K. From early domesticated rice of the middle Yangtze Basin to millet, rice and wheat agriculture: Archaeobotanical macro-remains from Baligang, Nanyang Basin, Central China (6700–500 BC). PLoS ONE, 2015, 10: e0139885 CrossRef PubMed ADS Google Scholar

[162] Ding L, Kapp P, Wan X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 2005, 24: TC3001 CrossRef ADS Google Scholar

[163] Ding L, Kapp P, Yue Y, Lai Q. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet Sci Lett, 2007, 254: 28-38 CrossRef ADS Google Scholar

[164] Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 2017, 45: 215-218 CrossRef ADS Google Scholar

[165] Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 2014, 392: 250-264 CrossRef ADS Google Scholar

[166] Ding S M, Chen M S, Gong M D, Fan X F, Qin B Q, Xu H, Gao S S, Jin Z F, Tsang D C W, Zhang C S. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Environ, 2018, 625: 872-884 CrossRef PubMed ADS Google Scholar

[167] Ding S, Han C, Wang Y, Yao L, Wang Y, Xu D, Sun Q, Williams P N, Zhang C. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Res, 2015, 74: 100-109 CrossRef PubMed Google Scholar

[168] Ding Z L, Ranov V, Yang S L, Finaev A, Han J M, Wang G A. The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet Sci Lett, 2002, 200: 387-400 CrossRef ADS Google Scholar

[169] Ding Z L, Rutter N W, Liu T S. The onset of extensive loess deposition around the G/M boundary in China and its palaeoclimatic implications. Quat Int, 1997, 40: 53-60 CrossRef ADS Google Scholar

[170] Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 152: 49-66 CrossRef ADS Google Scholar

[171] Dong G C, Zhou W J, Yi C L, Fu Y C, Zhang L, Li M. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range. Quat Sci Rev, 2018, 186: 284-297 CrossRef ADS Google Scholar

[172] Dong G H, Li R, Lu M X, Zhang D J, James N. 2019. Evolution of human-environmental interactions in China from the Late Paleolithic to the Bronze Age. Prog Phys Geog, doi: 10.1177/0309133319876802. Google Scholar

[173] Dong G H, Yang Y S, Liu X Y, Li H M, Cui Y F, Wang H, Chen G K, Dodson J, Chen F H. Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China. Holocene, 2018, 28: 621-628 CrossRef Google Scholar

[174] Dong Z B, Hu G Y, Qian G Q, Lu J F, Zhang Z C, Luo W Y, Lyu P. High-altitude Aeolian research on the Tibetan Plateau. Rev Geophys, 2017, 55: 864-901 CrossRef ADS Google Scholar

[175] Duan J P, Esper J, Büntgen U, Li L, Xoplaki E, Zhang H, Wang L, Fang Y, Luterbacher J. Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat Commun, 2017, 8: 14008 CrossRef PubMed ADS Google Scholar

[176] Duan J P, Ma Z G, Wu P L, Xoplaki E, Hegerl G, Li L, Schurer A, Guan D B, Chen L, Duan Y W, Luterbacher J. Detection of human influences on temperature seasonality from the nineteenth century. Nat Sustain, 2019, 2: 484-490 CrossRef Google Scholar

[177] EDW (Mountain Research Initiative EDW Working Group). 2015. Elevation-dependent warming in mountain regions of the world. Nat Clim Chang, 5: 424–430. Google Scholar

[178] Egholm D L, Nielsen S B, Pedersen V K, Lesemann J E. Glacial effects limiting mountain height. Nature, 2009, 460: 884-887 CrossRef PubMed ADS Google Scholar

[179] Esper J, Cook E R, Schweingruber F H. Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 2002, 295: 2250-2253 CrossRef PubMed ADS Google Scholar

[180] Fan Q S, Lai Z P, Long H, Sun Y J, Liu X J. OSL chronology for lacustrine sediments recording high stands of Gahai Lake in Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Quat Geochronol, 2009, 5: 223-227 CrossRef Google Scholar

[181] Fang X M, Fang Y H, Zan J B, Zhang W L, Song C H, Appel E, Meng Q Q, Miao Y F, Dai S, Lu Y, Zhang T. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Sci Rev, 2019, 190: 460-485 CrossRef Google Scholar

[182] Fang X M, Garzione C, Van V R, Li J J, Fan M J. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet Sci Lett, 2003, 210: 545-560 CrossRef ADS Google Scholar

[183] FAO, ITPS. 2015. Status of the World’s Soil Resources (Main Report). Food and Agriculture Organization of the United Nations. Rome. Also available at http://www.fao.org/3/a-i5199e.pdf. Google Scholar

[184] Feng X M, Fu B J, Lu N, Zeng Y, Wu B F. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci Rep, 2013, 3: 2846 CrossRef PubMed ADS Google Scholar

[185] Feng X M, Fu B J, Piao S L, Wang S, Ciais P, Zeng Z D, Lu Y H, Zeng Y, Li Y, Jiang X H, Wu B F. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Change, 2016, 6: 1019-1022 CrossRef ADS Google Scholar

[186] Feng X M, Sun G, Fu B J, Su C H, Liu Y, Lamparski H. Regional effects of vegetation restoration on water yield across the Loess Plateau, China. Hydrol Earth Syst Sci, 2012, 16: 2617-2628 CrossRef ADS Google Scholar

[187] Frachetti M D, Smith C E, Traub C M, Williams T. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature, 2017, 543: 193-198 CrossRef PubMed ADS Google Scholar

[188] Fu B J. Soil erosion and its control in the loess plateau of China. Soil Use Manage, 1989, 5: 76-82 CrossRef Google Scholar

[189] Fu B J, Liu Y, Lv Y H, He C S, Zeng Y, Wu B F. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol Complex, 2011, 8: 284-293 CrossRef Google Scholar

