logo

SCIENTIA SINICA Terrae, Volume 49, Issue 10: 1455-1490(2019) https://doi.org/10.1360/SSTe-2019-0183

中国的寒武纪大爆发研究: 进展与展望

朱茂炎1,2,3,*, 赵方臣1,2, 殷宗军1,2, 曾晗1,2, 李国祥1,2
More info
  • ReceivedAug 20, 2019
  • AcceptedSep 20, 2019
  • PublishedOct 16, 2019

Abstract

寒武纪大爆发研究是改革开放以来中国地球科学领域取得重大成就和享有国际盛誉的代表性研究方向之一. 文章首先简要回顾中国在寒武纪大爆发研究领域的发展历程, 认为可将其划分为三个阶段. 新中国成立后的前30年是研究积累阶段. 改革开放初期, 通过参与全球前寒武系-寒武系界线“金钉子”的竞争快速进入该领域国际前沿. 紧接着以澄江动物群为代表, 一系列寒武纪特异埋藏化石群的发现和研究掀起了全球寒武纪大爆发研究的新一轮热潮. 21世纪以来进入快速发展阶段. 以瓮安生物群等为代表, 埃迪卡拉纪多种保存方式动物化石的发现填补了动物在寒武纪大爆发之前的演化空白. 与此同时, 通过多学科交叉和广泛的国际合作, 在寒武大爆发过程和环境背景方面获得一系列新认识, 对全球该领域的快速发展起到推动作用. 文章重点总结了中国在该领域的主要学术贡献, 如澄江动物群中节肢动物、后口动物特别是脊索动物的起源和早期演化研究, 以及瓮安生物群中动物胚胎化石和微型成体化石的研究等. 在此基础上, 结合全球研究进展, 对中国学者提出的寒武纪大爆发多幕式演化模型进行了新的解读. 另外, 文章还概述了中国在寒武纪大爆发领域生物与环境协同演化方面的主要研究进展, 包括雪球事件和地球第二次大氧化事件的研究等. 最后简要分析了寒武纪大爆发研究领域当前存在的关键科学问题, 并对该领域未来的研究发展提出建议.


Funded by

中国科学院战略性先导科技专项B类项目(XDB18000000,XDB26000000)

国家自然科学基金项目(41672029,41661134048)


Acknowledgment

借此机会, 衷心感谢所有参加中国新元古代-寒武纪转折期地层学、古生物学和古环境研究的国内外同行和研究生多年来的倾情付出和贡献, 各化石产地地方政府和管理部门的大力支持. 本文的完成得益于作者课题组与国内外同行多年来长期合作和广泛的讨论, 两位评审人对论文的修改提出了宝贵意见, 部分同行提供化石照片, 本课题组其他成员对本文的完成也提供了方方面面的帮助, 在此一并感谢.


References

[1] 陈均远. 2004. 动物的黎明. 南京: 江苏科学技术出版社. 366. Google Scholar

[2] 陈均远, 侯先光, 路浩之. 1989. 早寒武世带网状鳞片的蠕形海生动物. 古生物学报, 28: 1–16. Google Scholar

[3] 陈均远, 周桂琴, 朱茂炎, 叶贵玉. 1996. 澄江生物群——寒武纪大爆发的见证. 台中: 自然科学博物馆出版社. 222. Google Scholar

[4] 陈孟莪, 王义昭. 1977. 峡东区上震旦统灯影组中段的管状动物化石. 科学通报, 4-5: 219–221. Google Scholar

[5] 陈孟莪, 肖宗正. 1991. 峡东区上震旦统陡山沱组发现宏体化石. 地质科学, 4: 317–324. Google Scholar

[6] 陈孟莪, 陈祥高, 劳秋元. 1975. 陕南震旦系上部地层中的后生动物化石及其地层意义. 地质科学, 2: 181–190. Google Scholar

[7] 陈孟莪, 陈忆元, 钱逸. 1981. 峡东震旦系-寒武系底部的管状化石. 中国地质科学院天津地质矿产研究所所刊, 3: 117–124. Google Scholar

[8] 丁启秀, 陈忆元. 1981. 湖北峡东地区震旦纪软躯体后生动物化石的发现及其意义. 地球科学, 14: 53–57. Google Scholar

[9] 丁启秀, 邢裕盛, 王自强, 尹崇玉, 高林志. 1993. 湖北庙河-莲沱地区灯影组管状化石及遗迹化石. 地质论评, 39: 118–125. Google Scholar

[10] 丁莲芳, 张录易, 李勇, 董军社. 1992. 扬子地台北缘晚震旦世-早寒武世早期生物群研究. 北京: 科学技术文献出版社. 156. Google Scholar

[11] 丁莲芳, 李勇, 胡夏嵩, 肖娅萍, 苏春乾, 黄建成. 1996. 震旦纪庙河生物群. 北京: 地质出版社. 221. Google Scholar

[12] 洪作民, 黄钲福, 杨欣德, 兰晶, 咸炳才, 杨雅君, 刘效良. 1988. 辽南震旦系兴民村组类水母化石. 地质学报, 62: 191–209. Google Scholar

[13] 侯先光. 1987. 云南澄江早寒武世大型双瓣壳节肢动物. 古生物学报, 26: 286–297. Google Scholar

[14] 侯先光, 陈均远. 1989. 云南澄江早寒武世节肢类与环节类中间性生物——Luolishania gen. nov.. 古生物学报, 28: 207–113. Google Scholar

[15] 侯先光, 陈均远, 路浩之. 1989. 云南澄江早寒武世节肢动物. 古生物学报, 28: 42–57. Google Scholar

[16] 胡世学, 朱茂炎, Steiner M, 罗惠麟, 赵方臣, 刘琦. 2010. 关山生物群构成及埋藏学研究进展. 中国科学: 地球科学, 40: 1115–1124. Google Scholar

[17] 胡世学, 朱茂炎, 罗惠麟, Steiner M, 赵方臣, 李国祥, 刘琦, 张志飞. 2014. 关山生物群. 昆明: 云南科技出版社. 204. Google Scholar

[18] 蒋志文. 1980. 云南晋宁梅树村阶及梅树村动物群. 中国地质科学院院报, 2: 75–92. Google Scholar

[19] 刘鹏举, 尹崇玉, 陈寿铭, 唐烽, 高林志. 2010. 华南埃迪卡拉纪陡山沱期管状微体化石分布、生物属性及其地层学意义. 古生物学报, 49: 308–324. Google Scholar

[20] 卢衍豪. 1962. 中国的寒武系. 全国地层会议学术报告汇编. 北京: 科学出版社. 133. Google Scholar

[21] 罗惠麟, 蒋志文, 徐重九, 宋学良, 薛啸峰. 1980. 云南晋宁梅树村-王家湾震旦系-寒武系界线研究. 地质学报, 2: 95–111. Google Scholar

[22] 罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1982. 云南东部震旦系-寒武系界限. 昆明: 云南人民出版社. 263. Google Scholar

[23] 罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟, 邢裕盛, 刘桂芝, 张世山, 陶永和. 1984. 中国云南晋宁梅树村震旦系-寒武系界限层型剖面. 昆明: 云南人民出版社. 154. Google Scholar

[24] 罗惠麟, 胡世学, 陈良忠, 张世山, 陶永和. 1999. 昆明地区早寒武世澄江动物群. 昆明: 云南科技出版社. 129. Google Scholar

[25] 钱逸. 1977. 华中西南区早寒武世梅树村阶的软石螺纲及其他化石. 古生物学报, 16: 255–278. Google Scholar

[26] 钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社. 247. Google Scholar

