logo

More info
  • ReceivedAug 7, 2019
  • AcceptedOct 30, 2019
  • PublishedDec 5, 2019

Abstract

天气指某一个地区距离地表较近的大气层在短时间内的具体状态. 大气中气象要素的空间分布可表现为各种瞬息万变的天气现象, 这些天气的分布和变化是由不同时空尺度的天气系统引起的. 天气与民生息息相关, 其发展演变一直是大气科学研究和应用的重点领域. 天气学的发展与观测系统、动力学理论和数值模式的发展密切相连. 中国从20世纪50年代初开始建设观测网, 到目前已建成门类齐全、布局合理的地基、空基和天基综合气象观测系统. 特别是新一代稠密雷达网以及风云卫星系列的发展以及多次大型野外观测试验的实施使我们对天气的认识从宏观的天气形势深入到中小尺度天气系统精细热动力、云微物理结构和演变特征. 观测系统的发展同时也促进了理论、数值模式和模拟的发展, 中国已由初期主要以引进国外模式为主发展为目前主要发展具有中国自主知识产权的数值模式系统, 基于高分辨数值模拟结果对不同尺度天气的发生发展机理和可预报性有了深入理解. 此外, 天气学已由初期的独立发展逐渐向多学科交叉方向转变, 气候和环境的变化与天气演变之间的相互作用已成为大气科学的热点和前沿问题. 文章重点回顾过去70年来中国在对天气演变起重要作用的天气现象及其短期变化过程的物理本质、演变规律和预报方法领域所取得的重大科学和技术成果, 主要根据正式发表的文献从大气动力学、天气尺度天气特征、台风及热带天气、强对流天气特征、数值天气预报及资料同化, 以及天气与气候、大气物理及大气环境等交叉领域六个方面分别加以综述.


Funded by

国家自然科学基金项目(41425018)

国家重点研发计划项目(2017YFC1501601)

国家自然科学基金项目(41675045)

国家重点研发计划项目(2017YFC1501904)

国家自然科学基金项目(41875066,41675108,41875051)

重大自然灾害监测预警与防范专项课题(2018YFC1506702)


Acknowledgment

感谢南方科技大学傅宗玫教授对天气与气候和环境的交叉领域部分的宝贵建议.


References

[1] 巢纪平. 1980. 非均匀层结大气中的重力惯性波及其在暴雨预报中的初步应用. 大气科学, 4: 230–235. Google Scholar

[2] 陈德辉, 沈学顺. 2006. 新一代数值预报系统GRAPES研究进展. 应用气象学报, 17: 774–777. Google Scholar

[3] 陈国民, 张喜平, 白莉娜, 万日金. 2019. 2017年西北太平洋和南海热带气旋预报精度评定. 气象, 45: 577–586. Google Scholar

[4] 陈联寿, 丁一汇. 1979. 西太平洋台风概论. 北京: 科学出版社. 105. Google Scholar

[5] 陈秋士. 1963. 简单斜压大气中热成风的建立和破坏. 气象学报, 33: 153−161. Google Scholar

[6] 陈文, 黄荣辉. 2005. 北半球冬季准定常行星波的三维传播及其年际变化. 大气科学, 29: 137−146. Google Scholar

[7] 丑纪范. 1974. 天气数值预报中使用过去资料的问题. 中国科学, 17: 635−644. Google Scholar

[8] 丑纪范. 2007. 数值天气预报的创新之路-从初值问题到反问题. 气象学报, 65: 673−682. Google Scholar

[9] 丛春华, 陈联寿, 雷小途, 李英. 2012. 热带气旋远距离暴雨的研究. 气象学报, 70: 717–727. Google Scholar

[10] 丁一汇. 1993. 1991年江淮流域持续性特大暴雨研究. 北京: 气象出版社. 225. Google Scholar

[11] 丁一汇. 2015. 论河南“75.8”特大暴雨的研究: 回顾与评述. 气象学报, 73: 411–424. Google Scholar

[12] 丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南大暴雨的研究. 大气科学, 2: 276–289. Google Scholar

[13] 丁一汇, 李鸿州, 章名立, 李吉顺, 蔡则怡. 1982. 我国飑线发生条件的研究. 大气科学, 6: 18–27. Google Scholar

[14] 高守亭. 1987. 流场配置及地形对西南低涡形成的动力作用. 大气科学, 11: 263–271. Google Scholar

[15] 高守亭, 孙淑清. 1984. 次天气尺度低空急流的形成. 大气科学, 8: 179–188. Google Scholar

[16] 高郁东, 万齐林, 何金海. 2011. 三维变分同化雷达视风速的改进方案及其数值试验. 气象学报, 69: 631–643. Google Scholar

[17] 郜吉东. 2013. 丑纪范先生关于资料同化的学术思想探讨和回忆. 气象科技进展, 3: 76–79. Google Scholar

[18] 顾震潮. 1949. 中国西南低气压形成时期之分析举例. 气象学报, 20: 61–63. Google Scholar

[19] 顾震潮. 1958a. 作为初值问题的天气形势数值预报与由地面天气历史演变做预报的等值性. 气象学报, 29: 93–98. Google Scholar

[20] 顾震潮. 1958b. 天气数值预报中过去资料的使用问题. 气象学报, 29: 176–183. Google Scholar

[21] 郭肖容, 张玉玲, 阎之辉, 郑国安, 朱琪. 1995. 有限区分析预报系统及其业务应用. 气象学报, 53: 306–317. Google Scholar

[22] 韩雷, 王洪庆, 谭晓光, 林隐静. 2007. 基于雷达数据的风暴体识别、追踪及预警的研究进展. 气象, 33: 3–10. Google Scholar

[23] 韩威. 2003. 变分资料同化的理论和应用研究. 博士学位论文. 南京: 解放军理工大学. Google Scholar

[24] 郝民, 张华, 陶士伟, 龚建东. 2013. 变分质量控制在区域GRAPES-3DVAR中的应用研究. 高原气象, 32: 122–132. Google Scholar

[25] 何金海, 吴志伟, 江志红, 苗春生, 韩桂荣. 2006. 东北冷涡的“气候效应”及其对梅雨的影响. 科学通报, 51: 2803–2809. Google Scholar

[26] 何立富, 周庆亮, 谌芸, 唐文苑, 张涛, 蓝渝. 2011. 国家级强对流潜势预报业务进展与检验评估. 气象, 37: 777–784. Google Scholar

[27] 胡伯威. 1997. 与低层“湿度锋”耦合的带状CISK和暖切变型梅雨锋的产生. 大气科学, 21: 679–686. Google Scholar

[28] 华东中小天气系统试验基地协作组. 1978. 中小尺度天气系统分析文集. 湖南省湘中地区天气预报科研协作组. Google Scholar

[29] 黄荣辉, 李维京. 1988. 夏季热带西太平洋上空热源异常对东亚上空副热带高压的影响及其物理机制. 大气科学, 12(s1): 107–116. Google Scholar

[30] 黄士松. 1986. 华南前汛期暴雨. 广州: 广东科技出版社. 244. Google Scholar

[31] 黄思训, 韩威, 伍荣生. 2003. 结合反问题技巧对一维海温模式变分资料同化的理论分析及数值试验. 中国科学D辑: 地球科学, 33: 903–911. Google Scholar

[32] 黄伟, 端义宏, 薛纪善, 陈德辉. 2007. 热带气旋路径数值模式业务试验性能分析. 气象学报, 65: 578–587. Google Scholar

[33] 纪立人, 沈如金, 陈于湘. 1984. 夏季青藏高原动力影响的数值试验. 青藏高原气象科学试验文集(二). 北京: 科学出版社. 236–244. Google Scholar

[34] 蒋璐君, 李国平, 母灵, 孔亮. 2014. 基于TRMM资料的西南涡强降水结构分析. 高原气象, 33: 1457–1467. Google Scholar

[35] 兰伟仁, 朱江, Xue M, Gao J D, 雷霆. 2010a. 风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验I. 不考虑模式误差的情形. 大气科学, 34: 640–652. Google Scholar

[36] 兰伟仁, 朱江, Xue M, 雷霆, Gao J D. 2010b. 风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验II. 考虑模式误差的情形. 大气科学, 34: 737–753. Google Scholar

[37] 雷小途, 李永平, 于润玲, 李泓, 汤杰, 段自强, 郑运霞, 方平治, 赵兵科, 曾智华, 黄伟, 鲍旭炜, 喻自凤, 陈国民, 马雷鸣, 骆婧瑶, 张帅, 林立曼. 2019. 新一代区域海-气-浪耦合台风预报系统. 海洋学报, 41: 123–134. Google Scholar

[38] 李崇银. 1985. 南亚夏季风槽脊和热带气旋活动与移动性CISK波. 中国科学, 28: 668−675. Google Scholar

[39] 李崇银. 1990. 赤道以外热带大气中30~50天振荡的一个动力学研究. 大气科学, 14: 84−92. Google Scholar

[40] 李崇银, 顾薇. 2010. 2008年1月乌拉尔阻塞高压异常活动的分析研究. 大气科学, 34: 865–874. Google Scholar

[41] 李麦村. 1979. 大尺度大气运动的阶段性. 中国科学, 22: 509−607. Google Scholar

[42] 李麦村. 1982. 斜压大气中的位涡适应过程. 中国科学, 25: 473−481. Google Scholar

[43] 李双林, 纪立人, 倪允琪. 2001. 夏季乌拉尔地区大气环流持续异常. 科学通报, 46: 753–757. Google Scholar

[44] 李宪之. 1935. 东亚寒潮侵袭的研究. 中国近代科学论著丛刊——气象学(1919–1949). 北京: 科学出版社, 1955. 35–173. Google Scholar

[45] 李振军, 赵思雄. 1996. 东亚春季强冷锋结构及其动力学诊断研究, I东亚春季强冷锋结构. 大气科学, 20: 662–672. Google Scholar

[46] 李振军, 赵思雄. 1997. 东亚春季强冷锋结构及其动力学诊断研究, II动力学诊断研究. 大气科学, 21: 91–98. Google Scholar

[47] 廖洞贤. 1990. 近10年我国数值天气预报的进展. 气象学报, 48: 17–25. Google Scholar

[48] 林元弼, 等. 1988. 天气学. 南京: 南京大学出版社. 375. Google Scholar

[49] 刘树华, 刘振鑫, 李炬, 王迎春, 马雁军, 刘和平, 盛黎, 梁福明, 辛国君, 王建华. 2009. 京津冀地区大气局地环流耦合效应的数值模拟. 中国科学D辑: 地球科学, 39: 88–98. Google Scholar