[190] Fu B J, Pan N Q. Integrated studies of physical geography in China: Review and prospects. J Geogr Sci, 2016, 26: 771-790 CrossRef Google Scholar

[191] Fuller D Q, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya L A, Sun G P. The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangtze. Science, 2009, 323: 1607-1610 CrossRef PubMed ADS Google Scholar

[192] Gao B, Yang D, Qin Y, Wang Y, Li H, Zhang Y, Zhang T. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau. Cryosphere, 2018, 12: 657-673 CrossRef ADS Google Scholar

[193] Ge Q, Hao Z, Zheng J, Shao X. Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Clim Past, 2013, 9: 1153-1160 CrossRef ADS Google Scholar

[194] Ge Q, Zheng J, Fang X, Man Z, Zhang X, Zhang P, Wang W C. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene, 2003, 13: 933-940 CrossRef Google Scholar

[195] Gou X H, Deng Y, Chen F H, Yang M X, Fang K Y, Gao L L, Yang T, Zhang F. Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Chin Sci Bull, 2010, 55: 4179-4186 CrossRef ADS Google Scholar

[196] Gregory K J. 2000. The Changing Nature of Physical Geography. London, UK: Arnold. 384. Google Scholar

[197] Guo D, Wang H. CMIP5 permafrost degradation projection: A comparison among different regions. J Geophys Res-Atmos, 2016, 121: 4499-4517 CrossRef ADS Google Scholar

[198] Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163 CrossRef PubMed ADS Google Scholar

[199] He K, Lu H, Zhang J, Wang C, Huan X. Prehistoric evolution of the dualistic structure mixed rice and millet farming in China. Holocene, 2017, 27: 1885-1898 CrossRef Google Scholar

[200] Heermance R V, Pearson J, Moe A, Langtao L, Jianhong X, Jie C, Richter F, Garzione C N, Junsheng N, Bogue S. Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma. Geology, 2018, 46: 919-922 CrossRef ADS Google Scholar

[201] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China. Nature, 1982, 300: 431-433 CrossRef ADS Google Scholar

[202] Hou J Z, Huang Y S, Zhao J T, Liu Z H, Colman S, An Z S. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys Res Lett, 2016, 43: 1323-1330 CrossRef ADS Google Scholar

[203] Hou S, Jenk T M, Zhang W, Wang C, Wu S, Wang Y, Pang H, Schwikowski M. Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 2018, 12: 2341-2348 CrossRef ADS Google Scholar

[204] Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma, 2019, 337: 893-905 CrossRef ADS Google Scholar

[205] Hu Z B, Li M H, Dong Z J, Guo L Y, Bridgland D, Pan B T, Li X H, Liu X F. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Glob Planet Change, 2019, 178: 129-138 CrossRef ADS Google Scholar

[206] Hu Z B, Pan B T, Bridgland D, Vandenberghe J, Guo L Y, Fan Y L, Westaway R. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quat Sci Rev, 2017, 166: 324-338 CrossRef ADS Google Scholar

[207] Hu Z, Pan B, Guo L, Vandenberghe J, Liu X, Wang J, Fan Y, Mao J, Gao H, Hu X. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension. Quat Sci Rev, 2016, 133: 1-14 CrossRef ADS Google Scholar

[208] Huang J H, Chen B, Liu C, Lai J, Zhang J, Ma K. Identifying hotspots of endemic woody seed plant diversity in China. Divers Distrib, 2012, 18: 673-688 CrossRef Google Scholar

[209] Huang W, Feng S, Chen J, Chen F. Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China. J Clim, 2015, 28: 3579-3591 CrossRef ADS Google Scholar

[210] Huang X, Meyers P A, Jia C, Zheng M, Xue J, Wang X, Xie S. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit. Holocene, 2013, 23: 1123-1129 CrossRef Google Scholar

[211] Huerta-Sánchez E, Jin X, Asan X, Bianba Z, Peter B M, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang X, Luosang J, Cuo Z X P, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 2014, 512: 194-197 CrossRef PubMed ADS Google Scholar

[212] Hugelius G, Strauss J, Zubrzycki S, Harden J W, Schuur E A G, Ping C L, Schirrmeister L, Grosse G, Michaelson G J, Koven C D, O’Donnell J A, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 2014, 11: 6573-6593 CrossRef ADS Google Scholar

[213] Huss M, Hock R. Global-scale hydrological response to future glacier mass loss. Nat Clim Change, 2018, 8: 135-140 CrossRef ADS Google Scholar

[214] Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers. Science, 2010, 328: 1382-1385 CrossRef PubMed ADS Google Scholar

[215] Intergovernmental Panel on Climate Change (IPCC). 2013. Climate change 2013: The physical science basis. In: Stocker T F, Qin D, Plattner G K, eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press. Google Scholar

[216] Jia J T, Zheng H B, Huang X T, Wu F Y, Yang S Y, Wang K, He M Y. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River. Chin Sci Bull, 2010, 55: 1520-1528 CrossRef ADS Google Scholar

[217] Jia Y W, Wang H, Zhou Z H, Qiu Y Q, Luo X Y, Wang J H, Yan D H, Qin D Y. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River Basin. J Hydrol, 2006, 331: 606-629 CrossRef ADS Google Scholar

[218] Jiang D B, Lang X M, Tian Z P, Wang T. Considerable model-data mismatch in temperature over China during the mid-Holocene: Results of PMIP simulations. J Clim, 2012, 25: 4135-4153 CrossRef ADS Google Scholar

[219] Jin L, Chen F, Morrill C, Otto-Bliesner B L, Rosenbloom N. Causes of early Holocene desertification in arid central Asia. Clim Dyn, 2012, 38: 1577-1591 CrossRef ADS Google Scholar

[220] Johnsen S J, Dansgaard W, Clausen H B, Langway C C. Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature, 1972, 235: 429-434 CrossRef ADS Google Scholar

[221] Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 2007, 317: 793-796 CrossRef PubMed ADS Google Scholar