[27] 钱逸, 朱茂炎, 李国祥, 陈孟莪. 2000. 再论织金壳类(Zhijinitids)的亲缘关系. 微体古生物学报, 17: 307–316. Google Scholar

[28] 项礼文, 李善姬, 南润善, 郭振明, 杨家騄, 周志强, 安泰痒, 袁克兴, 钱逸. 1981. 中国的寒武系. 中国地层(4). 北京: 地质出版社. 210. Google Scholar

[29] 邢裕盛, 刘桂芝. 1979. 辽宁南部震旦系腔肠动物化石及其地层意义. 地质学报, 3: 167–172. Google Scholar

[30] 邢裕盛, 丁启秀, 罗惠麟, 何廷贵, 王砚耕. 1984. 中国震旦系-寒武系界限. 中国地质科学院地质研究所所刊, 第10号. 北京: 地质出版社. 262. Google Scholar

[31] 杨兴莲, 赵元龙, 朱茂炎. 2005. 贵州下寒武统牛蹄塘生物群海绵新材料. 古生物学报, 44: 454–463. Google Scholar

[32] 张文堂, 侯先光. 1985. Naraoia在亚洲在大陆的发现. 古生物学报, 24: 591–595. Google Scholar

[33] 张录易. 1986. 陕西宁强晚震旦世晚期高家山生物群的发现和初步研究. 中国地质科学院西安地质矿产研究所所刊. 13: 67–88. Google Scholar

[34] 赵方臣, 朱茂炎, 胡世学. 2010. 云南寒武纪早期澄江动物群古群落分析. 中国科学: 地球科学, 40: 1135–1153. Google Scholar

[35] 赵元龙, 袁金良, 黄友庄, 毛家仁, 钱逸, 张正华, 龚显英. 1994. 贵州台江中寒武世凯里生物群. 古生物学报, 33: 263–271. Google Scholar

[36] 赵元龙, 朱茂炎, Babcock L E, 彭进. 2011. 凯里生物群——5.08亿年前的海洋生物. 贵阳: 贵州科技出版社. 251. Google Scholar

[37] 郑文武. 1979. “淮南生物群”的主要特征及其在地层研究中的意义. 合肥工业大学学报, 2: 97–108. Google Scholar

[38] 周传明, 袁训来, 肖书海, 陈哲, 华洪. 2019. 中国埃迪卡拉纪综合地层和时间框架. 中国科学: 地球科学, 49: 7–25. Google Scholar

[39] 朱茂炎. 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49: 269–287. Google Scholar

[40] 朱茂炎, 杨爱华, 袁金良, 李国祥, 张俊明, 赵方臣, Ahn S Y, 苗兰云. 2019. 中国寒武纪综合地层和时间框架. 中国科学: 地球科学, 49: 26–65. Google Scholar

[41] 朱日祥, 李献华, 侯先光, 潘永信, 王非, 邓成龙, 贺怀宇. 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪-寒武纪界线的年代制约. 中国科学D辑: 地球科学, 39: 1105–1111. Google Scholar

[42] Aldridge R J, Hou X G, Siveter D J, Siveter D J, Gabbott S E. The systematics and phylogenetic relationships of vetulicolians. Palaeontology, 2007, 50: 131-168 CrossRef Google Scholar

[43] Aria C, Caron J B. Burgess shale fossils illustrate the origin of the mandibulate body plan. Nature, 2017, 545: 89-92 CrossRef PubMed ADS Google Scholar

[44] Bailey J V, Joye S B, Kalanetra K M, Flood B E, Corsetti F A. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 2007, 445: 198-201 CrossRef PubMed ADS Google Scholar

[45] Bao H M, Lyons J R, Zhou C M. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 2008, 453: 504-506 CrossRef PubMed ADS Google Scholar

[46] Bartley J K, Kah L C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology, 2004, 32: 129-132 CrossRef ADS Google Scholar

[47] Bengtson S. 1986. Introduction: The problem of the problematica. In: Hoffman A, Nitecki M H, eds. Problematic Fossil Taxa. Oxford Monogr Geol Geophys, 5: 91–115. Google Scholar

[48] Bengtson S. Animal embryos in deep time. Nature, 1998, 391: 529-530 CrossRef ADS Google Scholar

[49] Bengtson S. 2005. Mineralized skeletons and early animal evolution. In: Briggs D E G, ed. Evolving Form and Function: Fossils and Development. New Haven: Yale University Press. 288. Google Scholar

[50] Bengtson S, Conway Morris S. 1992. Early radiation of biomineralizing phyla. In: Lipps J H, Signor P W, eds. Origin and Early Evolution of the Metazoa. New York: Springer. 447–481. Google Scholar

[51] Bengtson S, Matthes S C, Missarzhevsky V V. 1986. The Cambrian netlike fossil Microdictyon. In: Hoffman A, Nitecki M H, eds. Problematic Fossil Taxa. Oxford Monogr Geol Geophys, 5: 3–11. Google Scholar

[52] Bengtson S, Yue Z. Fossilized metazoan embryos from the earliest Cambrian. Science, 1997, 277: 1645-1648 CrossRef Google Scholar

[53] Bengtson S, Budd G. Comment on “small bilaterian fossils from 40 to 55 million years before the Cambrian”. Science, 2004, 306: 1291a CrossRef PubMed Google Scholar

[54] Bengtson S, Cunningham J A, Yin C, Donoghue P C J. A merciful death for the “earliest bilaterian,” Vernanimalcula. Evol Dev, 2012, 14: 421-427 CrossRef PubMed Google Scholar

[55] Bjerrum C J, Canfield D E. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 2011, 108: 5542-5547 CrossRef PubMed ADS Google Scholar

[56] Bobrovskiy I, Hope J M, Ivantsov A, Nettersheim B J, Hallmann C, Brocks J J. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science, 2018, 361: 1246-1249 CrossRef PubMed ADS Google Scholar

[57] Bowring S A, Grotzinger J P, Condon D J, Ramezani J, Newall M J, Allen P A. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 2007, 307: 1097-1145 CrossRef ADS Google Scholar

[58] Boyle R A, Dahl T W, Dale A W, Shields-Zhou G A, Zhu M, Brasier M D, Canfield D E, Lenton T M. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat Geosci, 2014, 7: 671-676 CrossRef ADS Google Scholar

[59] Brasier M D. 2009. Darwin’s Lost World: The Hidden History of Animal Life. Oxford: Oxford University Press. 304. Google Scholar

[60] Briggs D E G, Erwin D H, Collier F J. 1994. Fossils of the Burgess Shale. Washington: Smithsonian Institution Press. 238. Google Scholar

[61] Bromham L, Duchêne S, Hua X, Ritchie A M, Duchêne D A, Ho S Y W. Bayesian molecular dating: Opening up the black box. Biol Rev, 2018, 93: 1165-1191 CrossRef PubMed Google Scholar

[62] Brune S, Williams S E, Müller R D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 2017, 10: 941-946 CrossRef ADS Google Scholar

[63] Buss L W, Seilacher A. The Phylum Vendobionta: A sister group of the Eumetazoa?. Paleobiology, 1994, 20: 1-4 CrossRef Google Scholar

[64] Butterfield N J. 2015. The Neoproterozoic. Curr Biol, 25: R845–R875. Google Scholar

[65] Cai Y P, Hua H, Xiao S H, Schiffbauer J D, Li P. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits. Palaios, 2010, 25: 487-506 CrossRef ADS Google Scholar

[66] Cai Y P, Xiao S H, Li G X, Hua H. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 2019, 47: 380-384 CrossRef ADS Google Scholar

[67] Cannon J T, Vellutini B C, Smith J, Ronquist F, Jondelius U, Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa. Nature, 2016, 530: 89-93 CrossRef PubMed ADS Google Scholar