[50] 刘屹岷, 刘辉, 刘平. 1999a. 空间非均匀加热对副热带高压带形成和变异的影响II. 路面感热与东太平洋副高. 气象学报, 57: 385–396. Google Scholar

[51] 刘屹岷, 吴国雄, 刘辉, 刘平. 1999b. 空间非均匀加热对副热带高压带形成和变异的影响III. 凝结加热与南亚高压及西太平洋副高. 气象学报, 57: 525–538. Google Scholar

[52] 刘屹岷, 吴国雄, 宇如聪, 刘平. 2001. 热力适应、过流、频散和副高II. 水平非均匀加热与能量频散. 大气科学, 25: 317−328. Google Scholar

[53] 刘永柱, 龚建东, 张林, 陈起英. 2019. 线性化物理过程对GRAPES 4DVAR同化的影响. 气象学报, 77: 196–209. Google Scholar

[54] 刘永柱, 张林, 金之雁. 2017. GRAPES全球切线性和伴随模式的调优. 应用气象学报, 28: 62–71. Google Scholar

[55] 陆日宇, 黄荣辉. 1996. 变形的经向环流变化方程及其在诊断阻塞高压形成中的应用. 大气科学, 20: 138–148. Google Scholar

[56] 罗德海, 纪立人. 1989. 大气阻塞形成的一个理论. 中国科学, 32: 103−112. Google Scholar

[57] 罗义, 梁旭东, 陈明轩. 2014. 单多普勒雷达径向风同化的改进. 气象科学, 34: 620–628. Google Scholar

[58] 麻素红, 陈德辉. 2018. 国家气象中心区域台风模式预报性能分析. 热带气象学报, 34: 451–459. Google Scholar

[59] 马旭林, 庄照荣, 薛纪善, 陆维松. 2009. GRAPES非静力数值预报模式的三维变分资料同化系统的发展. 气象学报, 67: 50–60. Google Scholar

[60] 孟智勇, 徐祥德, 陈联寿. 1998. 台湾岛地形诱生次级环流系统对热带气旋异常运动的影响机制. 大气科学, 2: 156–168. Google Scholar

[61] 苗春生, 吴志伟, 何金海, 池艳珍. 2006. 近50年东北冷涡异常特征及其与前汛期华南降水的关系分析. 大气科学, 30: 1249–1256. Google Scholar

[62] 倪允琪, 周秀骥, 张人禾, 王鹏云, 仪清菊. 2006. 我国南方暴雨的试验与研究. 应用气象学报, 17: 690–704. Google Scholar

[63] 钱传海, 端义宏, 麻素红, 许映龙. 2012. 我国台风业务现状及其关键技术. 气象科技进展, 2: 36–43. Google Scholar

[64] 邱炳焕, 丁一汇. 1979. 1973年我国梅雨时期的环流结构. 北京: 科学出版社. 56–83. Google Scholar

[65] 邱崇践, 余金香. 2000. 多普勒雷达资料对中尺度系统短期预报的改进. 气象学报, 58: 245–248. Google Scholar

[66] 仇永炎. 1956. 冬季东经140°剖面上的温度场与风场. 北京大学学报(自然科学版), 2: 63–70. Google Scholar

[67] 沈如桂, 牟惟丰. 1965. 中央气象局气象台48小时500毫巴数值预报图应用的初步经验. 气象学报. 35: 383–398. Google Scholar

[68] 沈孝凰. 1932. 1931年6~7月长江流域的风暴研究. 中央研究院气象研究所集刊, 3. Google Scholar

[69] 沈学顺, 龚建东, 王建捷, 等. 2015. GRAPES_GFS技术报告. 中国气象局数值预报中心. 235. Google Scholar

[70] 沈学顺, 周秀骥. 2013. GRAPES暴雨数值预报系统. 北京: 气象出版社. 186. Google Scholar

[71] 石顺吉, 余锦华, 张大林. 2009. 热带风暴Bilis (2006)登陆期间一波非对称降水分布成因的探讨. 热带海洋学报, 28: 34–42. Google Scholar

[72] 孙建华, 赵思雄. 2002a. 华南“94·6”特大暴雨的中尺度对流系统及其环境场研究, Ⅰ. 引发暴雨的中尺度对流系统的数值模拟研究. 大气科学, 26: 541–557. Google Scholar

[73] 孙建华, 赵思雄. 2002b. 华南“94·6”特大暴雨的中尺度对流系统及其环境场研究, Ⅱ. 物理过程 、环境场以及地形对中尺度对流系统的作用. 大气科学, 26: 633–646. Google Scholar

[74] 孙力, 安刚, 高枞亭, 唐晓玲, 丁立, 沈柏竹. 2002. 1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析. 应用气象学报, 13: 156–162. Google Scholar

[75] 谈哲敏, 伍荣生. 1990. Ekman动量流的动力特征与锋生. 中国科学: B辑, 12: 1322–1332. Google Scholar

[76] 谈哲敏, 伍荣生. 1991. 边界层动力学中的Ekman动量近似. 气象学报, 4: 421–429. Google Scholar

[77] 谈哲敏, 伍荣生. 2000a. 地形上空边界层流中低层锋面结构的理论研究I: 冷锋、均匀地转流. 气象学报, 58: 137–150. Google Scholar

[78] 谈哲敏, 伍荣生. 2000b. 地形上空边界层流中低层锋面结构的理论研究II: 暖锋、均匀地转流. 气象学报, 58: 165–277. Google Scholar

[79] 谈哲敏, 赵思雄. 2010. 我国南方β中尺度强对流系统结构与机理研究. 北京: 气象出版社. 327. Google Scholar

[80] 陶诗言. 1959. 十年来我国对东亚寒潮的研究. 气象学报, 30: 226–230. Google Scholar

[81] 陶诗言. 1963. 中国夏季副热带天气系统若干问题的研究. 北京: 科学出版社. 146. Google Scholar

[82] 陶诗言. 1996. 1994年东亚夏季风活动的异常与华南的特大洪涝灾害. 1994年华南特大暴雨洪涝学术研讨会论文集. 北京: 气象出版社. 1–5. Google Scholar

[83] 陶诗言, 等. 1980. 中国之暴雨. 北京: 科学出版社. 225. Google Scholar

[84] 陶诗言, 倪允琪, 赵思雄, 陈受钧, 王建捷, 等. 2001. 1998夏季中国暴雨形成机理与预报研究. 北京: 气象出版社. 184. Google Scholar

[85] 陶诗言, 卫捷. 2008. 2008年1月我国南方严重冰雪灾害过程分析. 气候与环境研究, 13: 337–350. Google Scholar

[86] 陶诗言, 赵思雄, 周晓平, 纪立人, 孙淑清, 高守亭, 张庆云. 2003. 天气学和天气预报的研究进展. 大气科学, 27: 451–467. Google Scholar

[87] 陶诗言, 赵煜佳, 陈晓敏. 1958a. 东亚的梅雨期与亚洲上空大气环流季节变化的关系. 气象学报, 29: 119–134. Google Scholar

[88] 陶诗言, 赵煜佳, 陈晓敏. 1958b. 中国的梅雨. 中央气象局气象论文集, 4: 36–40. Google Scholar

[89] 陶祖钰. 1992. 从单Doppler速度场反演风矢量的VAP方法. 气象学报, 50: 81–90. Google Scholar

[90] 涂长望. 1938. 中国之气团. 气象学报, 5: 175–218. Google Scholar

[91] 万齐林, 何金海. 2012. 海洋气象观测系统在热带气旋资料同化中的应用. 中国工程科学, 14: 33−42. Google Scholar

[92] 王斌, 季仲贞. 1990. 显式完全平方守恒差分格式的构造及其初步检验. 科学通报, 35: 766−768. Google Scholar

[93] 王斌, 季仲贞. 2006. 大气科学中的数值新方法及其应用. 北京: 科学出版社. 216. Google Scholar

[94] 王德翰, 韦统建. 1982. 伴有特大暴雨的梅雨锋结构特征. 北京: 气象出版社. 176–181. Google Scholar

[95] 王金成, 龚建东, 王瑞春. 2016. GRAPES全球三维变分同化中卫星微波温度计亮温的背景误差及在质量控制中的应用. 气象学报, 74: 397–409. Google Scholar

[96] 王金成, 陆慧娟, 韩威, 刘艳, 王瑞春, 张华, 黄静, 刘永柱, 郝民, 李娟, 田伟红. 2017. GRAPES全球三维变分同化业务系统性能. 应用气象学报, 28: 11–24. Google Scholar

[97] 王金成, 庄照荣, 韩威, 陆慧娟. 2014. GRAPES全球变分同化背景误差协方差的改进及对分析预报的影响: 背景误差协方差三维结构的估计. 气象学报, 72: 62–78. Google Scholar

[98] 王鹏云, 李泽椿. 2001. 灾害天气和中尺度气象学研究. 气象科技, 27: 10–14. Google Scholar

[99] 王瑞春, 龚建东, 张林, 陆慧娟. 2015. 热带风压场平衡特征及其对GRAPES系统中同化预报的影响研究II: 动力与统计混合平衡约束方案的应用. 大气科学, 39: 1225–1236. Google Scholar

[100] 王作述. 1963. 一次江淮流域切变线过程的环流结构. 气象学报, 33: 189–204. Google Scholar

[101] 吴国雄, 丑纪范, 刘屹岷, 何金海, 等. 2002. 副热带高压形成和变异的动力学问题. 北京: 科学出版社. 314. Google Scholar

[102] 吴国雄, 李占清, 符淙斌, 张小曳, Zhang R Y, 张人禾, 周天军, 李建平, 李剑东, 周德刚, 武亮, 周连童, 何编, 黄荣辉. 2015. 气溶胶与东亚季风相互影响的研究进展. 中国科学: 地球科学, 45: 1609–1627. Google Scholar

[103] 吴国雄, 刘屹岷, 刘平. 1999. 空间非均匀加热对副热带高压带形成和变异的影响I. 尺度分析. 气象学报, 57: 257–263. Google Scholar