[222] Kääb A, Leinss S, Gilbert A, Bühler Y, Gascoin S, Evans S G, Bartelt P, Berthier E, Brun F, Chao W A, Farinotti D, Gimbert F, Guo W, Huggel C, Kargel J S, Leonard G J, Tian L, Treichler D, Yao T. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci, 2018, 11: 114-120 CrossRef ADS Google Scholar

[223] Kong P, Granger D E, Wu F Y, Caffee M W, Wang Y J, Zhao X T, Zheng Y. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth Planet Sci Lett, 2009, 278: 131-141 CrossRef ADS Google Scholar

[224] Kuhle M. The pleistocene glaciation of Tibet and the onset of ice ages ? An autocycle hypothesis. Geo J, 1988, 17: 581-595 CrossRef Google Scholar

[225] Kuzmina E E, Mair V H. 2008. The Prehistory of the Silk Road. Philadelphia: University of Pennsylvania Press. 1–108. Google Scholar

[226] Lai Z P, Mischke S, Madsen D. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. J Paleolimnol, 2014, 51: 197-210 CrossRef ADS Google Scholar

[227] Lewkowicz A G, Way R G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat Commun, 2019, 10: 1329 CrossRef PubMed ADS Google Scholar

[228] Li B F, Sun D H, Xu W H, Wang F, Liang B Q, Ma Z W, Wang X, Li Z J, Chen F H. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River. Quat Sci Rev, 2017, 156: 69-89 CrossRef ADS Google Scholar

[229] Li G, Jin M, Chen X, Wen L, Zhang J, Madsen D, Zhao H, Wang X, Fan T, Duan Y, Liu X, Wu D, Li F, Chen F. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes. Quat Sci Rev, 2015, 128: 69-80 CrossRef ADS Google Scholar

[230] Li G, She L, Jin M, Yang H, Madsen D, Chun X, Yang L, Wei H, Tao S, Chen F. The spatial extent of the East Asian summer monsoon in arid NW China during the Holocene and Last Interglaciation. Glob Planet Change, 2018, 169: 48-65 CrossRef ADS Google Scholar

[231] Li J J. 1995. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou: Lanzhou University Press. 207. Google Scholar

[232] Li J J, Feng Z D, Tang L Y. Late Quaternary monsoon patterns on the loess plateau of China. Earth Surf Process Landf, 1988, 13: 125-135 CrossRef ADS Google Scholar

[233] Li J X, Yue L P, Roberts A P, Hirt A M, Pan F, Guo L, Xu Y, Xi R G, Guo L, Qiang X K, Gai C C, Jiang Z X, Sun Z M, Liu Q S. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat Commun, 2018, 9: 3026 CrossRef PubMed ADS Google Scholar

[234] Li J, Xie S, Kuang M. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 2001, 41: 125-135 CrossRef ADS Google Scholar

[235] Li R, Kraft N J B, Yang J, Wang Y. A phylogenetically informed delineation of floristic regions within a biodiversity hotspot in Yunnan, China. Sci Rep, 2015, 5: 9396 CrossRef PubMed ADS Google Scholar

[236] Li X, Cheng G D, Ge Y C, Li H Y, Han F, Hu X L, Tian W, Pan X D, Nian Y Y, Zhang Y L, Ran Y H, Zheng Y, Gao B, Yang D W, Zheng C M, Wang X S, Liu S M, Cai X M. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins. J Geophys Res-Atmos, 2018b, 123: 890-914 CrossRef ADS Google Scholar

[237] Li X, Cheng G D, Lin H, Cai X M, Fang M, Ge Y C, Hu X L, Chen M, Li W Y. Watershed system model: The essentials to model complex human-nature system at the river basin scale. J Geophys Res-Atmos, 2018a, 123: 3019-3034 CrossRef ADS Google Scholar

[238] Li Y K, Liu G N, Chen Y X, Li Y N, Harbor J M, Stroeven A P, Caffee M W, Zhang M, Li C C, Cui Z J. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating. Quat Sci Rev, 2014, 98: 7-23 CrossRef ADS Google Scholar

[239] Li Z, Sun D, Chen F, Wang F, Zhang Y, Guo F, Wang X, Li B. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quat Sci Rev, 2014, 85: 85-98 CrossRef ADS Google Scholar

[240] Liang E Y, Eckstein D. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau. Ann Bot, 2009, 104: 665-670 CrossRef PubMed Google Scholar

[241] Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. Asian monsoons in a late Eocene greenhouse world. Nature, 2014, 513: 501-506 CrossRef PubMed ADS Google Scholar

[242] Lin N, Deng T, Moore M J, Sun Y, Huang X, Sun W, Luo D, Wang H, Zhang J, Sun H. Phylogeography of parasyncalathium souliei (asteraceae) and its potential application in delimiting phylogeoregions in the Qinghai-Tibet Plateau (QTP)-Hengduan Mountains (HDM) hotspot. Front Genet, 2018, 9 CrossRef Google Scholar

[243] Liu B Y, Zhang K L, Xie Y. 2002. An empirical soil loss equation. In: Proceedings-Process of Soil Erosion and its Environment Effect (Vol. II). 12: 21–25. Google Scholar

[244] Liu C M, Zhang X, Zhang Y. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric For Meteorol, 2002, 111: 109-120 CrossRef ADS Google Scholar

[245] Liu J B, Chen J H, Zhang X J, Li Y, Rao Z G, Chen F H. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records. Earth-Sci Rev, 2015, 148: 194-208 CrossRef Google Scholar

[246] Liu J B, Rühland K M, Chen J H, Xu Y Y, Chen S Q, Chen Q M, Huang W, Xu Q H, Chen F H, Smol J P. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nat Clim Change, 2017, 7: 190-194 CrossRef ADS Google Scholar