[68] Caron J B, Conway Morris S, Shu D, Soares D. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE, 2010, 5: e9586 CrossRef PubMed ADS Google Scholar

[69] Cavalier-Smith T. Origin of animal multicellularity: Precursors, causes, consequences—The choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Phil Trans R Soc B, 2017, 372: 20150476 CrossRef PubMed Google Scholar

[70] Chang W T. A review of the Cambrian of China. J Geol Soc Australia, 1980, 27: 137-150 CrossRef Google Scholar

[71] Chen A L, Feng H Z, Zhu M Y, Ma D S, Li M. A new vetulicolian from the Early Cambrian Chengjiang Fauna in Yunnan of China. Acta Geol Sin-Engl Ed, 2003, 77: 281-287 CrossRef Google Scholar

[72] Chen J Y. 1988. Precambrian metazoans of the Huai River drainage area (Anhui, E. China): Their taphonomic and ecological evidence. Senkenbergiana Lethaea, 69: 189–215. Google Scholar

[73] Chen J Y. Early crest animals and the insight they provide into the evolutionary origin of craniates. Genesis, 2008, 46: 623-639 CrossRef PubMed Google Scholar

[74] Chen J Y. The sudden appearance of diverse animal body plansduring the Cambrian explosion. Int J Dev Biol, 2009, 53: 733-751 CrossRef PubMed Google Scholar

[75] Chen J Y, Hou X G, Erdtmann B D. 1989. New soft-bodied fossil fauna near the base of the Cambrian System at Chengjiang, eastern Yunnan, China. Washington D C: Chinese Academy of Sciences, Developments in Geoscience, Contribution to 28th International Geological Congress. Beijing: Science Press. 265–278. Google Scholar

[76] Chen J Y, Erdtmann B D. 1991. Lower Cambrian Lagerstätte from Chengjiang, Yunnan, China: Insight for reconstructing early metazoan life. In: Simonneta A M, Conway Morris S, eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press. 57–76. Google Scholar

[77] Chen J Y, Huang D Y. A possible Lower Cambrian chaetognath (arrow worm). Science, 2002, 298: 187 CrossRef PubMed Google Scholar

[78] Chen J Y, Bergström J, Lindström M, Hou X G. 1991. Fossilized soft-bodied fauna. Natl Geogr Res Explor, 7: 8–19. Google Scholar

[79] Chen J Y, Ramsköld L, Zhou G Q. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science, 1994, 264: 1304-1308 CrossRef PubMed ADS Google Scholar

[80] Chen J Y, Dzik J, Edgecombe G D, Ramsköld L, Zhou G Q. A possible Early Cambrian chordate. Nature, 1995a, 377: 720-722 CrossRef ADS Google Scholar

[81] Chen J Y, Zhou G Q, Ramsköld L. 1995b. The Cambrian lobopodian Microdictyon sinicum. Bull Natl Mus Nat Sci, 5: 1–93. Google Scholar

[82] Chen J Y, Zhou G Q, Edgecombe G D, Ramsköld L. Head segmentation in Early Cambrian Fuxianhuia: Implications for arthropod evolution. Science, 1995c, 268: 1339-1343 CrossRef PubMed ADS Google Scholar

[83] Chen J Y, Huang D Y, Li C W. An early Cambrian craniate-like chordate. Nature, 1999, 402: 518-522 CrossRef ADS Google Scholar

[84] Chen J Y, Oliveri P, Li C W, Zhou G Q, Gao F, Hagadorn J W, Peterson K J, Davidson E H. Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proc Natl Acad Sci USA, 2000, 97: 4457-4462 CrossRef PubMed ADS Google Scholar

[85] Chen J Y, Oliveri P, Gao F, Dornbos S Q, Li C W, Bottjer D J, Davidson E H. Precambrian animal life: Probable developmental and adult cnidarian forms from Southwest China. Dev Biol, 2002, 248: 182-196 CrossRef PubMed Google Scholar

[86] Chen J Y, Huang D Y, Peng Q Q, Chi H M, Wang X Q, Feng M. The first tunicate from the early Cambrian of South China. Proc Natl Acad Sci USA, 2003, 100: 8314-8318 CrossRef PubMed ADS Google Scholar

[87] Chen J Y, Bottjer D J, Oliveri P, Dornbos S Q, Gao F, Ruffins S, Chi H, Li C W, Davidson E H. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 2004, 305: 218-222 CrossRef PubMed ADS Google Scholar

[88] Chen J Y, Bottjer D J, Davidson E H, Dornbos S Q, Gao X, Yang Y H, Li C W, Li G, Wang X Q, Xian D C, Wu H J, Hwu Y K, Tafforeau P. Phosphatized polar lobe-forming embryos from the Precambrian of Southwest China. Science, 2006, 312: 1644-1646 CrossRef PubMed ADS Google Scholar

[89] Chen J Y, Schopf J W, Bottjer D J, Zhang C Y, Kudryavtsev A B, Tripathi A B, Wang X Q, Yang Y H, Gao X, Yang Y. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci USA, 2007, 104: 6289-6292 CrossRef PubMed ADS Google Scholar

[90] Chen J Y, Bottjer D J, Davidson E H, Li G, Gao F, Cameron R A, Hadfield M G, Xian D C, Tafforeau P, Jia Q J. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Res, 2009a, 173: 191-200 CrossRef ADS Google Scholar

[91] Chen J Y, Bottjer D J, Li G, Hadfield M G, Gao F, Cameron A R, Zhang C Y, Xian D C, Tafforeau P, Liao X, Yin Z J. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China. Proc Natl Acad Sci USA, 2009b, 106: 19056-19060 CrossRef PubMed ADS Google Scholar

[92] Chen L, Xiao S H, Pang K, Zhou C M, Yuan X L. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 2014, 516: 238-241 CrossRef PubMed ADS Google Scholar

[93] Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M Y, Poulton S W, Och L M, Jiang S Y, Li D, Cremonese L, Archer C. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 2015, 6: 7142 CrossRef PubMed ADS Google Scholar

[94] Chen Z, Zhou C M, Meyer M, Xiang K, Schiffbauer J D, Yuan X L, Xiao S. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res, 2013, 224: 690-701 CrossRef ADS Google Scholar

[95] Chen Z, Zhou C M, Xiao S H, Wang W, Guan C G, Hua H, Yuan X L. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 2014, 4: 4180 CrossRef PubMed ADS Google Scholar

[96] Chen Z, Chen X, Zhou C M, Yuan X L, Xiao S H. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Sci Adv, 2018, 4: eaao6691 CrossRef PubMed Google Scholar

[97] Chen Z, Zhou C M, Yuan X L, Xiao S H. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature, 2019, 573: 412-415 CrossRef PubMed Google Scholar

[98] Cheng M, Li C, Zhou L, Feng L J, Algeo T J, Zhang F F, Romaniello S, Jin C S, Ling H F, Jiang S Y. Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China. Geochim Cosmochim Acta, 2017, 210: 42-58 CrossRef ADS Google Scholar

[99] Cloud Jr P E. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 1948, 2: 322-350 CrossRef Google Scholar

[100] Cloud P E. 1968. Pre-metazoan evolution and the origin of the metazoan. In: Drake E T, ed. Evolution and Environments. New Haven: Yale University Press. 1–72. Google Scholar

[101] Condon D J, Zhu M Y, Bowring S A, Wang W, Yang A H, Jin Y G. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98 CrossRef PubMed ADS Google Scholar

[102] Condon D J, Boggiani P, Fike D, Halverson G P, Kasemann S, Knoll A H, Macdonald F A, Prave A R, Zhu M Y. Accelerating Neoproterozoic research through scientific drilling. Sci Dril, 2015, 19: 17-25 CrossRef ADS Google Scholar