[104] 吴国雄, 刘屹岷. 2000. 热力适应、过流、频散和副高I.热力适应和过流. 大气科学, 24: 433−446. Google Scholar

[105] 伍荣生, 巢纪平. 1978. 旋转大气中运动的多时态特征和时间边界层. 大气科学, 2: 267−275. Google Scholar

[106] 伍荣生, 高守亭, 谈哲敏. 2004. 锋面过程与中尺度扰动. 北京: 气象出版社. 168. Google Scholar

[107] 谢义炳. 1956. 中国夏半年几种降水天气系统的分析研究. 气象学报, 27: 1–23. Google Scholar

[108] 谢义炳. 1959. 十年来我国降水问题的研究工作. 气象学报, 30: 223–225. Google Scholar

[109] 谢义炳, 陈受钧, 张一良, 黄寅亮. 1963. 东南压基本气流与台风发生的一些事实的统计与分析. 气象学报, 33: 206–217. Google Scholar

[110] 谢义炳, 陈玉樵. 1951. 冬季西太平洋及东亚大陆北部上空的温度场及流场. 气象学报, 22: 52–53. Google Scholar

[111] 谢义炳, 谢安, 张镡, 杨大升, 蒋尚城. 1978. 动力分析及其在天气预报中的应用. 北京大学学报(自然科学版), 24: 1–9. Google Scholar

[112] 徐道生, 邵爱梅, 邱崇践. 2011a. SVD-En3DVar方法同化多普勒雷达速度观测资料I. 模拟资料试验. 大气科学, 35: 753–766. Google Scholar

[113] 徐道生, 邵爱梅, 邱崇践. 2011b. SVD-En3DVar方法同化多普勒雷达速度观测资料II. 实际资料试验. 大气科学, 35: 818–832. Google Scholar

[114] 许梓秀. 1977. 夏季冷低阻高型京津冀地区中尺度天气过程的分析研究(二). 中央气象局研究所, 雷达气象文集. 17–39. Google Scholar

[115] 许梓秀. 1977. 夏季冷低阻高型京津冀地区中尺度天气过程的分析研究(一). 中央气象局研究所, 雷达气象文集. 1–16. Google Scholar

[116] 薛纪善, 陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社. 383. Google Scholar

[117] 薛纪善. 2006. 新世纪初我国数值天气预报的科技创新研究. 应用气象学报, 17: 602–610. Google Scholar

[118] 闫之辉, 王雨, 朱国富. 2010. 国家气象中心业务数值预报发展的回顾与展望. 气象, 36: 26–32. Google Scholar

[119] 闫之辉, 赵俊英, 朱琪, 郭肖容, 张玉玲. 1997. 高分辨率有限区业务数值预报模式及降水预报试验. 应用气象学报, 8: 393–400. Google Scholar

[120] 叶笃正. 1952. 西藏高原对于大气环流影响的季节变化. 气象学报, 23: 33–47. Google Scholar

[121] 叶笃正. 1962. 北半球冬季阻塞形势的研究. 北京: 科学出版社. 135. Google Scholar

[122] 叶笃正, 高由禧. 1979. 青藏高原气象学. 北京: 科学出版社. 278. Google Scholar

[123] 叶笃正, 顾震潮. 1955. 西藏高原对于东亚大气环流及中国天气的影响. 科学通报, 6: 30−33. Google Scholar

[124] 叶笃正, 李麦村. 1964. 中小尺度运动中风场和气压场的适应. 气象学报, 34: 409–423. Google Scholar

[125] 叶笃正, 李麦村. 1979. 大气各类运动的多时间尺度特性. 第二次全国数值天气预报文集. 北京: 科学出版社. 181−192. Google Scholar

[126] 叶笃正, 罗四维, 朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡. 气象学报, 28: 108–121. Google Scholar

[127] 叶笃正, 陶诗言, 李麦村. 1958. 在六月和十月大气环流的突变现象. 气象学报, 29: 249−263. Google Scholar

[128] 叶笃正, 朱抱真. 1958. 大气环流的若干基本问题. 北京: 科学出版社. 159. Google Scholar

[129] 尹若莹, 韩威, 高志球, 王根. 2019. 基于风云四号A星探测区域模式背景误差和观测误差估计的长波红外通道选择研究. 气象学报77, doi: 10.11676/qxxb2019.051. Google Scholar

[130] 俞小鼎, 周小刚, 王秀明. 2012. 雷暴与强对流临近天气预报技术进展. 气象学报, 70: 311–337. Google Scholar

[131] 宇如聪, 薛纪善, 徐幼平, 等. 2004. AREMS中尺度暴雨数值预报模式系统. 北京: 气象出版社. 233. Google Scholar

[132] 曾庆存. 1963a. 扰动特性对大气适应过程的影响和测风资料的使用问题. 气象学报, 33: 37−50. Google Scholar

[133] 曾庆存. 1963b. 大气中的适应过程和发展过程(一)物理分析和线性理论. 气象学报, 35: 163−174. Google Scholar

[134] 曾庆存. 1963c: 大气中的适应过程和发展过程(二)非线性问题. 气象学报, 35: 281−289. Google Scholar

[135] 曾庆存. 1963d. 大气运动的特征参数和动力学方程. 气象学报, 33: 472–483. Google Scholar

[136] 曾庆存. 1979a. 旋转大气中运动的非线性相互作用和旋转适应过程. 中国科学, 22: 986−995. Google Scholar

[137] 曾庆存. 1979b. 数值天气预报的数学物理基础. 第一卷. 北京: 科学出版社. 543. Google Scholar

[138] 曾庆存, 季仲贞. 1981. 发展方程的计算稳定性问题. 计算数学, 1: 79–86. Google Scholar

[139] 曾庆存, 叶笃正. 1980. 旋转大气中运动的适应过程. 力学学报, 13: 1−11. Google Scholar

[140] 曾庆存, 叶笃正. 1981. 旋转大气中运动适应过程问题的研究(一). 大气科学, 4: 379−393. Google Scholar

[141] 曾庆存, 叶笃正. 1982. 旋转大气中运动适应过程问题的研究(二). 大气科学, 5: 101−112. Google Scholar

[142] 曾庆存, 袁重光, 张学洪, 包宁. 1985. 一个大气环流模式差分格式的检验. 气象学报, 43: 441–449. Google Scholar

[143] 张丙辰, 章震越. 1990. 长江中下游梅雨锋暴雨研究. 北京: 气象出版社. 269. Google Scholar

[144] 张庆红. 1999. 台湾海峡上空中尺度对流系统的数值研究. 博士学位论文. 北京: 北京大学. 148. Google Scholar

[145] 张人禾, 刘屹岷. 2013. 中国南方夏季强降水的大尺度过程. 北京: 气象出版社. 312. Google Scholar

[146] 张婉佩. 1978. 西北太平洋、南海热带扰动发展与不发展的对比分析. 台风会议文集. 上海: 上海科学技术出版社. 240. Google Scholar

[147] 张文龙, 张大林, 王昂生, 崔晓鹏. 2009. 台风榴莲(2001)在季风槽中生成的机制探讨. 气象学报. 67: 811–827. Google Scholar

[148] 张小玲, 陶诗言, 孙建华. 2010. 基于“配料”的暴雨预报. 大气科学, 34: 754–766. Google Scholar

[149] 张云济, 张福青. 2018. 集合资料同化方法在强雷暴天气预报中的应用. 气象科技进展, 8: 38–52. Google Scholar

[150] 章基嘉, 廖洞贤, 陈授钧, 等. 1985. 关于两年来我国数值预报业务的初步报告. 北京气象中心论文集, 198–210. Google Scholar

[151] 赵柏林, 丁一汇. 1999. 淮河流域能量与水分循环研究(一). 北京: 气象出版社. 273. Google Scholar

[152] 赵国藏, 李明熙, 牟惟丰. 1953. 关于我国夏季高空流型和华中华南夏季降水. 天气月刊, 7月. Google Scholar

[153] 赵思雄. 1988. 梅雨锋上扰动发生发展的能量分析. 大气科学. 12(s1): 191–201. Google Scholar

[154] 赵思雄, 曾庆存. 2005. 东亚强寒潮——冷涌越过赤道并引发南半球热带气旋和强降水的个例研究. 气候与环境研究. 10: 507–525. Google Scholar

[155] 赵思雄, 刘苏红, 刘名扬.1980. 夏季北京冷涡强对流天气的中尺度分析. 中国科学院大气物理所集刊, 第9号. 北京: 科学出版社. 151–160. Google Scholar

[156] 赵思雄, 陶祖钰, 孙建华, 等. 2004. 长江流域梅雨锋暴雨机理的分析研究. 北京: 气象出版社. 282. Google Scholar

[157] 郑庆林. 1980. 北半球七层初始方程波谱模式. 第二次全国数值天气预报会议论文集. 北京: 科学出版社. 13–24. Google Scholar

[158] 郑永光, 张小玲, 周庆亮, 端义宏, 谌芸, 何立富. 2010. 强对流天气短时临近预报业务技术进展与挑战. 气象, 36: 33–42. Google Scholar

[159] 钟青. 1997. 物理守恒律保真格式构造与数值预报斜压原始方程传统谱模式改进研究. 气象学报, 55: 641–661. Google Scholar

[160] 周秀骥. 2000. 海峡两岸及邻近地区暴雨试验研究. 北京: 气象出版社. 370. Google Scholar

[161] 周秀骥, 薛纪善, 陶祖钰, 等. 2003. “98”华南暴雨科学试验研究. 北京: 气象出版社. 220. Google Scholar

[162] 朱正心, 朱抱真. 1982. 纬向不对称热力强迫下超长波的非线性平衡态与阻塞形势. 中国科学, 25: 361−371. Google Scholar

[163] 竺可桢. 1925. 中国历史上气候之变迁. 东方杂志, 22: 22–28. Google Scholar

[164] 庄照荣, 薛纪善, 韩威, 刘艳. 2014. 探空观测黑名单检查在变分同化系统中的应用. 应用气象学报, 25: 274–283. Google Scholar

[165] Alexander L V, Zhang X, Peterson T C, Caesar J, Gleason B, Klein Tank A M G, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D B, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J L. Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res, 2006, 111: D05109 CrossRef ADS Google Scholar

[166] Arnold V I. 1965. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl Akad Nauk Sssr, 162: 975−978. Google Scholar