[247] Liu J Q, Sun Y S, Ge X J, Gao L M, Qiu Y X. Phylogeographic studies of plants in China: Advances in the past and directions in the future. J Syst Evol, 2012, 50: 267-275 CrossRef Google Scholar

[248] Liu L, Bestel S, Shi J, Song Y, Chen X. Paleolithic human exploitation of plant foods during the last glacial maximum in north china. Proc Natl Acad Sci USA, 2013, 110: 5380-5385 CrossRef PubMed ADS Google Scholar

[249] Liu X Y, Jones P J, Matuzeviciute G M, Lister D L, An T, Przelomska N, Kneale C, Zhao Z J, Jones M K. From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory. Quat Sci Rev, 2019, 206: 21-28 CrossRef ADS Google Scholar

[250] Liu Y, Cai W, Sun C, Song H, Cobb K M, Li J, Leavitt S W, Wu L, Cai Q, Liu R, Ng B, Cherubini P, Büntgen U, Song Y, Wang G, Lei Y, Yan L, Li Q, Ma Y, Fang C, Sun J, Li X, Chen D, Linderholm H W. Anthropogenic aerosols cause recent pronounced weakening of Asian Summer Monsoon relative to last four centuries. Geophys Res Lett, 2019b, 46: 5469-5479 CrossRef ADS Google Scholar

[251] Liu Y, Cobb K M, Song H, Li Q, Li C Y, Nakatsuka T, An Z, Zhou W, Cai Q, Li J, Leavitt S W, Sun C, Mei R, Shen C C, Chan M H, Sun J, Yan L, Lei Y, Ma Y, Li X, Chen D, Linderholm H W. Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun, 2017, 8: 15386 CrossRef PubMed ADS Google Scholar

[252] Liu Y, Song H, Sun C, Song Y, Cai Q, Liu R, Lei Y, Li Q. The 600-mm precipitation isoline distinguishes tree-ring-width responses to climate in China. Natl Sci Rev, 2019a, 6: 359-368 CrossRef Google Scholar

[253] Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B L, Timmermann A, Smith R S, Lohmann G, Zheng W, Elison Timm O. The Holocene temperature conundrum. Proc Natl Acad Sci USA, 2014, 111: E3501-E3505 CrossRef PubMed Google Scholar

[254] Livingstone I, Warren A. 2019. Aeolian Geomorphology: A New Introduction. Chichester: John Wiley & Sons Ltd. 336. Google Scholar

[255] Long H, Lai Z P, Fuchs M, Zhang J R, Li Y. Timing of Late Quaternary palaeolake evolution in Tengger Desert of northern China and its possible forcing mechanisms. Glob Planet Change, 2012, 92-93: 119-129 CrossRef ADS Google Scholar

[256] Long H, Shen J, Wang Y, Gao L, Frechen M. High-resolution OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): Chronological challenge of the “MIS 3a Mega-paleolake” hypothesis in China. Earth Planet Sci Lett, 2015, 428: 281-292 CrossRef Google Scholar

[257] Long T W, Leipe C, Jin G Y, Wagner M, Guo R Z, Schröder O, Tarasov P E. The early history of wheat in China from 14C dating and Bayesian chronological modelling. Nat Plants, 2018, 4: 272-279 CrossRef PubMed Google Scholar

[258] Lu H Y, Wang X Y, Wang X Y, Chang X, Zhang H Z, Xu Z W, Zhang W C, Wei H Z, Zhang X J, Yi S W, Zhang W F, Feng H, Wang Y C, Wang Y, Han Z Y. Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Sci Rev, 2019, 194: 251-263 CrossRef Google Scholar

[259] Lu H, Zhang J, Liu K, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372 CrossRef PubMed Google Scholar

[260] Lu L M, Mao L F, Yang T, Ye J F, Liu B, Li H L, Sun M, Miller J T, Mathews S, Hu H H, Niu Y T, Peng D X, Chen Y H, Smith S A, Chen M, Xiang K L, Le C T, Dang V C, Lu A M, Soltis P S, Soltis D E, Li J H, Chen Z D. Evolutionary history of the angiosperm flora of China. Nature, 2018, 554: 234-238 CrossRef PubMed Google Scholar

[261] Lü P, Narteau C, Dong Z, Rozier O, Courrech du Pont S. Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields. Nat Commun, 2017, 8: 14239 CrossRef PubMed ADS Google Scholar

[262] Lü P, Narteau C, Dong Z B, Zhang Z C, Courrech P S. Emergence of oblique dunes in a landscape-scale experiment. Nat Geosci, 2014, 7: 99-103 CrossRef ADS Google Scholar

[263] Lu Y H, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005, 309: 1088-1090 CrossRef PubMed ADS Google Scholar

[264] Lutz A F, Immerzeel W W, Shrestha A B, Bierkens M F P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Change, 2014, 4: 587-592 CrossRef ADS Google Scholar

[265] Ma M M, Dong G H, Jia X, Wang H, Cui Y F, Chen F H. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quat Sci Rev, 2016, 145: 57-70 CrossRef ADS Google Scholar

[266] Ma Y, Yang X, Huan X, Gao Y, Wang W, Li Z, Ma Z, Perry L, Sun G, Jiang L, Jin G, Lu H, Biehl P F. Multiple indicators of rice remains and the process of rice domestication: A case study in the lower yangtze river region, china. PLoS ONE, 2018, 13: e0208104 CrossRef PubMed ADS Google Scholar

[267] Madsen D B, Haizhou M, Rhode D, Brantingham P J, Forman S L. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quat Res, 2008, 69: 316-325 CrossRef ADS Google Scholar

[268] Mann M E, Zhang Z, Hughes M K, Bradley R S, Miller S K, Rutherford S, Ni F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA, 2008, 105: 13252-13257 CrossRef PubMed ADS Google Scholar

[269] Marcott S A, Shakun J D, Clark P U, Mix A C. A reconstruction of regional and global temperature for the past 11,300 years. Science, 2013, 339: 1198-1201 CrossRef PubMed ADS Google Scholar