[103] Cohen P A, Knoll A H, Kodner R B. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA, 2009, 106: 6519-6524 CrossRef PubMed ADS Google Scholar

[104] Cong P Y, Ma X Y, Hou X G, Edgecombe G D, Strausfeld N J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature, 2014, 513: 538-542 CrossRef PubMed ADS Google Scholar

[105] Cong P Y, Daley A C, Edgecombe G D, Hou X G. The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata. BMC Evol Biol, 2017, 17: 208 CrossRef PubMed Google Scholar

[106] Cong P Y, Edgecombe G D, Daley A C, Guo J, Pates S, Hou X G. New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta. Pap Palaeontol, 2018, 4: 605-621 CrossRef Google Scholar

[107] Conway Morris S. Burgess shale faunas and the Cambrian explosion. Science, 1989, 246: 339-346 CrossRef PubMed ADS Google Scholar

[108] Conway Morris S. Darwin’s dilemma: The realities of the Cambrian ‘explosion’. Phil Trans R Soc B, 2006, 361: 1069-1083 CrossRef PubMed Google Scholar

[109] Conway Morris S, Caron J B. Halwaxiids and the early evolution of the lophotrochozoans. Science, 2007, 315: 1255-1258 CrossRef PubMed ADS Google Scholar

[110] Conway Morris S, Menge C. Lower Cambrian anabaritids from South China. Geol Mag, 1989, 126: 615-632 CrossRef ADS Google Scholar

[111] Conway Morris S, Menge C. Carinachitiids, hexangulaconulariids, and Punctatus: Problematic metazoans from the Early Cambrian of South China. J Paleontol, 1992, 66: 384-406 CrossRef Google Scholar

[112] Cowie J W. The Proterozoic-Phanerozoic transition and the Precambrian-Cambrian boundary. Precambrian Res, 1981, 15: 199-206 CrossRef ADS Google Scholar

[113] Cowie J W. 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes, 8: 93–97. Google Scholar

[114] Cunningham J A, Vargas K, Pengju L, Belivanova V, Marone F, Martínez-Pérez C, Guizar-Sicairos M, Holler M, Bengtson S, Donoghue P C J. Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng'an Doushantuo biota. Proc R Soc B, 2015, 282: 158-166 CrossRef PubMed Google Scholar

[115] Cunningham J A, Liu A G, Bengtson S, Donoghue P C J. The origin of animals: Can molecular clocks and the fossil record be reconciled?. Bioessays, 2017, 39: e201600120 CrossRef PubMed Google Scholar

[116] Darroch S A F, Rahman I A, Gibson B, Racicot R A, Laflamme M. Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biol Lett, 2017, 13: 20170033 CrossRef PubMed Google Scholar

[117] Darwin C R. 1872. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Race in the Struggle for Life. 6th Ed. New York: Mentor. 495. Google Scholar

[118] Derry L A. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett, 2010, 294: 152-162 CrossRef ADS Google Scholar

[119] Dong L, Xiao S H, Shen B, Yuan X L, Yan X Q, Peng Y B. Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 258: 138-161 CrossRef ADS Google Scholar

[120] Dong X P, Cunningham J A, Bengtson S, Thomas C W, Liu J, Stampanoni M, Donoghue P C J. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proc R Soc B, 2013, 280: 20130071 CrossRef PubMed Google Scholar

[121] Donoghue P C J, Keating J N, Smith A. Early vertebrate evolution. Palaeontology, 2014, 57: 879-893 CrossRef Google Scholar

[122] dos Reis M, Thawornwattana Y, Angelis K, Telford M J, Donoghue P C J, Yang Z. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol, 2015, 25: 2939-2950 CrossRef PubMed Google Scholar

[123] Dunn F S, Liu A G. Viewing the Ediacaran biota as a failed experiment is unhelpful. Nat Ecol Evol, 2019, 3: 512-514 CrossRef PubMed Google Scholar

[124] Dunn F S, Liu A G, Gehling J G, Rahman I. Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa. Palaeontology, 2019, 62: 851-865 CrossRef Google Scholar

[125] Edgecombe G D. Palaeontology: The cause of jaws and claws. Curr Biol, 2017, 27: R807-R810 CrossRef PubMed Google Scholar

[126] Erwin D H. Early origin of the bilaterian developmental toolkit. Phil Trans R Soc B, 2009, 364: 2253-2261 CrossRef PubMed Google Scholar

[127] Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D, Peterson K J. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 2011, 334: 1091-1097 CrossRef PubMed ADS Google Scholar

[128] Erwin D H, Valentine J W. 2013. The Cambrian Explosion: The Construction of Animal Biodiversity. Greenwood Village: Roberts and Company. 406. Google Scholar

[129] Fan H F, Wen H J, Han T, Zhu X K, Feng L J, Chang H J. Oceanic redox condition during the late Ediacaran (551–541 Ma), South China. Geochim Cosmochim Acta, 2018, 238: 343-356 CrossRef ADS Google Scholar

[130] Fatka O, Steiner M, Weber B, Zhu M. The Precambrian-Cambrian biosphere (r)evolution: Insights from the Chinese Yangtze Platform. Bull Geosci, 2012, 87: 67-70 CrossRef Google Scholar

[131] Fu D J, Ortega-Hernández J, Daley A C, Zhang X, Shu D G. Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China. BMC Evol Biol, 2018, 18: 147 CrossRef PubMed Google Scholar

[132] Fu D J, Tong G H, Dai T, Liu W, Yang Y N, Zhang Y, Cui L H, Li L Y, Yun H, Wu Y, Sun A, Liu C, Pei W R, Gaines R R, Zhang X L. The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China. Science, 2019, 363: 1338-1342 CrossRef PubMed ADS Google Scholar

[133] García-Bellido D C, Lee M S Y, Edgecombe G D, Jago J B, Gehling J G, Paterson J R. A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group. BMC Evol Biol, 2014, 14: 214 CrossRef PubMed Google Scholar

[134] Gehling J G, Runnegar B N, Droser M L. Scratch traces of large Ediacara bilaterian animals. J Paleontol, 2014, 88: 284-298 CrossRef Google Scholar

[135] Giribet G. Genomics and the animal tree of life: Conflicts and future prospects. Zool Scr, 2016, 45: 14-21 CrossRef Google Scholar

[136] Gilbert S F, Bosch T C G, Ledón-Rettig C. Eco-Evo-Devo: Developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet, 2015, 16: 611-622 CrossRef PubMed Google Scholar

[137] Giribet G, Edgecombe G D. The phylogeny and evolutionary history of arthropods. Curr Biol, 2019, 29: R592-R602 CrossRef PubMed Google Scholar

[138] Glaessner M F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge: Cambridge University Press. 244. Google Scholar

[139] Gold D A, Runnegar B, Gehling J G, Jacobs D K. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia. Evol Dev, 2015, 17: 315-324 CrossRef PubMed Google Scholar

[140] Goodman C S, Coughlin B C. The evolution of evo-devo biology. Proc Natl Acad Sci USA, 2000, 97: 4424-4425 CrossRef PubMed ADS Google Scholar

[141] Gould S J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. New York: Norton. 347. Google Scholar

[142] Gould S J. 2001. The Book of Life. New York: Norton. 256. Google Scholar

[143] Grenholm M, Scherstén A. A hypothesis for Proterozoic-Phanerozoic supercontinent cyclicity, with implications for mantle convection, plate tectonics and Earth system evolution. Tectonophysics, 2015, 662: 434-453 CrossRef ADS Google Scholar

[144] Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 2011, 4: 285-292 CrossRef ADS Google Scholar