[167] Bai L Q, Meng Z Y, Huang L, Yan L, Li Z, Mai X, Huang Y, Yao D, Wang X. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull Amer Meteorol Soc, 2017, 98: 2619-2640 CrossRef ADS Google Scholar

[168] Bai L Q, Meng Z Y, Huang Y P, Zhang Y J, Niu S Z, Su T. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study. J Geophys Res-Atmos, 2019a, 124: 2379-2396 CrossRef ADS Google Scholar

[169] Bai L Q, Meng Z Y, Sueki K, Chen G, Zhou R. Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Sci China Earth Sci, 2019b, 62,: doi: 10.1007/s11430-019-9391-1 CrossRef Google Scholar

[170] Bao M, Hartmann D L. The response to MJO-like forcing in a nonlinear shallow-water model. Geophys Res Lett, 2014, 41: 1322-1328 CrossRef ADS Google Scholar

[171] Berggren R, Bolin B, Rossby C G. An aerological study of zonal motion, its perturbations and break-down. Tellus, 1949, 1: 14-37 CrossRef ADS Google Scholar

[172] Blumen W, Washington W M. Atmospheric dynamics and numerical weather prediction in the People’s Republic of China 1949–1966. Bull Amer Meteorol Soc, 1973, 54: 502-518 CrossRef Google Scholar

[173] Chan J, Liang X. Convective asymmetries associated with tropical cyclone landfall. Part I: f-plane simulations. J Atmos Sci, 2003, 60: 1560-1576 CrossRef Google Scholar

[174] Charney J G, Drazin P G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res, 1961, 66: 83-109 CrossRef ADS Google Scholar

[175] Charney J G, FjÖrtoft R, Neumann J V. Numerical integration of the barotropic vorticity equation. Tellus, 1950, 2: 237-254 CrossRef Google Scholar

[176] Charney J, Halem M, Jastrow R. Use of incomplete historical data to infer the present state of the atmosphere. J Atmos Sci, 1969, 26: 1160-1163 CrossRef Google Scholar

[177] Charney J G. The dynamics of long waves in a baroclinic westerly current. J Meteorol, 1947, 4: 136-162 CrossRef Google Scholar

[178] Chen C G, Li X L, Shen X S, Xiao F. Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J Comput Phys, 2014, 271: 191-223 CrossRef ADS Google Scholar

[179] Chen C G, Li X L, Shen X S, Xiao F. A high-order conservative collocation scheme and its application to global shallow-water equations. Geosci Model Dev, 2015, 8: 221-233 CrossRef ADS Google Scholar

[180] Chen D H, Xue J S, Yang X S, Zhang H L, Shen X S, Hu J L, Wang Y, Ji L R, Chen J B. New generation of multi-scale NWP system (GRAPES): General scientific design. Chin Sci Bull, 2008, 53: 3433-3445 CrossRef Google Scholar

[181] Chen G H, Chou C. Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific. Mon Weather Rev, 2014, 142: 79-93 CrossRef ADS Google Scholar

[182] Chen G X, Yang J, Bao Q, Wang W C. Intraseasonal responses of the East Asia summer rainfall to anthropogenic aerosol climate forcing. Clim Dyn, 2018, 51: 3985-3998 CrossRef ADS Google Scholar

[183] Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin Sci Bull, 58: 743–752. Google Scholar

[184] Chen H P, Sun J Q, Chen X L, Zhou W. CGCM projections of heavy rainfall events in China. Int J Climatol, 2012, 32: 441-450 CrossRef ADS Google Scholar

[185] Chen J Y, Cai X H, Wang H Y, Kang L, Zhang H S, Song Y, Zhu H, Zheng W, Li F J. Tornado climatology of China. Int J Climatol, 2018, 38: 2478-2489 CrossRef ADS Google Scholar

[186] Chen M X, Wang Y C, Gao F, Xiao X. Diurnal evolution and distribution of warm-season convective storms in different prevailing wind regimes over contiguous North China. J Geophys Res-Atmos, 2014, 119: 2742-2763 CrossRef ADS Google Scholar

[187] Chen M, Gao F, Kong R, Wang Y, Wang J, Tan X, Xiao X, Zhang W, Wang L, Ding Q. 2009. A system for nowcasting convective storm in support of 2008 Olympics. World Meteorological Organization Symposium on Nowcasting and Very Short Term Forecasting. Whistler, Canada. Google Scholar

[188] Chen T J. Observational aspects of the Mei-yu phenomenon in subtropical China. J Meteorol Soc Jpn, 1983, 61: 306-312 CrossRef Google Scholar

[189] Chen T J, Chang C P. The structure and vorticity budget of an early summer monsoon trough (Mei-yu) over southeastern China and Japan. Mon Weather Rev, 1980, 108: 942-953 CrossRef Google Scholar

[190] Chen W, Graf H F, Takahashi M. Observed interannual oscillations of planetary wave forcing in the Northern Hemisphere winter. Geophys Res Lett, 2002, 29: 30-1-34-4 CrossRef ADS Google Scholar

[191] Chen W, Takahashi M, Graf H F. Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J Geophys Res, 2003, 108: 4797 CrossRef ADS Google Scholar

[192] Chen X C, Zhang F Q, Zhao K. Diurnal variations of the land-sea breeze and its related precipitation over South China. J Atmos Sci, 2016, 73: 4793-4815 CrossRef ADS Google Scholar

[193] Chen X C, Zhang F Q, Zhao K. Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu season coastal rainfall over South China. J Atmos Sci, 2017, 74: 2835-2856 CrossRef ADS Google Scholar

[194] Chen X C, Zhao K, Xue M, Zhou B, Huang X, Xu W. Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei-Yu season. J Geophys Res-Atmos, 2015, 120: 12557-12575 CrossRef ADS Google Scholar

[195] Chen X C, Zhao K, Xue M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J Geophys Res-Atmos, 2014, 119: 12, 447-12, 465 CrossRef ADS Google Scholar

[196] Chen Y, Zhao C S, Zhang Q, Deng Z Z, Huang M Y, Ma X C. Aircraft study of mountain chimney effect of Beijing, China. J Geophys Res, 2009, 114: D08306 CrossRef ADS Google Scholar

[197] Dai G K, Mu M, Jiang Z N. Relationships between optimal precursors triggering NAO onset and optimally growing initial errors during NAO prediction. J Atmos Sci, 2016, 73: 293-317 CrossRef ADS Google Scholar

[198] Di D, Li J, Han W, Bai W, Wu C, Menzel W P. Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles. J Geophys Res-Atmos, 2018, 123: 12 CrossRef ADS Google Scholar

[199] Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y, Herrmann E, Zheng L F, Nie W, Liu Q, Wei X L, Kulmala M. Intense atmospheric pollution modifies weather: A case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys, 2013, 13: 10545-10554 CrossRef ADS Google Scholar

[200] Ding L T, Lu S, Cheng J. Weak-norm posterior contraction rate of the 4DVAR method for linear severely ill-posed problems. J Complexity, 2018, 46: 1-18 CrossRef Google Scholar

[201] Du Y, Chen G X. Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-based analysis. Mon Weather Rev, 2018, 146: 3827-3844 CrossRef ADS Google Scholar

[202] Du Y, Chen G X. Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon Weather Rev, 2019, 147: 543-565 CrossRef ADS Google Scholar

[203] Du Y, Chen Y L, Zhang Q H. Numerical simulations of the boundary layer jet off the southeastern coast of China. Mon Weather Rev, 2015a, 143: 1212-1231 CrossRef ADS Google Scholar

[204] Du Y, Rotunno R, Zhang Q H. Analysis of WRF-simulated diurnal boundary layer winds in Eastern China using a simple 1D model. J Atmos Sci, 2015b, 72: 714-727 CrossRef ADS Google Scholar

[205] Du Y, Rotunno R. A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J Atmos Sci, 2014, 71: 3674-3683 CrossRef ADS Google Scholar

[206] Du Y, Zhang Q H, Chen Y, Zhao Y, Wang X. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J Clim, 2014, 27: 5747-5767 CrossRef ADS Google Scholar

[207] Du Y, Zhang Q H, Yue Y, Yang Y. Characteristics of low-level jets in Shanghai during the 2008–2009 warm seasons as inferred from wind profiler radar data. J Meteorol Soc Jpn, 2012, 90: 891-903 CrossRef Google Scholar

[208] Duan W S, Huo Z H. An approach to generating mutually independent initial perturbations for ensemble forecasts: Orthogonal conditional nonlinear optimal perturbations. J Atmos Sci, 2016, 73: 997-1014 CrossRef ADS Google Scholar

[209] Eady E T. Long waves and cyclone waves. Tellus, 1949, 1: 33-52 CrossRef Google Scholar

[210] Emanuel K A, David Neelin J, Bretherton C S. On large-scale circulations in convecting atmospheres. Q J R Met Soc, 1994, 120: 1111-1143 CrossRef ADS Google Scholar

[211] Fan J W, Leung L R, Rosenfeld D, Chen Q, Li Z Q, Zhang J Q, Yan H R. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc Natl Acad Sci USA, 2013, 110: E4581-E4590 CrossRef PubMed ADS Google Scholar

[212] Fang J, Zhang F Q. Initial development and genesis of Hurricane Dolly (2008). J Atmos Sci, 2010, 67: 655-672 CrossRef ADS Google Scholar

[213] Fang J, Zhang F Q. Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J Atmos Sci, 2011, 68: 103-122 CrossRef ADS Google Scholar

[214] Fang J, Zhang F Q. Contribution of tropical waves to the formation of supertyphoon Megi (2010). J Atmos Sci, 2016, 73: 4387-4405 CrossRef ADS Google Scholar

[215] Fu C, Li D. Trends in the different grades of precipitation over South China during 1960–2010 and the possible link with anthropogenic aerosols. Adv Atmos Sci, 2014, 31: 480-491 CrossRef ADS Google Scholar

[216] Fu S Z, Deng X, Li Z, Xue H W. Radiative effect of black carbon aerosol on a squall line case in North China. Atmos Res, 2017, 197: 407-414 CrossRef ADS Google Scholar

[217] Gao S Z, Meng Z Y, Zhang F Q, Bosart L F. Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall. Mon Weather Rev, 2009, 137: 1881-1897 CrossRef ADS Google Scholar