[270] Marsicek J, Shuman B N, Bartlein P J, Shafer S L, Brewer S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 2018, 554: 92-96 CrossRef PubMed ADS Google Scholar

[271] Meyer M C, Aldenderfer M S, Wang Z, Hoffmann D L, Dahl J A, Degering D, Haas W R, Schlütz F. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 2017, 355: 64-67 CrossRef PubMed ADS Google Scholar

[272] Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Wetlands and Water Synthesis. Washington DC: World Resources Institute. 1–2. Google Scholar

[273] Mo X G, Liu S X, Lin Z H. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J Hydrol, 2004, 285: 125-142 CrossRef ADS Google Scholar

[274] Mo X G, Liu S X, Lin Z H, Xu Y, Xiang Y, McVicar T R. Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol Model, 2005, 183: 301-322 CrossRef Google Scholar

[275] Monteith J L. 1965. Evaporation and environment. Symp. SocExp Biol, 19: 205–224. Google Scholar

[276] Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 2015, 9: 479-486 CrossRef ADS Google Scholar

[277] Nie J, Steven T, Rittner M, Stockli D, Garzanti E, Limonta M, Bird A, Ando S, Vermeesch P, Saylor J, Lu H, Breecker D, Hu X, Liu S, Resentini A, Vezzoli G, Peng W, Carter A, Ji S, Pan B. 2015. Loess Plateau storage of Northeastern Tibetan Plateau-drived Yellow River sediment. Nat Commun, 6: 8511. Google Scholar

[278] North Greenland Ice Core Project members (NGRIP). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431: 147-151 CrossRef PubMed ADS Google Scholar

[279] Overland J E, Dethloff K, Francis J A, Hall R J, Hanna E, Kim S J, Screen J A, Shepherd T G, Vihma T. Nonlinear response of mid-latitude weather to the changing Arctic. Nat Clim Change, 2016, 6: 992-999 CrossRef ADS Google Scholar

[280] Owen L A, Finkel R C, Caffee M W. A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum. Quat Sci Rev, 2002, 21: 147-157 CrossRef ADS Google Scholar

[281] Pachur H J, Wünnemann B, Zhang H. Lake evolution in the Tengger Desert, Northwestern China, during the last 40000 years. Quat Res, 1995, 44: 171-180 CrossRef ADS Google Scholar

[282] Pan B, Hu Z, Wang J, Vandenberghe J, Hu X. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology, 2011, 125: 225-238 CrossRef ADS Google Scholar

[283] Peng X, Zhang T, Frauenfeld O W, Wang K, Luo D, Cao B, Su H, Jin H, Wu Q. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern hemisphere. J Clim, 2018, 31: 251-266 CrossRef ADS Google Scholar

[284] Pye K, Tsoar H. 2009. Aeolian Sand and Sand Dunes. Heidelberg: Springer-Verlag. 458. Google Scholar

[285] Qin B Q. Lake eutrophication: Control countermeasures and recycling exploitation. Ecol Eng, 2009, 35: 1569-1573 CrossRef Google Scholar

[286] Qin B Q, Hu W P, Gao G, Luo L C, Zhang J S. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chin Sci Bull, 2004, 49: 54-64 CrossRef ADS Google Scholar

[287] Qin B Q, Li W, Zhu G W, Zhang Y L, Wu T F, Gao G. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). J Hazard Mater, 2015, 287: 356-363 CrossRef PubMed Google Scholar

[288] Qin B Q, Liu Z W, Havens K. Preface. Hydrobiologia, 2007, 581: 1-2 CrossRef Google Scholar

[289] Qin B Q, Paerl H W, Brookes J D, Liu J G, Jeppesen E, Zhu G W, Zhang Y L, Xu H, Shi K, Deng J M. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Chin Sci Bull, 2019, 64: 354-356 CrossRef Google Scholar

[290] Qin B Q, Yang G J, Ma J R, Wu T F, Li W, Liu L Z, Deng J M, Zhou J. Spatiotemporal changes of cyanobacterial bloom in large shallow eutrophic Lake Taihu, China. Front Microbiol, 2018, 9: 451 CrossRef Google Scholar

[291] Qiu Y X, Fu C X, Comes H P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenets Evol, 2011, 59: 225-244 CrossRef PubMed Google Scholar

[292] Quinton J N, Govers G, van Oost K, Bardgett R D. The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci, 2010, 3: 311-314 CrossRef ADS Google Scholar

[293] Rao Z G, Li Y X, Zhang J W, Jia G D, Chen F H. Investigating the long-term palaeoclimatic controls on the δD and δ18O of precipitation during the Holocene in the Indian and East Asian monsoonal regions. Earth-Sci Rev, 2016, 159: 292-305 CrossRef Google Scholar

[294] Rehfeld K, Münch T, Ho S L, Laepple T. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene. Nature, 2018, 554: 356-359 CrossRef PubMed ADS Google Scholar

[295] Routson C C, McKay N P, Kaufman D S, Erb M P, Goosse H, Shuman B N, Rodysill J R, Ault T. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature, 2019, 568: 83-87 CrossRef PubMed ADS Google Scholar

[296] Rutter N. Problematic ice sheets. Quat Int, 1995, 28: 19-37 CrossRef ADS Google Scholar

[297] Schaefer J M, Denton G H, Barrell D J A, Ivy-Ochs S, Kubik P W, Andersen B G, Phillips F M, Lowell T V, Schlüchter C. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science, 2006, 312: 1510-1513 CrossRef PubMed ADS Google Scholar

[298] Schumm S A, Dumont J F, Holbrook J M. 2000. Active Tectonics and Alluvial Rivers. Cambridge: Cambridge University Press. 276. Google Scholar

[299] Schuster M, Duringer P, Ghienne J F, Vignaud P, Mackaye H T, Likius A, Brunet M. The age of the Sahara Desert. Science, 2006, 311: 821 CrossRef PubMed Google Scholar