[145] Guan C G, Zhou C M, Wang W, Wan B, Yuan X L, Chen Z. Fluctuation of shelf basin redox conditions in the early Ediacaran: Evidence from Lantian Formation black shales in South China. Precambrian Res, 2014, 245: 1-12 CrossRef ADS Google Scholar

[146] Hagadorn J W, Xiao S, Donoghue P C J, Bengtson S, Gostling N J, Pawlowska M, Raff E C, Raff R A, Turner F R, Chongyu Y, Zhou C, Yuan X, McFeely M B, Stampanoni M, Nealson K H. Cellular and subcellular structure of Neoproterozoic animal embryos. Science, 2006, 314: 291-294 CrossRef PubMed ADS Google Scholar

[147] Halverson G P, Hoffman P F, Schrag D P, Maloof A C, Rice A H N. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull, 2005, 117: 1181-1207 CrossRef ADS Google Scholar

[148] Han J, Kubota S, Li G, Yao X G, Yang X, Shu D G, Li Y, Kinoshita S, Sasaki O, Komiya T, Yan G. Early Cambrian pentamerous cubozoan embryos from South China. PLoS ONE, 2013, 8: e70741 CrossRef PubMed ADS Google Scholar

[149] Han J, Cai Y, Schiffbauer J D, Hua H, Wang X, Yang X, Uesugi K, Komiya T, Sun J. A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China. Geol Mag, 2017a, 154: 1294-1305 CrossRef ADS Google Scholar

[150] Han J, Conway M S, Ou Q, Shu D G, Huang H. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature, 2017b, 542: 228-231 CrossRef PubMed ADS Google Scholar

[151] He T C, Zhu M Y, Mills B J W, Wynn P M, Zhuravlev A Y, Tostevin R, Pogge von Strandmann P A E, Yang A H, Poulton S W, Shields G A. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat Geosci, 2019, 12: 468-474 CrossRef PubMed ADS Google Scholar

[152] Hoekzema R S, Brasier M D, Dunn F S, Liu A G. Quantitative study of developmental biology confirms Dickinsonia as a metazoan. Proc R Soc B, 2017, 284: 20171348 CrossRef PubMed Google Scholar

[153] Hoffman P F, Schrag D P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 2002, 14: 129-155 CrossRef ADS Google Scholar

[154] Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. A Neoproterozoic snowball earth. Science, 1998, 281: 1342-1346 CrossRef PubMed ADS Google Scholar

[155] Hoffman P F, Abbot D S, Ashkenazy Y, Benn D I, Brocks J J, Cohen P A, Cox G M, Creveling J R, Donnadieu Y, Erwin D H, Fairchild I J, Ferreira D, Goodman J C, Halverson G P, Jansen M F, Le Hir G, Love G D, Macdonald F A, Maloof A C, Partin C A, Ramstein G, Rose B E J, Rose C V, Sadler P M, Tziperman E, Voigt A, Warren S G. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci Adv, 2017, 3: e1600983 CrossRef PubMed ADS Google Scholar

[156] Hou X G, Bergström J. 1991a. The arthropods of the Lower Cambrian Chengjiang fauna, with relationships and evolutionary significance. In: Simonneta A M, Conway Morris S, eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press. 179–187. Google Scholar

[157] Hou X, Bergström J. Cambrian lobopodians—Ancestors of extant onychophorans?. Zool J Linn Soc, 1991b, 114: 3-19 CrossRef Google Scholar

[158] Hou X G, Ramsköld L, Bergström J. Composition and preservation of the Chengjiang fauna—A Lower Cambrian soft-bodied biota. Zool Scr, 1991, 20: 395-411 CrossRef Google Scholar

[159] Hou X G, Aldridge R J, Bergstrom J, Siveter D J, Siveter D J, Feng X H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Oxford: Blackwell. 233. Google Scholar

[160] Hou X G, Bergström J, Ma X Y, Zhao J. The Lower Cambrian Phlogites Luo & Hu re-considered. GFF, 2006, 128: 47-51 CrossRef Google Scholar

[161] Hou X G, Aldridge R J, Siveter D J, Siveter D J, Williams M, Zalasiewicz J, Ma X Y. An early Cambrian hemichordate zooid. Curr Biol, 2011, 21: 612-616 CrossRef PubMed Google Scholar

[162] Hou X G, Siveter D J, Siveter D J, Aldridge R J, Cong P Y, Gabbott S E, Ma X Y, Purnell M A, Williams M. 2017. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. 2nd ed. Oxford: Blackwell. 316. Google Scholar

[163] Hu S X, Steiner M, Zhu M Y, Erdtmann B D, Luo H L, Chen L Z, Weber B. Diverse pelagic predators from the Chengjiang Lagerstätte and the establishment of modern-style pelagic ecosystems in the early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 307-316 CrossRef ADS Google Scholar

[164] Hu S X, Erdtmann B D, Steiner M, Zhang Y D, Zhao F C, Zhang Z L, Han J. Malongitubus: A possible pterobranch hemichordate from the early Cambrian of South China. J Paleontol, 2018, 92: 26-32 CrossRef Google Scholar

[165] Huang K J, Teng F Z, Shen B, Xiao S, Lang X, Ma H R, Fu Y, Peng Y. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proc Natl Acad Sci USA, 2016, 113: 14904-14909 CrossRef PubMed ADS Google Scholar

[166] Hughes M, Gerber S, Albion Wills M. Clades reach highest morphological disparity early in their evolution. Proc Natl Acad Sci USA, 2013, 110: 13875-13879 CrossRef PubMed ADS Google Scholar

[167] Huldtgren T, Cunningham J A, Yin C, Stampanoni M, Marone F, Donoghue P C J, Bengtson S. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 2011, 334: 1696-1699 CrossRef PubMed ADS Google Scholar

[168] Ivantsov A Y. Trace fossils of precambrian metazoans “Vendobionta” and “Mollusks”. Stratigr Geol Correl, 2013, 21: 252-264 CrossRef ADS Google Scholar

[169] Isozaki Y, Shu D, Maruyama S, Santosh M. Beyond the Cambrian explosion: From galaxy to genome. Gondwana Res, 2014, 25: 881-883 CrossRef ADS Google Scholar

[170] Janussen D, Steiner M, Zhu M Y. New well-preserved scleritomes of Chancelloridae from the early Cambrian Yuanshan Formation (Chengjiang, China) and the middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications. J Paleontol, 2002, 76: 596-606 CrossRef Google Scholar

[171] Janvier P. Facts and fancies about early fossil chordates and vertebrates. Nature, 2015, 520: 483-489 CrossRef PubMed ADS Google Scholar

[172] Jiang G Q, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426: 822-826 CrossRef PubMed ADS Google Scholar

[173] Jiang Z W. Global distribution of the earliest shelly metazoans. Geol Mag, 1984, 121: 185-188 CrossRef ADS Google Scholar

[174] Jin C S, Li C, Algeo T J, Planavsky N J, Cui H, Yang X L, Zhao Y L, Zhang X L, Xie S C. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529–514 Ma): Implications for biota-environment co-evolution. Earth Planet Sci Lett, 2016, 441: 38-51 CrossRef ADS Google Scholar

[175] Kirschvink J L. 1992. Late Proterozoic low-latitude global glaciation: The snowball earth. In: Schopf J W, Klein C, eds. The Proterozoic Biosphere. Cambridge: Cambridge University Press. 51–52. Google Scholar

[176] Knauth L P, Kennedy M J. The late Precambrian greening of the Earth. Nature, 2009, 460: 728-732 CrossRef PubMed ADS Google Scholar

[177] Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology. Science, 1999, 284: 2129-2137 CrossRef PubMed Google Scholar