[218] Gong Y T, Li Y, Zhang D L. A statistical study of unusual tracks of tropical cyclones near Taiwan Island. J Appl Meteorol Climatol, 2018, 57: 193-206 CrossRef ADS Google Scholar

[219] Gray W M. The formation of tropical cyclones. Meteorl Atmos Phys, 1998, 67: 37-69 CrossRef ADS Google Scholar

[220] Gu J F, Tan Z M, Qiu X. Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J Atmos Sci, 2015, 72: 511-530 CrossRef ADS Google Scholar

[221] Gu J F, Tan Z M, Qiu X. Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J Atmos Sci, 2016, 73: 1159-1177 CrossRef ADS Google Scholar

[222] Gu J F, Tan Z M, Qiu X. The evolution of vortex tilt and vertical motion of tropical cyclones in directional shear flows. J Atmos Sci, 2018, 75: 3565-3578 CrossRef ADS Google Scholar

[223] Gu J F, Tan Z M, Qiu X. Intensification variability of tropical cyclones in directional shear flows: Vortex tilt-convection coupling. J Atmos Sci, 2019, 76: 1827-1844 CrossRef ADS Google Scholar

[224] Gu W, Wang L, Hu Z Z, Hu K M, Li Y. Interannual variations of the first rainy season precipitation over south China. J Clim, 2018, 31: 623-640 CrossRef ADS Google Scholar

[225] Guo J P, Deng M J, Fan J W, Li Z Q, Chen Q, Zhai P M, Dai Z J, Li X W. Precipitation and air pollution at mountain and plain stations in northern China: Insights gained from observations and modeling. J Geophys Res-Atmos, 2014, 119: 4793-4807 CrossRef ADS Google Scholar

[226] Guo J P, Deng M J, Lee S S, Wang F, Li Z Q, Zhai P M, Liu H, Lv W T, Yao W, Li X W. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J Geophys Res-Atmos, 2016, 121: 6472-6488 CrossRef ADS Google Scholar

[227] Guo J P, Liu H, Li Z Q, Rosenfeld D, Jiang M J, Xu W X, Jiang J H, He J, Chen D D, Min M, Zhai P M. Aerosol-induced changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar. Atmos Chem Phys, 2018, 18: 13329-13343 CrossRef ADS Google Scholar

[228] Guo X L, Fu D H, Guo X, Zhang C M. A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos Res, 2014, 142: 142-157 CrossRef ADS Google Scholar

[229] Guo X, Tan Z M. Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys Res Lett, 2017, 44: 4324-4331 CrossRef ADS Google Scholar

[230] Guo Y P, Tan Z M. 2018. Westward migration of tropical cyclone rapid-intensification over the northwestern Pacific during short duration El Nino. Nature Commun, 9: 1570. Google Scholar

[231] Han W. 2014. Constrained variational bias correction for satellite radiance assimilation. In: 19th Int TOVS Study Conf. Google Scholar

[232] Han W, Bormann N. 2016. Constrained adaptive bias correction for satellite radiances assimilation in the ECMWF 4D-Var system. In: ECMWF Technical Memorandum 783. Google Scholar

[233] Han W, McNally A P. The 4D-Var assimilation of ozone-sensitive infrared radiances measured by IASI. Q J R Meteorol Soc, 2010, 136: 2025-2037 CrossRef ADS Google Scholar

[234] Han W, Xue J S, Xu J M, Zhang Q S. 2006. Assimilation of FY2C AMV in GRAPES. Eighth International Winds Workshop, 24–28 April, Beijing, China. Google Scholar

[235] Han W, Xue J. 2007. Adaptive tuning of background error and satellite radiance observation error for operational variational assimilation. Proc of SPIE, 6790: 679044-1–679044-9. Google Scholar

[236] Han Y, Khouider B. Convectively coupled waves in a sheared environment. J Atmos Sci, 2010, 67: 2913-2942 CrossRef ADS Google Scholar

[237] He M Y, Liu H B, Wang B, Zhang D L. A modeling study of a low-level jet along the Yun-Gui plateau in South China. J Appl Meteorol Climatol, 2016, 55: 41-60 CrossRef ADS Google Scholar

[238] He Z W, Zhang Q H, Bai L Q, Meng Z Y. Characteristics of mesoscale convective systems in central East China and their reliance on atmospheric circulation patterns. Int J Climatol, 2017, 37: 3276-3290 CrossRef ADS Google Scholar

[239] Hsieh Y P. An investigation of a slected cold vortex over North America. J Meteorol, 1949, 6: 401-410 CrossRef Google Scholar

[240] Huang L, Luo Y L, Zhang D L. The relationship between anomalous presummer extreme rainfall over the South China and synoptic disturbances. J Geophys Res-Atmos, 2018, 123: 3395-3413 CrossRef ADS Google Scholar

[241] Huang R, Gambo K. The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sources: (I) Forcing by topography. J Meteorol Soc Jpn, 1982a, 60: 78-92 CrossRef Google Scholar

[242] Huang R, Gambo K. The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sources. J Meteorol Soc Jpn, 1982b, 60: 93-108 CrossRef Google Scholar

[243] Huang R, Gambo K. 1984. On other wave guide in stationary planetary wave propagations in winter Northern Hemisphere. Sci China Chem, 27: 610−624. Google Scholar

[244] Huang X, Ding A, Liu L, Liu Q, Ding K, Niu X, Nie W, Xu Z, Chi X, Wang M, Sun J, Guo W, Fu C. Effects of aerosol-radiation interaction on precipitation during biomass-burning season in East China. Atmos Chem Phys, 2016, 16: 10063-10082 CrossRef ADS Google Scholar

[245] Jaw J J. 1937. Zur Thermodynamiu der Paeat, Gerundstromung, Abgedruckt aus Veroffentlichungen des Meteorologischen, Institutes der Universitat Berlin, Bd, II, Ht. 5. Google Scholar

[246] Jaw J. The formation of the semi-permanent center of action in relation to the horizontal solenoidal field. J Meteorol, 1946, 3: 103-114 CrossRef Google Scholar

[247] Ji L, Tibaldi S. 1983. Numerical simulation of a case of blocking: The effect of orography and land-sea contrast. Mon Weather Rev, 111: 2068–2086. Google Scholar

[248] Jiang M J, Li Z Q, Wan B C, Cribb M. Impact of aerosols on precipitation from deep convective clouds in Eastern China. J Geophys Res-Atmos, 2016, 121: 9607-9620 CrossRef ADS Google Scholar

[249] Jiang Z N, Mu M. A comparison study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction. Adv Atmos Sci, 2009, 26: 465-470 CrossRef ADS Google Scholar

[250] Kuo H L. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J Meteorol, 1949, 6: 105-122 CrossRef Google Scholar

[251] Lau K M, Peng L. 1987. Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J Atmos Sci, 44: 950−972. Google Scholar

[252] Lee S S, Guo J P, Li Z Q. Delaying precipitation by air pollution over the Pearl River Delta: 2. Model simulations. J Geophys Res-Atmos, 2016, 121: 11739-11760 CrossRef ADS Google Scholar

[253] Li J, Liu G Q. Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmos Meas Tech, 2016, 9: 3095-3113 CrossRef ADS Google Scholar

[254] Li L, Zhang Y C. Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the Mei-Yu season. J Clim, 2014, 27: 6660-6672 CrossRef ADS Google Scholar

[255] Li M X, Zhang Q H, Zhang F Q. Hail day frequency trends and associated atmospheric circulation patterns over China during 1960–2012. J Clim, 2016, 29: 7027-7044 CrossRef ADS Google Scholar

[256] Li T, Wang L, Peng M, Wang B, Zhang C, Lau W, Kuo H C. A Paper on the tropical intraseasonal oscillation published in 1963 in a Chinese Journal. Bull Amer Meteorol Soc, 2018, 99: 1765-1779 CrossRef ADS Google Scholar

[257] Li X F, Zhang Q H, Xue H W. The role of initial cloud condensation nuclei concentration in hail using the WRF NSSL 2-moment microphysics scheme. Adv Atmos Sci, 2017, 34: 1106-1120 CrossRef ADS Google Scholar

[258] Li X F, Zhang Q H, Zou T, Lin J P, Kong H, Ren Z H. Climatology of hail frequency and size in China, 1980–2015. J Appl Meteorol Climatol, 2018, 57: 875-887 CrossRef ADS Google Scholar

[259] Li X S, Luo Y L, Guan Z Y. The persistent heavy rainfall over southern China in June 2010: Evolution of synoptic systems and the effects of the Tibetan Plateau heating. J Meteorol Res, 2014, 28: 540-560 CrossRef Google Scholar

[260] Li Z, Lau W K M, Ramanathan V, Wu G, Ding Y, Manoj M G, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee S S, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai P M, Sugimoto N, Babu S S, Brasseur G P. Aerosol and monsoon climate interactions over Asia. Rev Geophys, 2016, 54: 866-929 CrossRef ADS Google Scholar

[261] Liang J, Wu L G, Zong H J. Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres. Adv Atmos Sci, 2014, 31: 305-315 CrossRef ADS Google Scholar

[262] Liang J, Wu L G. Sudden track changes of tropical cyclones in monsoon gyres: Full-physics, idealized numerical experiments. J Atmos Sci, 2015, 72: 1307-1322 CrossRef ADS Google Scholar

[263] Liang P, Ding Y H. The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916–2014. Adv Atmos Sci, 2017, 34: 321-334 CrossRef ADS Google Scholar

[264] Liang X. An integrating velocity-azimuth process single-Doppler radar wind retrieval method. J Atmos Ocean Technol, 2007, 24: 658-665 CrossRef ADS Google Scholar

[265] Lin L, Wang Z L, Xu Y Y, Fu Q. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophys Res Lett, 2016, 43: 9860-9868 CrossRef ADS Google Scholar

[266] Lin L, Xu Y Y, Wang Z L, Diao C R, Dong W J, Xie S P. Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys Res Lett, 2018, 45: 7857-7865 CrossRef ADS Google Scholar

[267] Liu H B, Li L J, Wang B. Low-level jets over southeast China: Warm season climatology for the summer of 2003. Atmos Ocean Sci Lett, 2012, 5: 394-400 CrossRef Google Scholar

[268] Liu X, Luo Y L, Guan Z Y, Zhang D L. An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J Geophys Res-Atmos, 2018, 123: 9256-9278 CrossRef Google Scholar