[300] Seong Y B, Owen L A, Yi C, Finkel R C. Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull, 2009, 121: 348-365 CrossRef ADS Google Scholar

[301] Shao X, Xu Y, Yin Z Y, Liang E, Zhu H, Wang S. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quat Sci Rev, 2010, 29: 2111-2122 CrossRef ADS Google Scholar

[302] Shi H, Shao M G. Soil and water loss from the Loess Plateau in China. J Arid Environ, 2000, 45: 9-20 CrossRef ADS Google Scholar

[303] Shi Y F, Yu G, Liu X D, Li B Y, Yao T D. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 169: 69-83 CrossRef ADS Google Scholar

[304] Sun D H, Shaw J, An Z S, Cheng M Y, Yue L P. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys Res Lett, 1998, 25: 85-88 CrossRef ADS Google Scholar

[305] Sun D, Bloemendal J, Yi Z, Zhu Y, Wang X, Zhang Y, Li Z, Wang F, Han F, Zhang Y. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: Implications for the desertification of the Tarim Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 300: 1-10 CrossRef ADS Google Scholar

[306] Sun H, Zhang J W, Deng T, Boufford D. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Diversity, 2017, 39: 161-166 CrossRef PubMed Google Scholar

[307] Sun J M, Alloway B, Fang X, Windley B F. Refuting the evidence for an earlier birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 2015, 112: E5556-E5557 CrossRef PubMed ADS Google Scholar

[308] Sun J M, Jiang M S. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 2013, 588: 27-38 CrossRef ADS Google Scholar

[309] Sun J, Liu T. The age of the Taklimakan Desert. Science, 2006, 312: 1621 CrossRef PubMed Google Scholar

[310] Sun J, Zhang Z, Zhang L. New evidence on the age of the Taklimakan Desert. Geology, 2009, 37: 159-162 CrossRef ADS Google Scholar

[311] Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Clim Dyn, 2014, 42: 1067-1077 CrossRef ADS Google Scholar

[312] Tang C Q, Matsui T, Ohashi H, Dong Y F, Momohara A, Moraira S H, Qian S H, Yang Y C, Ohsawa M, Luu H T, Grote P J, Krestov P V, LePage B, Werger M, Robertson K, Hobohm C, Wang C Y, Peng M C, Chen X, Wang H C, Su E H, Zhou R, Li S F, He L Y, Yan K, Zhu M Y, Hu J, Yang R H, Li W J, Tomita M, Wu Z L, Yan H Z, Zhang G F, He H, Yi S R, Gong H D, Song K, Song D, Li X S, Zhang Z Y, Han P B, Shen L Q, Huang D S, Luo K, Pujol J L. Identifying long-term stable refugia for relict plant species in East Asia. Nat Commun, 2018, 9: 4488 CrossRef PubMed ADS Google Scholar

[313] Thompson L G, Davis M E, Mosley-Thompson E, Lin P N, Henderson K A, Mashiotta T A. Tropical ice core records: Evidence for asynchronous glaciation on Milankovitch timescales. J Quat Sci, 2005, 20: 723-733 CrossRef ADS Google Scholar

[314] Thompson L G, Mosley-Thompson E, Davis M E, Bolzan J F, Dai J, Klein L, Yao T, Wu X, Xie Z, Gundestrup N. Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science, 1989, 246: 474-477 CrossRef PubMed ADS Google Scholar

[315] Thompson L, Yao T, Davis M, Henderson K, Mosley-Thompson E, Lin P, Beer J, Synal H, Cole-Dai J, Bolzan J. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276: 1821-1825 CrossRef Google Scholar

[316] Thompson L G, Yao T, Mosley-Thompson E, Davis M E, Henderson K A, Lin P N. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919 CrossRef PubMed ADS Google Scholar

[317] Tian L, Ritterbusch F, Gu J Q, Hu S M, Jiang W, Lu Z T, Wang D, Yang G M. 81Kr dating at the Guliya Ice Cap, Tibetan Plateau. Geophys Res Lett, 2019, 46: 6636-6643 CrossRef ADS arXiv Google Scholar

[318] Tian Y, Zheng Y, Han F, Zheng C, Li X. A comprehensive graphical modeling platform designed for integrated hydrological simulation. Environ Model Software, 2018, 108: 154-173 CrossRef Google Scholar

[319] Trenberth K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation. J Clim, 2000, 13: 3969-3993 CrossRef Google Scholar

[320] Troll C. 1959. Die tropischen Gebirge, Ihre dreidimensionale klimatische und pflanzengeographische Zinierung. Bonner geographische Abhandlungen. Heft 25, Bonn 1959. Google Scholar

[321] Van Oost K, Quine T A, Govers G, De Gryze S, Six J, Harden J W, Ritchie J C, McCarty G W, Heckrath G, Kosmas C, Giraldez J V, Marques da Silva J R, Merckx R. The impact of agricultural soil erosion on the global carbon cycle. Science, 2007, 318: 626-629 CrossRef PubMed ADS Google Scholar

[322] Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987-4992 CrossRef PubMed ADS Google Scholar

[323] Wang F, Sun D, Chen F, Bloemendal J, Guo F, Li Z, Zhang Y, Li B, Wang X. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 426: 139-158 CrossRef ADS Google Scholar

[324] Wang H P, Chen J H, Zhang X J, Chen F H. Palaeosol development in the Chinese loess plateau as an indicator of the strength of the East Asian summer monsoon: Evidence for a mid-Holocene maximum. Quat Int, 2014, 334-335: 155-164 CrossRef ADS Google Scholar

[325] Wang J, Cui H, Harbor J M, Zheng L, Yao P. Mid-MIS3 climate inferred from reconstructing the Dalijia Shan ice cap, north-eastern Tibetan Plateau. J Quat Sci, 2015, 30: 558-568 CrossRef ADS Google Scholar