[178] Knoll A H, Sperling E A. Oxygen and animals in Earth history. Proc Natl Acad Sci USA, 2014, 111: 3907-3908 CrossRef PubMed ADS Google Scholar

[179] Kouchinsky A, Bengtson S, Runnegar B, Skovsted C, Steiner M, Vendrasco M. Chronology of early Cambrian biomineralization. Geol Mag, 2012, 149: 221-251 CrossRef ADS Google Scholar

[180] Krause A J, Mills B J W, Zhang S, Planavsky N J, Lenton T M, Poulton S W. Stepwise oxygenation of the Paleozoic atmosphere. Nat Commun, 2018, 9: 4081 CrossRef PubMed ADS Google Scholar

[181] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem Geol, 1999, 161: 181-198 CrossRef ADS Google Scholar

[182] Lan Z W, Li X H, Zhu M Y, Chen Z Q, Zhang Q R, Li Q L, Lu D B, Liu Y, Tang G Q. A rapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Res, 2014, 255: 401-411 CrossRef ADS Google Scholar

[183] Landon E N U, Liu P J, Yin Z J, Sun W C, Shang X D, Donoghue P C J. Cellular preservation of excysting developmental stages of new eukaryotes from the early Ediacaran Weng’an Biota. Palaeoworld, 2019, https://doi.org/10.1016/j.palwor.2019.05.005 CrossRef Google Scholar

[184] Lang X G, Shen B, Peng Y, Xiao S H, Zhou C M, Bao H, Tang W. Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nat Commun, 2018a, 9: 3019 CrossRef PubMed ADS Google Scholar

[185] Lang X G, Chen J T, Cui H, Man L, Huang K J, Fu Y, Zhou C M, Shen B. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Res, 2018b, 310: 243-255 CrossRef ADS Google Scholar

[186] Larsson C M, Skovsted C B, Brock G A, Balthasar U, Topper T P, Holmer L E, Lane P. Paterimitra pyramidalis from South Australia: Scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod. Palaeontology, 2014, 57: 417-446 CrossRef Google Scholar

[187] Laumer C E, Bekkouche N, Kerbl A, Goetz F, Neves R C, Sørensen M V, Kristensen R M, Hejnol A, Dunn C W, Giribet G, Worsaae K. Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol, 2015, 25: 2000-2006 CrossRef PubMed Google Scholar

[188] Lee M S Y, Soubrier J, Edgecombe G D. Rates of phenotypic and genomic evolution during the Cambrian explosion. Curr Biol, 2013, 23: 1889-1895 CrossRef PubMed Google Scholar

[189] Le Heron D P, Tofaif S, Vandyk T, Ali D O. A diamictite dichotomy: Glacial conveyor belts and olistostromes in the Neoproterozoic of Death Valley, California, USA. Geology, 2017, 45: 31-34 CrossRef ADS Google Scholar

[190] Legg D A, Ma X Y, Wolfe J M, Ortega-Hernández J, Edgecombe G D, Sutton M D. Lobopodian phylogeny reanalysed. Nature, 2011, 476: E1 CrossRef PubMed ADS Google Scholar

[191] Legg D A, Sutton M D, Edgecombe G D. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat Commun, 2013, 4: 2485 CrossRef PubMed ADS Google Scholar

[192] Lenton T M, Boyle R A, Poulton S W, Shields-Zhou G A, Butterfield N J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat Geosci, 2014, 7: 257-265 CrossRef ADS Google Scholar

[193] Lenton T M, Daines S J, Mills B J W. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci Rev, 2018, 178: 1-28 CrossRef Google Scholar

[194] Levinton J S. 2001. Genetics, Paleontology, and Macroevolution. 2nd ed. Cambridge: Cambridge University Press. 617. Google Scholar

[195] Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X. A stratified redox model for the Ediacaran ocean. Science, 2010, 328: 80-83 CrossRef PubMed ADS Google Scholar

[196] Li C, Planavsky N J, Shi W, Zhang Z H, Zhou C M, Cheng M, Tarhan L G, Luo G M, Xie S C. Ediacaran marine redox heterogeneity and early animal ecosystems. Sci Rep, 2015, 5: 17097 CrossRef PubMed ADS Google Scholar

[197] Li C, Zhu M Y, Chu X L. Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China. J Earth Sci, 2016, 27: 167-169 CrossRef Google Scholar

[198] Li C, Hardisty D S, Luo G, Huang J, Algeo T J, Cheng M, Shi W, An Z, Tong J N, Xie S C, Jiao N, Lyons T W. Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology, 2017a, 15: 211-224 CrossRef PubMed Google Scholar

[199] Li C, Jin C, Planavsky N J, Algeo T J, Cheng M, Yang X L, Zhao Y L, Xie S C. Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?. Geology, 2017b, 45: 743-746 CrossRef Google Scholar

[200] Li C, Cheng M, Zhu M Y, Lyon T W. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution. Emerg Top Life Sci, 2018, 2: 279-288 CrossRef Google Scholar

[201] Li C W, Chen J Y, Hua T E. Precambrian sponges with cellular structures. Science, 1998, 279: 879-882 CrossRef PubMed ADS Google Scholar

[202] Li G X, Xiao S H. Tannuolina and Micrina (Tannuolinidae) from the Lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction. J Paleontol, 2004, 78: 900-913 CrossRef Google Scholar

[203] Li G X, Steiner M, Zhu X J, Yang A H, Wang H F, Erdtmann B D. Early Cambrian metazoan fossil record of South China: Generic diversity and radiation patterns. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 229-249 CrossRef ADS Google Scholar

[204] Li Z X, Zhang S H. Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys Earth Planet Inter, 2009, 176: 143-156 CrossRef ADS Google Scholar

[205] Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 2008, 160: 179-210 CrossRef ADS Google Scholar

[206] Ling H F, Chen X, Li D, Wang D, Shields-Zhou G A, Zhu M Y. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res, 2013, 225: 110-127 CrossRef ADS Google Scholar

[207] Liu J N, Steiner M, Dunlop J A, Keupp H, Shu D G, Ou Q, Han J, Zhang Z F, Zhang X L. An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature, 2011, 470: 526-530 CrossRef PubMed ADS Google Scholar

[208] Liu J N, Dunlop J A. Cambrian lobopodians: A review of recent progress in our understanding of their morphology and evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 398: 4-15 CrossRef ADS Google Scholar

[209] Liu J N, Lerosey-Aubril R, Steiner M, Dunlop J A, Shu D G, Paterson J R. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. Natl Sci Rev, 2018a, 5: 863-869 CrossRef Google Scholar

[210] Liu J N, Steiner M, Dunlop J A, Shu D G. Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids. Proc R Soc B, 2018b, 285: 20180051 CrossRef PubMed Google Scholar

[211] Liu P J, Xiao S H, Yin C Y, Zhou C M, Gao L Z, Tang F. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng’an, South China. Palaeontology, 2008, 51: 339-366 CrossRef Google Scholar

[212] Liu P J, Chen S M, Zhu M Y, Li M, Yin C Y, Shang X D. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System. Precambrian Res, 2014, 249: 199-214 CrossRef ADS Google Scholar

[213] Liu P J, Li X H, Chen S M, Lan Z W, Yang B, Shang X D, Yin C Y. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation. Chin Sci Bull, 2015, 60: 958-963 CrossRef Google Scholar

[214] Liu Y H, Xiao S H, Shao T Q, Broce J, Zhang H Q. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans. Evol Dev, 2014, 16: 155-165 CrossRef PubMed Google Scholar