[269] Liu Y Z, Zhang L, Lian Z H. Conjugate gradient algorithm in the four-dimensional variational data assimilation system in GRAPES. J Meteorol Res, 2018, 32: 974-984 CrossRef ADS Google Scholar

[270] Liu Y, Mu M. Nonlinear stability theorem for Eady’s Model of quasigeostrophic baroclinic flow. J Atmos Sci, 1996, 53: 1459-1463 CrossRef Google Scholar

[271] Liu Y, Sun J, Yang B. The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus B-Chem Phys Meteorol, 2009, 61: 642-656 CrossRef ADS Google Scholar

[272] Liu Y, Tan Z M, Wu Z. Non-instantaneous save-CISK for the interaction between convective heating and low-level moisture convergence in the tropics. J Atmos Sci, 2019, 76: 2083-2101 CrossRef ADS Google Scholar

[273] Liu Y, Xue J. Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J Meteorol Res, 2014, 28: 1061-1074 CrossRef ADS Google Scholar

[274] Liu Z, Yim S H L, Wang C, Lau N C. The impact of the aerosol direct radiative forcing on deep convection and air quality in the Pearl River Delta region. Geophys Res Lett, 2018, 45: 4410-4418 CrossRef ADS Google Scholar

[275] Luo D. Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn Atmos Oceans, 2000, 32: 27-74 CrossRef ADS Google Scholar

[276] Luo D. A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: Effect of topography. J Atmos Sci, 2005, 62: 5-21 CrossRef ADS Google Scholar

[277] Luo D, Cha J, Zhong L, Dai A. A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Q J R Meteorol Soc, 2014, 140: 1785-1808 CrossRef ADS Google Scholar

[278] Luo D, Lupo A R, Wan H. Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J Atmos Sci, 2007, 64: 3-28 CrossRef ADS Google Scholar

[279] Luo Y L, Chen Y R X. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J Geophys Res-Atmos, 2015, 120: 10593-10618 CrossRef ADS Google Scholar

[280] Luo Y L, Gong Y, Zhang D L. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon Weather Rev, 2014, 142: 203-221 CrossRef ADS Google Scholar

[281] Luo Y L, Wang H, Zhang R H, Qian W M, Luo Z Z. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River basin. J Clim, 2013, 26: 110-132 CrossRef ADS Google Scholar

[282] Luo Y L, Wang Y J, Wang H Y, Zheng Y, Morrison H. Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J Geophys Res, 2010, 115: D18117 CrossRef ADS Google Scholar

[283] Luo Y L, Xia R, Chan J C L. 2019. Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008–2009. J Meteorol Soc Jpn, doi: 10.2151/jmsj.2020-002. Google Scholar

[284] Luo Y L, Zhang R, Wan Q, Wang B, Wong W K, Hu Z, Jou B J D, Lin Y, Johnson R J, Chang C P, Zhu Y J, Zhang X, Wang H, Xia R, Ma J, Zhang D L, Gao M, Zhang Y J, Liu X, Chen Y R X, Huang H, Bao X H, Ruan Z, Cui Z H, Meng Z Y, Sun J X, Wu M W, Wang H Y, Peng X D, Qian W M, Zhao K, Xiao Y J. The Southern China Monsoon Rainfall Experiment (SCMREX). Bull Amer Meteorol Soc, 2017, 98: 999-1013 CrossRef ADS Google Scholar

[285] Madden R A, Julian P R. Detection of a 40–50 day oscillation in the zonal wind in the Tropical Pacific. J Atmos Sci, 1971, 28: 702-708 CrossRef Google Scholar

[286] Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci, 1972, 29: 1109-1123 CrossRef Google Scholar

[287] Matsuno T. Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn, 1966, 44: 25-43 CrossRef Google Scholar

[288] Meng Z Y, Bai L Q, Zhang M R, Wu Z F, Li Z H, Pu M J, Zheng Y G, Wang X H, Yao D, Xue M, Zhao K, Li Z M, Peng S Q, Li L Y. The deadliest tornado (EF4) in the past 40 years in China. Weather Forecast, 2018, 33: 693-713 CrossRef ADS Google Scholar

[289] Meng Z Y, Yan D C, Zhang Y J. General features of squall lines in East China. Mon Weather Rev, 2013, 141: 1629-1647 CrossRef ADS Google Scholar

[290] Meng Z Y, Yao D, Bai L Q, Zheng Y G, Xue M, Zhang X L, Zhao K, Tian F Y, Wang M J. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations. Chin Sci Bull, 2016, 61: 330-337 CrossRef PubMed Google Scholar

[291] Meng Z Y, Yao D. Damage survey, radar and environment analyses on the first-ever documented tornado in Beijing during the heavy rainfall event of 21 July 2012. Weather Forecast, 2014, 29: 702-724 CrossRef ADS Google Scholar

[292] Meng Z Y, Zhang F, Markowski P, Wu D C, Zhao K. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J Atmos Sci, 2012, 69: 1182-1207 CrossRef ADS Google Scholar

[293] Meng Z Y, Zhang Y J. On the squall lines preceding landfalling tropical cyclones in China. Mon Weather Rev, 2012, 140: 445-470 CrossRef ADS Google Scholar

[294] Miao Y C, Hu F, Liu S H, Qian T T, Xue M, Zheng Y J, Wang S. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. J Adv Model Earth Syst, 2015, 7: 1602-1626 CrossRef ADS Google Scholar

[295] Ming J, Zhang J A. Direct measurements of momentum flux and dissipative heating in the surface layer of tropical cyclones during landfalls. J Geophys Res-Atmos, 2018, 123: 4926-4938 CrossRef ADS Google Scholar

[296] Mu M. Nonlinear stability of two-dimensional quasigeostrophic motions. Geophys Astrophys Fluid Dyn, 1992, 65: 57-76 CrossRef Google Scholar

[297] Mu M, Duan W S, Wang B. Conditional nonlinear optimal perturbation and its applications. Nonlin Processes Geophys, 2003, 10: 493-501 CrossRef Google Scholar

[298] Mu M, Jiang Z N. A method to find perturbations that trigger blocking onset: Conditional nonlinear optimal perturbations. J Atmos Sci, 2008, 65: 3935-3946 CrossRef ADS Google Scholar

[299] Mu M, Jiang Z N. Similarities between optimal precursors that trigger the onset of blocking events and optimally growing initial errors in onset prediction. J Atmos Sci, 2011, 68: 2860-2877 CrossRef ADS Google Scholar

[300] Mu M, Shepherd T G, Swanson K. On nonlinear symmetric stability and the nonlinear saturation of symmetric instability. J Atmos Sci, 1996, 53: 2918-2923 CrossRef Google Scholar

[301] Mu M, Zeng Q C, Theodore G S, Liu Y M. Nonlinear stability of multilayer quasi-geostrophic flow. J Fluid Mech, 1994, 264: 165-184 CrossRef ADS Google Scholar

[302] Ni X, Zhang Q H, Liu C T, Li X F, Zou T, Lin J P, Kong H, Ren Z H. Decreased hail size in China since 1980. Sci Rep, 2017, 7: 10913 CrossRef PubMed ADS Google Scholar

[303] Nie J, Sobel A H, Shaevitz D A, Wang S G. Dynamic amplification of extreme precipitation sensitivity. Proc Natl Acad Sci USA, 2018, 115: 9467-9472 CrossRef PubMed ADS Google Scholar

[304] Peng J, Li Z Q, Zhang H, Liu J J, Maureen C. Systematic changes in cloud radiative forcing with aerosol loading for deep clouds from multi-year global A-Train satellite datasets. J Atmos Sci, 2016, 73: 231-249 CrossRef ADS Google Scholar

[305] Qiu C J, Chou J. Four-dimensional data assimilation method based on SVD: Theoretical aspect. Theor Appl Climatol, 2006, 83: 51-57 CrossRef ADS Google Scholar

[306] Qiu C J, Shao A, Xu Q, Wei L. Fitting model fields to observations by using singular value decomposition: An ensemble-based 4DVar approach. J Geophys Res, 2007, 112: D11105 CrossRef ADS Google Scholar

[307] Qiu C J, Xu Q. A simple adjoint method of wind analysis for single-Doppler data. J Atmos Ocean Technol, 1992, 9: 588-598 CrossRef Google Scholar

[308] Qiu X, Tan Z M. The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J Atmos Sci, 2013, 70: 953-974 CrossRef ADS Google Scholar

[309] Qiu X, Tan Z M, Xiao Q. The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon Weather Rev, 2010, 138: 2092-2109 CrossRef ADS Google Scholar

[310] Rex D F. Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 1950, 2: 196-211 CrossRef ADS Google Scholar

[311] Robert A. 1969. The integration of a spectral model of the atmosphere by the implicit method. Proc WMO/IUGG Sumposium on WNP. Tokyo, Japan Met Soc. 19–24. Google Scholar

[312] Robert A. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J Meteorol Soc Jpn, 1982, 60: 319-325 CrossRef Google Scholar

[313] Rossby C G. On the mutual adjustment of pressure and velocity distribution in certain simple current systems, II. J Mar Res, 1938, 1: 239-263 CrossRef Google Scholar

[314] Rossby C G. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res, 1939, 2: 38-55 CrossRef Google Scholar

[315] Simmons A J, Chen J B. The calculation of geopotential and the pressure gradient in the ECMWF atmospheric model: Influence on the simulation of the polar atmosphere and on temperature analyses. Q J R Met Soc, 1991, 117: 29-58 CrossRef ADS Google Scholar

[316] Song F F, Zhou T J. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations?. J Clim, 2014, 27: 8761-8777 CrossRef ADS Google Scholar

[317] Staff Members of Academia Sinica. 1958. On the general circulation over the East Asia (I). Tellus, 9: 432–446. Google Scholar

[318] Staff Members of Academia Sinica. 1959a. On the general circulation over the East Asia (II). Tellus, 10: 58–75. Google Scholar

[319] Staff Members of Academia Sinica. 1959b. On the general circulation over the East Asia (III). Tellus, 10: 299–312. Google Scholar

[320] Su T, Zhai G Q. The role of convectively generated gravity waves on convective initiation: A case study. Mon Weather Rev, 2017, 145: 335-359 CrossRef ADS Google Scholar

[321] Sun J H, Zhao S X. The impacts of multiscale weather systems on freezing rain and snowstorms over southern China. Weather Forecast, 2010, 25: 388-407 CrossRef ADS Google Scholar