[326] Wang J, Kassab C, Harbor J M, Caffee M W, Cui H, Zhang G. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the Dalijia Shan, northeastern Tibetan Plateau. Quat Res, 2013, 79: 439-451 CrossRef ADS Google Scholar

[327] Wang J, Yao P, Yu B, Zou L, Wang F, Harbor J M. Controls on spatial variations of glacial erosion in the Qilian Shan, northeastern Tibetan Plateau. Geomorphology, 2018, 318: 128-138 CrossRef ADS Google Scholar

[328] Wang S, Fu B J, Piao S L, Lü Y H, Ciais P, Feng X M, Wang Y F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat Geosci, 2016, 9: 38-41 CrossRef ADS Google Scholar

[329] Wang X, Carrapa B, Chapman J B, Henriquez S, Wang M, Decelles P G, Li Z J, Wang F, Oimahmadov I, Gadoev M, Chen F H. 2019. Parathethys last gasp in central Asia and late Oligocene accelerated uplift of the Pamirs. Geophys Res Lett, doi: 10.1029/2019GL084838. Google Scholar

[330] Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 2005, 308: 854-857 CrossRef PubMed ADS Google Scholar

[331] Wen J, Zhang J Q, Nie Z L, Zhong Y, Sun H. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet, 5: 1–14. Google Scholar

[332] Wu D, Chen X M, Lv F Y, Brenner M, Curtis J, Zhou A F, Chen J H, Abbott M, Yu J Q, Chen F H. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat Sci Rev, 2018, 193: 54-67 CrossRef ADS Google Scholar

[333] Wu Q, Zhang T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res, 2008, 113: D13108 CrossRef ADS Google Scholar

[334] Wu T F, Qin B Q, Ding W H, Zhu G W, Zhang Y L, Gao G, Xu H, Li W, Dong B L, Luo L C. Field observation of different wind-induced basin-scale current field dynamics in a large, polymictic, eutrophic lake. J Geophys Res-Oceans, 2018, 123: 6945-6961 CrossRef ADS Google Scholar

[335] Wu Z Y, Wu S G. 1998. A proposal for a new floristic kingdom (realm)-the E. Asiatic kindom, its delineation and characteristics. In: Zhang A L, Wu S G, eds. Floristic Characteristics and Diversity of East Asian Plants. Beijing & Berlin: China Higher Education Press & Springer. 3–42. Google Scholar

[336] Xia J. Identification of a constrained nonlinear hydrological system described by Volterra functional series. Water Resour Res, 1991, 27: 2415-2420 CrossRef ADS Google Scholar

[337] Xia J, O’Connor K M, Kachroo R K, Liang G C. A non-linear perturbation model considering catchment wetness and its application in river flow forecasting. J Hydrol, 1997, 200: 164-178 CrossRef ADS Google Scholar

[338] Xie S C, Evershed R P, Huang X Y, Zhu Z M, Pancost R D, Meyers P A, Gong L F, Hu C Y, Huang J H, Zhang S H, Gu Y S, Zhu J Y. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology, 2013, 41: 827-830 CrossRef ADS Google Scholar

[339] Yang B, Qin C, Wang J, He M, Melvin T M, Osborn T J, Briffa K R. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci USA, 2014, 111: 2903-2908 CrossRef PubMed ADS Google Scholar

[340] Yang B, Shi Y, Braeuning A, Wang J. Evidence for a warm-humid climate in arid northwestern China during 40–30 ka BP. Quat Sci Rev, 2004, 23: 2537-2548 CrossRef ADS Google Scholar

[341] Yang D W, Gao B, Jiao Y, Lei H M, Zhang Y L, Yang H B, Cong Z T. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci China Earth Sci, 2015, 58: 36-45 CrossRef Google Scholar

[342] Yang X, Chen Q, Ma Y, Li Z, Hung H, Zhang Q, Jin Z, Liu S, Zhou Z, Fu X. New radiocarbon and archaeobotanical evidence reveal the timing and route of southward dispersal of rice farming in south China. Chin Sci Bull, 2018, 63: 1495-1501 CrossRef Google Scholar

[343] Yang X, Scuderi L, Paillou P, Liu Z, Li H, Ren X. Quaternary environmental changes in the drylands of China—A critical review. Quat Sci Rev, 2011, 30: 3219-3233 CrossRef ADS Google Scholar

[344] Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, Li J, Xie F, Yu J, Cui T, Wang T, Li M, Ge Q. Early millet use in Northern China. Proc Natl Acad Sci USA, 2012, 109: 3726-3730 CrossRef PubMed ADS Google Scholar

[345] Yang Y, Dong G, Zhang S, Cui Y, Li H, Chen G, Dodson J, Chen F. Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China. Holocene, 2017, 27: 282-291 CrossRef Google Scholar

[346] Yang Z, Zhang M, Shi X, Kong F, Ma R, Yu Y. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Res, 2016, 103: 302-310 CrossRef PubMed Google Scholar

[347] Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2012, 2: 663-667 CrossRef ADS Google Scholar

[348] Yao T, Wu F, Ding L, Sun J, Zhu L, Piao S. L, Deng T, Ni X, Zheng H, Ouyang H. 2015. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl Sci Rev, 2: 468–488. Google Scholar

[349] Yao X, Zhang L, Zhang Y, Du Y, Jiang X, Li M. Water diversion projects negatively impact lake metabolism: A case study in Lake Dazong, China. Sci Total Environ, 2018, 613-614: 1460-1468 CrossRef PubMed ADS Google Scholar

[350] Yu S Y, Colman S M, Lai Z P. Late-Quaternary history of ‘great lakes’ on the Tibetan Plateau and palaeoclimatic implications—A review. Boreas, 2019, 48: 1-19 CrossRef Google Scholar

[351] Zhang B, Yao Y. Implications of mass elevation effect for the altitudinal patterns of global ecology. J Geogr Sci, 2016, 26: 871-877 CrossRef Google Scholar