[215] Lowe C J, Clarke D N, Medeiros D M, Rokhsar D S, Gerhart J. The deuterostome context of chordate origins. Nature, 2015, 520: 456-465 CrossRef PubMed ADS Google Scholar

[216] Lu M, Zhu M Y, Zhang J M, Shields G A, Li G X, Zhao F C, Zhao X, Zhao M J. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res, 2013, 225: 86-109 CrossRef ADS Google Scholar

[217] Luo C, Zhu M Y, Reitner J. The Jinxian Biota revisited: Taphonomy and body plan of the Neoproterozoic discoid fossils from the southern Liaodong Peninsula, North China. PalZ, 2016, 90: 205-224 CrossRef Google Scholar

[218] Luo H L, Hu S X, Chen L Z. New Early Cambrian chordates from Haikou, Kunming. Acta Geol Sin-Engl Ed, 2001, 75: 345-348 CrossRef Google Scholar

[219] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 2014, 506: 307-315 CrossRef PubMed ADS Google Scholar

[220] Ma X Y, Hou X G, Bergström J. Morphology of Luolishanialongicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Struct Dev, 2009, 38: 271-291 CrossRef PubMed Google Scholar

[221] Ma X Y, Hou X G, Edgecombe G D, Strausfeld N J. Complex brain and optic lobes in an early Cambrian arthropod. Nature, 2012, 490: 258-261 CrossRef PubMed ADS Google Scholar

[222] Ma X Y, Edgecombe G D, Legg D A, Hou X G. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis. J Syst Palaeontol, 2014a, 12: 445-457 CrossRef Google Scholar

[223] Ma X Y, Cong P Y, Hou X G, Edgecombe G D, Strausfeld N J. An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nat Commun, 2014b, 5: 3560 CrossRef PubMed ADS Google Scholar

[224] Ma X Y, Edgecombe G D, Hou X G, Goral T, Strausfeld N J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr Biol, 2015, 25: 2969-2975 CrossRef PubMed Google Scholar

[225] Macdonald F A, Schmitz M D, Crowley J L, Roots C F, Jones D S, Maloof A C, Strauss J V, Cohen P A, Johnston D T, Schrag D P. Calibrating the Cryogenian. Science, 2010, 327: 1241-1243 CrossRef PubMed ADS Google Scholar

[226] Maletz J. Tracing the evolutionary origins of the Hemichordata (Enteropneusta and Pterobranchia). Palaeoworld, 2019, 28: 58-72 CrossRef Google Scholar

[227] Maletz J, Steiner M, Weber B, Zhu M. The Cambrian bioradiation event: A Chinese perspective. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 398: 1-3 CrossRef Google Scholar

[228] Mallatt J, Chen J Y. Fossil sister group of craniates: Predicted and found. J Morphol, 2003, 258: 1-31 CrossRef PubMed Google Scholar

[229] Marlétaz F, Peijnenburg K T C A, Goto T, Satoh N, Rokhsar D S. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr Biol, 2019, 29: 312-318.e3 CrossRef PubMed Google Scholar

[230] McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 2008, 105: 3197-3202 CrossRef PubMed ADS Google Scholar

[231] McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 2016, 352: 444-447 CrossRef PubMed ADS Google Scholar

[232] Mills B J W, Krause A J, Scotese C R, Hill D J, Shields G A, Lenton T M. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res, 2018, 67: 172-186 CrossRef ADS Google Scholar

[233] Mills D B, Ward L M, Jones C, Sweeten B, Forth M, Treusch A H, Canfield D E. Oxygen requirements of the earliest animals. Proc Natl Acad Sci USA, 2014, 111: 4168-4172 CrossRef PubMed ADS Google Scholar

[234] Mounce R C P, Wills M A. Phylogenetic position of Diania challenged. Nature, 2011, 476: E1 CrossRef PubMed ADS Google Scholar

[235] Moysiuk J, Smith M R, Caron J B. Hyoliths are Palaeozoic lophophorates. Nature, 2017, 541: 394-397 CrossRef PubMed ADS Google Scholar

[236] Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 2012, 110: 26-57 CrossRef ADS Google Scholar

[237] Ortega-Hernández J, Fu D J, Zhang X L, Shu D G. Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids. Curr Biol, 2018a, 28: R146-R147 CrossRef PubMed Google Scholar

[238] Ortega-Hernández J, Yang J, Zhang X G. Fuxianhuiids. Curr Biol, 2018b, 28: R724-R725 CrossRef PubMed Google Scholar

[239] Ou Q, Shu D, Mayer G. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun, 2012, 3: 1261 CrossRef PubMed ADS Google Scholar

[240] Ou Q, Han J, Zhang Z F, Shu D G, Sun G, Mayer G. Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity. Proc Natl Acad Sci USA, 2017, 114: 8835-8840 CrossRef PubMed Google Scholar

[241] Paterson J R, Gehling J G, Droser M L, Bicknell R D C. Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia. Sci Rep, 2017, 7: 45539 CrossRef PubMed ADS Google Scholar

[242] Paterson J R, Edgecombe G D, Lee M S Y. Trilobite evolutionary rates constrain the duration of the Cambrian explosion. Proc Natl Acad Sci USA, 2019, 116: 4394-4399 CrossRef PubMed ADS Google Scholar

[243] Paulsen T, Deering C, Sliwinski J, Bachmann O, Guillong M. Evidence for a spike in mantle carbon outgassing during the Ediacaran period. Nat Geosci, 2017, 10: 930-934 CrossRef ADS Google Scholar

[244] Peng J, Zhao Y L, Wu Y S, Yuan J L, Tai T S. The Balang Fauna―A new early Cambrian Fauna from Kaili City, Guizhou Province. Chin Sci Bull, 2005, 50: 1159-1162 CrossRef ADS Google Scholar

[245] Petryshyn V A, Bottjer D J, Chen J Y, Gao F. Petrographic analysis of new specimens of the putative microfossil Vernanimalcula guizhouena (Doushantuo Formation, South China). Precambrian Res, 2014, 225: 58-66 CrossRef ADS Google Scholar

[246] Prave A R, Condon D J, Hoffmann K H, Tapster S, Fallick A E. Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology, 2016, 44: 631-634 CrossRef ADS Google Scholar

[247] Qian Y. 1989. Early Cambrian small shelly fossils of China with special reference to the Precambrian-Cambrian boundary. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica, ed. Stratigraphy and Palaeontology of Systematic Boundaries in China, Precambrian-Cambrian Boundary (2). Nanjing: Nanjing University Press. 342. Google Scholar

[248] Qian Y, Bengtson S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils Strata, 24: 1–156. Google Scholar

[249] Raff R A. Evo-devo: The evolution of a new discipline. Nat Rev Genet, 2000, 1: 74-79 CrossRef PubMed Google Scholar

[250] Ramsköld L, Hou X G. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 1991, 351: 225-228 CrossRef ADS Google Scholar

[251] Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 2003, 100: 8124-8129 CrossRef PubMed ADS Google Scholar

[252] Saltzman M R. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 2005, 33: 573-576 CrossRef ADS Google Scholar

[253] Seilacher A. Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. J Geol Soc, 1992, 149: 607-613 CrossRef ADS Google Scholar

[254] Seilacher A, Grazhdankin D, Legouta A. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontol Res, 2003, 7: 43-54 CrossRef Google Scholar

[255] Shen Y A, Zhang T G, Hoffman P F. On the coevolution of Ediacaran oceans and animals. Proc Natl Acad Sci USA, 2008, 105: 7376-7381 CrossRef PubMed ADS Google Scholar

[256] Shi W, Li C, Luo G M, Huang J H, Algeo T J, Jin C S, Zhang Z H, Cheng M. 2018. Sulfur isotope evidence for marine-shelf oxidation during Ediacaran Shuram Excursion. Geology, 46: 267–270. Google Scholar