[322] Tang J, Zhang J A, Kieu C, Marks F D. 2018. Sensitivity of hurricane intensity and structure to two types of planetary boundary layer parameterization schemes in idealized HWRF simulations. Tropical Cyclone Res Rev, 7: 201−211. Google Scholar

[323] Temperton C, Hortal M, Simmons A. A two-time-level semi-Lagrangian global spectral model. Q J R Met Soc, 2001, 127: 111-127 CrossRef ADS Google Scholar

[324] Wan B C, Gao Z Q, Chen F, Lu C G. Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon Weather Rev, 2017, 145: 3485-3505 CrossRef ADS Google Scholar

[325] Wang B. 1988. Dynamics of tropical low-frequency waves: Ananalysis of the moist Kelvin wave. J Atmos Sci, 45: 2051–2065. Google Scholar

[326] Wang B, Wan H, Ji Z Z, Zhang X, Yu R C, Yu Y Q, Liu H T. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci China Ser A, 2004, 47: 4-21 CrossRef ADS Google Scholar

[327] Wang B, Xie X S. Coupled modes in the warm pool climate system, Part I: The role of air-sea interaction in maintaining Madden-Julian oscillation. J Clim, 1998, 11: 2116-2135 CrossRef ADS Google Scholar

[328] Wang B, Zhao Y. 2005. A new data assimilation approach. Acta Meteorol Sin, 63: 694–701. Google Scholar

[329] Wang H, Luo Y L, Jou B J D. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J Geophys Res-Atmos, 2014, 119: 13206-13232 CrossRef ADS Google Scholar

[330] Wang J C, Li J P. A four-dimensional scheme based on singular value decomposition (4DSVD) for chaotic-attractor-theory-oriented data assimilation. J Geophys Res, 2009, 114: D02114 CrossRef ADS Google Scholar

[331] Wang L, Kodera K, Chen W. Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Q J R Meteorol Soc, 2012, 138: 1740-1750 CrossRef ADS Google Scholar

[332] Wang Y Q, Wang Y Q, Fudeyasu H. The role of typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon Weather Rev, 2009, 137: 3699-3716 CrossRef ADS Google Scholar

[333] Wang Y, Yan Z W, Chandler R E. An analysis of mid-summer rainfall occurrence in eastern China and its relationship with large-scale warming using generalized linear models. Int J Climatol, 2010, 30: 1826-1834 CrossRef Google Scholar

[334] Wang Z L, Lin L, Zhang X Y, Zhang H, Liu L K, Xu Y Y. Scenario dependence of future changes in climate extremes under 1.5°C and 2°C global warming. Sci Rep, 2017, 7: 46432 CrossRef PubMed ADS Google Scholar

[335] Wei Y T, Mu M, Ren H L, Fu J X. Conditional nonlinear optimal perturbations of moisture triggering primary MJO initiation. Geophys Res Lett, 2019, 46: 3492-3501 CrossRef ADS Google Scholar

[336] Wen J, Zhao K, Huang H, Zhou B W, Yang Z L, Chen G, Wang M J, Wen L, Dai H N, Xu L L, Liu S, Zhang G F, Lee W C. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J Geophys Res-Atmos, 2017, 122: 8033-8050 CrossRef ADS Google Scholar

[337] Wen Y R, Xue L, Li Y, Wei N, Lü A M. Interaction between Typhoon Vicente (1208) and the western Pacific subtropical high during the Beijing extreme rainfall of 21 July 2012. J Meteorol Res, 2015, 29: 293-304 CrossRef ADS Google Scholar

[338] Wheeler M, Kiladis G N. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci, 1999, 56: 374-399 CrossRef Google Scholar

[339] Wu C C. Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull Amer Meteorol Soc, 2013, 94: 155-160 CrossRef ADS Google Scholar

[340] Wu D C, Meng Z Y, Yan D C. The predictability of a squall line in South China on 23 April 2007. Adv Atmos Sci, 2013, 30: 485-502 CrossRef ADS Google Scholar

[341] Wu D, Zhao K, Kumjian M R, Chen X M, Huang H, Wang M J, Jr A C D, Duan Y H, Zhang F Q. Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon Weather Rev, 2018, 146: 2147-2159 CrossRef ADS Google Scholar

[342] Wu G X. The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J Atmos Sci, 1984, 41: 2456-2476 CrossRef Google Scholar

[343] Wu G X, Chen B. Non-acceleration theorem in a primitive equation system: I. Acceleration of zonal mean flow. Adv Atmos Sci, 1989, 6: 1-20 CrossRef ADS Google Scholar

[344] Wu G X, Liu H, Zhao Y C, Li W P. A nine-layer atmospheric general circulation model and its performance. Adv Atmos Sci, 1996, 13: 1-18 CrossRef ADS Google Scholar

[345] Wu G, Liu Y M. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett, 2003, 30: 1201 CrossRef ADS Google Scholar

[346] Wu L G, Liang J, Wu C C. Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J Atmos Sci, 2011a, 68: 2208-2221 CrossRef ADS Google Scholar

[347] Wu L G, Liu Q Y, Li Y B. Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proc Natl Acad Sci USA, 2018, 115: 8307-8310 CrossRef PubMed ADS Google Scholar

[348] Wu L G, Zong H J, Liang J. Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. J Atmos Sci, 2011b, 68: 3012-3031 CrossRef ADS Google Scholar

[349] Wu L G, Zong H J, Liang J. Observational analysis of tropical cyclone formation associated with monsoon gyres. J Atmos Sci, 2013, 70: 1023-1034 CrossRef ADS Google Scholar

[350] Wu M W, Luo Y L, Chen F, Wong W K. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteorol Climatol, 2019, 58: 1799-1819 CrossRef ADS Google Scholar

[351] Wu M W, Luo Y L. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J Meteorol Res, 2016, 30: 719-736 CrossRef ADS Google Scholar

[352] Xu J, Wang Y Q, Tan Z M. The relationship between sea surface temperature and maximum potential intensification rate of tropical cyclones over the North Atlantic. J Atmos Sci, 2016, 73: 4979-4988 CrossRef ADS Google Scholar

[353] Xu J, Wang Y Q. Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux. J Atmos Sci, 2010, 67: 1831-1852 CrossRef ADS Google Scholar

[354] Xu J, Wang Y Q. A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Weather Forecast, 2015, 30: 692-701 CrossRef ADS Google Scholar

[355] Xue M. Preface to the Special Issue on the “Observation, Prediction and Analysis of severe Convection of China” (OPACC) National “973” Projec. Adv Atmos Sci, 2016, 33: 1099-1101 CrossRef ADS Google Scholar

[356] Yan H R, Li Z Q, Huang J P, Maureen C, Liu J J. 2014. Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains. Chem Phys, 14: 7113–7124. Google Scholar

[357] Yang S L, Ding Z L, Li Y Y, Wang X, Jiang W Y, Huang X F. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc Natl Acad Sci USA, 2015, 112: 13178-13183 CrossRef PubMed ADS Google Scholar

[358] Yang X L, Sun J H, Zheng Y G. A 5-yr climatology of severe convective wind events over China. Weather Forecast, 2017, 32: 1289-1299 CrossRef ADS Google Scholar

[359] Yang X, Ferrat M, Li Z Q. New evidence of orographic precipitation suppression by aerosols in central China. Meteorol Atmos Phys, 2013, 119: 17-29 CrossRef ADS Google Scholar

[360] Yang X, Li Z Q. Increases in thunderstorm activity and relationships with air pollution in southeast China. J Geophys Res-Atmos, 2014, 119: 1835-1844 CrossRef ADS Google Scholar

[361] Yang Y, Fan J W, Leung L R, Zhao C, Li Z Q, Rosenfeld D. Mechanisms contributing to suppressed precipitation in Mt. Hua of Central China. Part I: Mountain valley circulation. J Atmos Sci, 2016, 73: 1351-1366 CrossRef ADS Google Scholar

[362] Yeh T C. On energy dispersion in the atmosphere. J Meteorol, 1949, 6: 1-16 CrossRef Google Scholar

[363] Yeh T C. On the formation of quasi-geostrophic motion in the atmosphere. J Meteorol Soc Jpn, 1957, 35A: 130-134 CrossRef Google Scholar

[364] Yeh T C, Li M T. On the characteristics of the scales of the atmospheric motions. J Meteorol Soc Jpn, 1982, 60: 16-23 CrossRef Google Scholar

[365] Yi B Q, Zhang Q H. Near-equatorial typhoon development: Climatology and numerical simulations. Adv Atmos Sci, 2010, 27: 1014-1024 CrossRef ADS Google Scholar

[366] You Q L, Kang S, Aguilar E, Pepin N, Flügel W A, Yan Y, Xu Y, Zhang Y, Huang J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn, 2011, 36: 2399-2417 CrossRef ADS Google Scholar

[367] Yu S C, Li P F, Wang L Q, Wang P, Wang S, Chang S C, Liu W P, Alapaty K. Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. Proc Natl Acad Sci USA, 2016, 113: E2209-E2210 CrossRef PubMed ADS Google Scholar

[368] Yuan C X, Liu J Q, Luo J J, Guan Z Y. Influences of tropical Indian and Pacific oceans on the interannual variations of precipitation in the early and late rainy seasons in South China. J Clim, 2019, 32: 3681-3694 CrossRef ADS Google Scholar

[369] Yue J, Meng Z Y, Yu C K, Cheng L W. Impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using WRF-based ensemble Kalman filter data assimilation. Adv Atmos Sci, 2017, 34: 66-78 CrossRef ADS Google Scholar

[370] Zeng Q T. 1961. The application of a complete system of thermo-hydrodynamic equations to short-term weather forecast in a two-level model. Dokl. Akad. Nauk SSSR, 137: 76–78. Google Scholar

[371] Zeng Q T. On the evolution and interaction of disturbances and zonal flow in rotating barotropic atmosphere. J Meteorol Soc Jpn, 1982, 60: 24-31 CrossRef Google Scholar

[372] Zeng Q T. The evolution of Rossby-wave packet in a three-dimensional baroclinic atmosphere. J Atmos Sci, 1983, 40: 73-84 CrossRef Google Scholar

[373] Zeng Q T. Variational principle of instability of atmospheric motions. Adv Atmos Sci, 1989, 6: 137-172 CrossRef ADS Google Scholar