[352] Zhang D C, Ye J X, Sun H. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J Biogeogr, 2016, 43: 2465-2476 CrossRef Google Scholar

[353] Zhang D D, Li S H. Optical dating of Tibetan human hand- and footprints: An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys Res Lett, 2002, 29: 1069 CrossRef ADS Google Scholar

[354] Zhang D J, Zhang N M, Wang J, Ha B, Dong G H, Chen F H. Comment on “Permanent human occupation of the central Tibetan Plateau in the early Holocene”. Science, 2017, 357: eaam8273 CrossRef PubMed Google Scholar

[355] Zhang E L, Chang J, Cao Y M, Sun W W, Shulmeister J, Tang H Q, Langdon P G, Yang X D, Shen J. Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan plateau. Quat Sci Rev, 2017, 165: 1-12 CrossRef ADS Google Scholar

[356] Zhang H B, Griffiths M L, Chiang J C H, Kong W W, Wu S T, Atwood A, Huang J H, Cheng H, Ning Y F, Xie S C. East Asian hydroclimate modulated by the position of the Westerlies during Termination I. Science, 2018, 362: 580-583 CrossRef PubMed ADS Google Scholar

[357] Zhang H C, Peng J L, Ma Y Z, Chen G J, Feng Z D, Li B, Fan H F, Chang F Q, Lei G L, Wünnemann B. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 211: 45-58 CrossRef ADS Google Scholar

[358] Zhang J, Tsukamoto S, Jia Y, Frechen M. Lake level reconstruction of Huangqihai Lake in northern China since MIS 3 based on pulsed optically stimulated luminescence dating. J Quat Sci, 2016, 31: 225-238 CrossRef ADS Google Scholar

[359] Zhang M G, Slik J W F, Ma K P. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Sci Rep, 2016, 6: 22400 CrossRef PubMed ADS Google Scholar

[360] Zhang P, Cheng H, Edwards R L, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson K R. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008, 322: 940-942 CrossRef PubMed ADS Google Scholar

[361] Zhang Q B, Evans M N, Lyu L. Moisture dipole over the Tibetan Plateau during the past five and a half centuries. Nat Commun, 2015, 6: 8062 CrossRef PubMed ADS Google Scholar

[362] Zhang T, Barry R G, Knowles K, Heginbottom J A, Brown J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr, 2008, 31: 47-68 CrossRef Google Scholar

[363] Zhang X L, Ha B B, Wang S J, Chen Z J, Ge J Y, Long H, He W, Da W, Nian X M, Yi M J, Zhou X Y, Zhang P Q, Jin Y S, Bar-Yosef O, Olsen J W, Gao X. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 2018, 362: 1049-1051 CrossRef PubMed ADS Google Scholar

[364] Zhang Y L, Liu X H, Qin B Q, Shi K, Deng J M, Zhou Y Q. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci Rep, 2016, 6: 23867 CrossRef PubMed ADS Google Scholar

[365] Zhang Y, Hu Z, Qi W, Wu X, Bai W, Li L, Ding M, Liu L, Wang Z, Zheng D. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. J Geogr Sci, 2016, 26: 27-44 CrossRef Google Scholar

[366] Zhang Y, Qi W, Zhou C, Ding M, Liu L, Gao J, Bai W, Wang Z, Zheng D. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J Geogr Sci, 2014, 24: 269-287 CrossRef Google Scholar

[367] Zhang Z, Hou S, Yi S. The first luminescence dating of Tibetan glacier basal sediment. Cryosphere, 2018, 12: 163-168 CrossRef ADS Google Scholar

[368] Zhao Z J. 2009. Eastward spread of wheat into China—New data and new issues. Chin Archaeol, 1: 1–9. Google Scholar

[369] Zhao Z. The middle Yangtze region in China is one place where rice was domesticated: Phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi. Antiquity, 1998, 72: 885-897 CrossRef Google Scholar

[370] Zheng B X. Controversy regarding the existence of a large ice sheet on the Qinghai-Xizang (Tibetan) Plateau during the Quaternary Period. Quat Res, 1989, 32: 121-123 CrossRef ADS Google Scholar

[371] Zheng B X, Rutter N. On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) Plateau. Quat Int, 1998, 45-46: 109-122 CrossRef ADS Google Scholar

[372] Zheng H B, Wei X C, Tada R, Clift P D, Wang B, Jourdan F, Wang P, He M Y. Late Oligocene-Early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 2015, 112: 7662-7667 CrossRef PubMed ADS Google Scholar

[373] Zheng H, Clift P D, Wang P, Tada R, Jia J, He M, Jourdan F. Pre-Miocene birth of the Yangtze River. Proc Natl Acad Sci USA, 2013, 110: 7556-7561 CrossRef PubMed ADS Google Scholar

[374] Zhou S Z, Li J J, Zhao J D, Wang J, Zheng J X. 2011. Quaternary glaciations: Extent and chronology in China. Dev Quat Sci, 15: 981–1002. Google Scholar

[375] Zhou W, Yu X, Jull A J T, Burr G, Xiao J Y, Lu X, Xian F. High-resolution evidence from southern China of an early holocene optimum and a mid-Holocene dry event during the past 18000 years. Quat Res, 2004, 62: 39-48 CrossRef ADS Google Scholar

[376] Zhu M Y, Zhu G W, Zhao L L, Zhang Y L, Gao G, Qin B Q. Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu, China. Environ Sci Pollut Res, 2013, 20: 1803-1811 CrossRef PubMed Google Scholar

[377] Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere, 2017, 11: 2527-2542 CrossRef ADS Google Scholar

[378] Zuo X, Lu H, Jiang L, Zhang J, Yang X, Huan X, He K, Wang C, Wu N. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc Natl Acad Sci USA, 2017, 114: 6486-6491 CrossRef PubMed Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号