[374] Zhai P, Sun A, Ren F, Liu X, Gao B, Zhang Q. Changes of climate extremes in China. Climatic Change, 1999, 42: 203-218 CrossRef Google Scholar

[375] Zhang D L, Lin Y H, Zhao P, Yu X D, Wang S Q, Kang H W, Ding Y H. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys Res Lett, 2013, 40: 1426-1431 CrossRef ADS Google Scholar

[376] Zhang L, Liu Y Z, Liu Y, Gong J D, Lu H J, Jin Z Y, Tian W H, Liu G Q, Zhou B, Zhao B. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Q J R Meteorol Soc, 2019, 145: 1882-1896 CrossRef ADS Google Scholar

[377] Zhang M R, Meng Z Y. 2018. Impact of synoptic-scale factors on rainfall forecast in different stages of a persisitent heavy rainfall event in South China. J Geophys Res-Atmos, 123: 3574–3593. Google Scholar

[378] Zhang M R, Meng Z Y. 2019. Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon Weather Rev, 147: 4461–4480. Google Scholar

[379] Zhang M R, Meng Z Y, Huang Y P, Wang D Y. The mechanism and predictability of an elevated convection initiation event in a weak-lifting environment in Central-Eastern China. Mon Weather Rev, 2019, 147: 1823-1841 CrossRef ADS Google Scholar

[380] Zhang M, Zhang D L, Wang A S. Numerical simulation of torrential rainfall and vortical hot towers in a midlatitude mesoscale convective system. Atmos Ocean Sci Lett, 2009, 2: 189-193 CrossRef Google Scholar

[381] Zhang M, Zhang D L. Subkilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon Weather Rev, 2012, 140: 184-201 CrossRef ADS Google Scholar

[382] Zhang Q H, Chen S J, Kuo Y H, Lau K H, Anthes R A. Numerical study of a typhoon with a large eye: Model simulation and verification. Mon Weather Rev, 2005a, 133: 725-742 CrossRef ADS Google Scholar

[383] Zhang Q H, Kuo Y H, Chen S J. Interaction between concentric eye-walls in super typhoonWinnie (1997). Q J R Meteorol Soc, 2005b, 131: 3183-3204 CrossRef ADS Google Scholar

[384] Zhang X R, Li Y, Zhang D L, Chen L S. A 65-yr climatology of unusual tracks of tropical cyclones in the vicinity of China’s coastal waters during 1949–2013. J Appl Meteorol Climatol, 2018, 57: 155-170 CrossRef ADS Google Scholar

[385] Zhang Y, Xu Y L, Dong W J, Cao L J, Sparrow M. A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys Res Lett, 2006, 33: L24702 CrossRef ADS Google Scholar

[386] Zhao C S, Tie X X, Lin Y P. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys Res Lett, 2006, 33: L11814 CrossRef ADS Google Scholar

[387] Zhao K, Li X F, Xue M, Jou B J D, Lee W C. Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti (2010) at landfall. J Geophys Res, 2012, 117: D06108 CrossRef ADS Google Scholar

[388] Zhao K, Lin Q, Lee W C, Sun Y Q, Zhang F Q. Doppler radar analysis of triple eyewalls in Typhoon Usagi (2013). Bull Amer Meteorol Soc, 2016, 97: 25-30 CrossRef ADS Google Scholar

[389] Zhao K, Wang M J, Xue M, Fu P L, Yang Z L, Chen X M, Zhang Y, Lee W C, Zhang F Q, Lin Q, Li Z H. Doppler radar analysis of a tornadic miniature supercell during the landfall of Typhoon Mujigae (2015) in South China. Bull Amer Meteorol Soc, 2017, 98: 1821-1831 CrossRef ADS Google Scholar

[390] Zheng L L, Sun J H, Zhang X L, Liu C H. Organizational modes of mesoscale convective systems over central East China. Weather Forecast, 2013, 28: 1081-1098 CrossRef ADS Google Scholar

[391] Zhong L Z, Mu R, Zhang D L, Zhao P. An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J Geophys Res-Atmos, 2015, 120: 3274-3291 CrossRef ADS Google Scholar

[392] Zhong S, Qian Y, Zhao C, Leung L R, Yang X Q. A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J Geophys Res-Atmos, 2015, 120: 10903-10914 CrossRef ADS Google Scholar

[393] Zhong W, Zhang D L, Lu H C. A theory for mixed vortex Rossby-gravity waves in tropical cyclones. J Atmos Sci, 2009, 66: 3366-3381 CrossRef ADS Google Scholar

[394] Zhong W, Zhang D L. An eignmode analysis of mixed Rossby-gravity waves on barotropic vortices. J Atmos Sci, 2014, 71: 2186-2203 CrossRef ADS Google Scholar

[395] Zhou L, Kang I S. Influence of convective momentum transport on Mixed Rossby-Gravity Waves: A Contribution to tropical 2-Day waves. J Atmos Sci, 2013, 70: 2467-2475 CrossRef ADS Google Scholar

[396] Zhu L, Wan Q L, Shen X Y, Meng Z Y, Zhang F Q, Weng Y H, Sippel J, Gao Y D, Zhang Y J, Yue J. Prediction and predictability of high-impact western Pacific landfalling tropical cyclone Vicente (2012) through convection-permitting ensemble assimilation of Doppler radar velocity. Mon Weather Rev, 2016, 144: 21-43 CrossRef ADS Google Scholar

[397] Zou T, Zhang Q H, Li W H, Li J H. Responses of hail and storm days to climate change in the Tibetan Plateau. Geophys Res Lett, 2018, 45: 4485-4493 CrossRef ADS Google Scholar

  • 图 1

    受北半球地形和定常热源强迫所致的观测得到的1972~1977年平均1月行星波(纬向波数1~3)500hPa扰动高度场(a)和理想地形强迫产生的波数为1的定常行星波传播波导示意图(实箭头)(b)

  • 图 2

    行星尺度阻塞环流(a)、天气尺度波流场(b)和大气阻塞环流总流场(c)

  • 图 3

    与双低空急流相关的海岸附近对流触发概念图

  • 图 4

    中国南方持续冰冻雨雪事件的多尺度概念模型

  • 图 5

    10m高度上的风速(阴影)及与龙卷涡旋相关的水平扰动风流场

  • 图 6

    不同丰满度(TCF)情况下, 台风强度Vmax(彩色圆点)与最大风速半径(RMW)和17m s−1风圈半径(R17)之间的关系

  • 图 7

    371、900836700hPa五天平均东西向风速与台风发生日期

  • 图 8

    飑线生成频数的地理分布(a)、月变化(b)和日变化(c)

  • 图 9

    包含后部增生型的对流和雨带联合列车效应的中尺度对流系统示意图

  • 图 10

    飑线初生(a1~a3)、发展(b1~b3)和成熟(c1~c3)阶段反演粒子数浓度(a1、b1、c1)与粒径大小(a2、b2、c2)空间分布, 以及垂直剖面粒子相态分布特征(a3、b3、c3)

  • 图 11

    2015年10月4日佛山龙卷的漏斗云和地面灾害路径与雷达观测的中气旋与龙卷涡旋(TVS)的对应关系

  • 图 12

    1980年至今中国气象局业务运行的区域和全球数值预报系统及其资料同化方法

  • 图 13

    20037221200UTC(a)卫星云图和GRAPES280km(b)、60km(c)、30km(d)、10km(e)水平格距下模拟的600hPa比湿(单位: kg kg–1)

  • 图 14

    GRAPES 4D-Var系统在2019750300UTC0900UTC的时间窗内同化的不同种类观测的空间分布情况

  • 图 15

    (a)1976~2005年夏季气候态降水量和(b)2010年夏季观测的洪水异常以及(c)历史(hist)、现在(PD)、1.5℃和2℃时期模拟得到的夏季中国东南部((b)中的方框)平均降水异常的概率密度函数和直方图

  • 图 16

    一个准地转柱模式(CQG)系统中极端降水量随地面温度变化的示意图

  • 图 17

    在混合农业燃烧烟羽和化石燃料燃烧污染物条件下空气污染-大气边界层动力学和气溶胶-辐射-云相互作用示意图

  • 图 18

    中国过去70年天气学发展历程图

  • 表 1   年客观路径预报方法平均路径误差

    方法名称

    预报时效(h)

    24

    48

    72

    96

    120

    样本数(个)

    平均误差(km)

    样本数(个)

    平均误差(km)

    样本数(个)

    平均误差(km)

    样本数(个)

    平均误差(km)

    样本数(个)

    平均误差(km)

    全球模式

    NCEP-GFS

    194

    71.9

    143

    122

    101

    194.7

    74

    260.5

    58

    347.1

    ECMWF-IFS

    172

    62.3

    128

    107

    94

    204.1

    71

    295.5

    54

    387.8

    英国数值

    181

    68.7

    145

    111.1

    105

    186.6

    79

    290.3

    59

    374.3

    日本数值

    374

    77.2

    288

    139.9

    210

    237.6

    /

    /

    /

    /

    T639

    301

    98.7

    243

    192.2

    183

    307.9

    138

    450.6

    109

    657.9

    韩国GDAPS

    182

    77.9

    138

    121.5

    104

    205.2

    77

    627

    59

    1050.2

    区域模式

    澳大利亚数值

    176

    85.7

    128

    154.6

    90

    285.1

    /

    /

    /

    /

    广州数值

    293

    68.5

    211

    115.6

    152

    220.8

    /

    /

    /

    /

    气科院 T-RAPS

    170

    84.7

    133

    129.3

    96

    211.6

    /

    /

    /

    /

    上海台风模式

    253

    89.1

    198

    151

    146

    242

    /

    /

    /

    /

    GRAPES-TYM

    280

    82.1

    205

    135.3

    137

    256.5

    96

    495.8

    66

    823

    GRAPES-TCM

    253

    89.4

    187

    151.2

    130

    263.9

    /

    /

    /

    /

    其他客观方法

    台风所模式集成

    335

    65.7

    260

    107.5

    189

    180.3

    /

    /

    /

    /

    福建优选概率权重

    106

    78.5

    79

    129.5

    55

    230.8

    /

    /

    /

    /

    广西遗传神经

    197

    81

    142

    156.9

    101

    260

    /

    /

    /

    /

    引自陈国民等(2019)

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号