[257] Shields G A. Carbon and carbon isotope mass balance in the Neoproterozoic Earth system. Emerg Top Life Sci, 2018, 2: 257-265 CrossRef Google Scholar

[258] Shields G A, Mills B J W. Tectonic controls on the long-term carbon isotope mass balance. Proc Natl Acad Sci USA, 2016, 114: 4318-4323 CrossRef PubMed ADS Google Scholar

[259] Shields G, Veizer J. Precambrian marine carbonate isotope database: Version 1.1. Geochem Geophys Geosyst, 2002, 3: 10.1029/2001GC000266 CrossRef Google Scholar

[260] Shields-Zhou G, Zhu M Y. Biogeochemical changes across the Ediacaran-Cambrian transition in South China. Precambrian Res, 2013, 225: 1-6 CrossRef ADS Google Scholar

[261] Shields G A, Mills B J W, Zhu M, Raub T D, Daines S J, Lenton T M. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nat Geosci, 2019, 12: 823-827 CrossRef Google Scholar

[262] Shu D G. A paleontological perspective of vertebrate origin. Chin Sci Bull, 2003, 48: 725-735 CrossRef ADS Google Scholar

[263] Shu D G. On the phylum Vetulicolia. Chin Sci Bull, 2005, 50: 2342-2354 CrossRef ADS Google Scholar

[264] Shu D G. Cambrian explosion: Birth of tree of animals. Gondwana Res, 2008, 14: 219-240 CrossRef ADS Google Scholar

[265] Shu D G, Morris S C, Zhang X L. A Pikaia-like chordate from the Lower Cambrian of China. Nature, 1996a, 384: 157-158 CrossRef ADS Google Scholar

[266] Shu D, Zhang X, Chen L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature, 1996b, 380: 428-430 CrossRef ADS Google Scholar

[267] Shu D G, Luo H L, Conway Morris S, Zhang X L, Hu S X, Chen L, Han J, Zhu M, Li Y, Chen L Z. Lower Cambrian vertebrates from South China. Nature, 1999a, 402: 42-46 CrossRef ADS Google Scholar

[268] Shu D G, Conway M S, Zhang X L, Chen L, Li Y, Han J. A pipiscid-like fossil from the Lower Cambrian of South China. Nature, 1999b, 400: 746-749 CrossRef ADS Google Scholar

[269] Shu D G, Chen L, Han J, Zhang X L. An Early Cambrian tunicate from China. Nature, 2001a, 411: 472-473 CrossRef PubMed Google Scholar

[270] Shu D G, Morris S C, Han J, Chen L, Zhang X L, Zhang Z F, Liu H Q, Li Y, Liu J N. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 2001b, 414: 419-424 CrossRef PubMed Google Scholar

[271] Shu D G, Morris S C, Han J, Zhang Z F, Yasui K, Janvier P, Chen L, Zhang X L, Liu J N, Li Y, Liu H Q. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 2003a, 421: 526-529 CrossRef PubMed ADS Google Scholar

[272] Shu D G, Conway M S, Zhang Z F, Liu J N, Han J, Chen L, Zhang X L, Yasui K, Li Y. A new species of Yunnanozoan with implications for deuterostome evolution. Science, 2003b, 299: 1380-1384 CrossRef PubMed Google Scholar

[273] Shu D G, Morris S C, Han J, Zhang Z F, Liu J N. Ancestral echinoderms from the Chengjiang deposits of China. Nature, 2004, 430: 422-428 CrossRef PubMed Google Scholar

[274] Shu D G, Conway Morris S, Zhang Z F, Han J. The earliest history of the deuterostomes: The importance of the Chengjiang Fossil-Lagerstätte. Proc R Soc B, 2010, 277: 165-174 CrossRef PubMed Google Scholar

[275] Shu D G, Isozaki Y, Zhang X L, Han J, Maruyama S. Birth and early evolution of metazoans. Gondwana Res, 2014, 25: 884-895 CrossRef ADS Google Scholar

[276] Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue J X, Chen Y C, Freeman R M, Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman K W, Levine J, Gonzalez P, Cameron C, Fritzenwanker J H, Pani A M, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh H H, Dugan S, Holder M, Jhangiani S N, Kovar C L, Lee S L, Lewis L R, Morton D, Nazareth L V, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny D M, Gillis A, Peshkin L, Wu M, Humphreys T, Su Y H, Putnam N H, Schmutz J, Fujiyama A, Yu J K, Tagawa K, Worley K C, Gibbs R A, Kirschner M W, Lowe C J, Satoh N, Rokhsar D S, Gerhart J. Hemichordate genomes and deuterostome origins. Nature, 2015, 527: 459-465 CrossRef PubMed ADS Google Scholar

[277] Smith A B. Cambrian problematica and the diversification of deuterostomes. BMC Biol, 2012, 10: 79 CrossRef PubMed Google Scholar

[278] Spence G H, Le Heron D P, Fairchild I J. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 2016, 63: 253-306 CrossRef Google Scholar

[279] Sperling E A, Vinther J. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev, 2010, 12: 201-209 CrossRef PubMed Google Scholar

[280] Steiner M, Mehl D, Reitner J, Erdtmann B D. 1993. Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berl Geowiss Abh, E9: 293–329. Google Scholar

[281] Steiner M, Zhu M, Li G, Qian Y, Erdtmann B D. New Early Cambrian bilaterian embryos and larvae from China. Geology, 2004, 32: 833-836 CrossRef ADS Google Scholar

[282] Steiner M, Li G, Qian Y, Zhu M, Erdtmann B D. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 67-99 CrossRef ADS Google Scholar

[283] Steiner M, Qian Y, Li G, Hagadorn J W, Zhu M. The developmental cycles of early Cambrian Olivooidae fam. nov. (Cycloneuralia) from the Yangtze platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 398: 97-124 CrossRef ADS Google Scholar

[284] Sun H J, Smith M R, Zeng H, Zhao F C, Li G X, Zhu M Y. Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proc R Soc B, 2018, 285: 20181780 CrossRef PubMed Google Scholar

[285] Sun W C, Yin Z J, Donoghue P, Liu P J, Shang X D, Zhu M Y. Tubular microfossils from the Ediacaran Weng’an Biota (Doushantuo Formation, South China) are not early animals. Palaeoworld, 2019, CrossRef Google Scholar

[286] Sun W G. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Res, 1986, 31: 361-375 CrossRef ADS Google Scholar

[287] Sun W G. 1991. Early Cambrian medusiform fossils from Chengjiang, Yunnan, China. In: Simonneta A M, Conway Morris S, eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press. 131. Google Scholar

[288] Sun W G, Wang G X, Zhou B H. Macroscopic worm-like body fossils from the upper precambrian (900–700 Ma), huainan district, anhui, China and their stratigraphic and evolutionary significance. Precambrian Res, 1986, 31: 377-403 CrossRef ADS Google Scholar

[289] Swalla B J, Smith A B. Deciphering deuterostome phylogeny: Molecular, morphological and palaeontological perspectives. Phil Trans R Soc B, 2008, 363: 1557-1568 CrossRef PubMed Google Scholar

[290] Swanson-Hysell N L, Rose C V, Calmet C C, Halverson G P, Hurtgen M T, Maloof A C. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science, 2010, 328: 608-611 CrossRef PubMed ADS Google Scholar

[291] Swart P K, Kennedy M J. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene-Pleistocene comparison. Geology, 2012, 40: 87-90 CrossRef ADS Google Scholar

[292] Tang F, Yin C Y, Bengtson S, Liu P J, Wang Z Q, Gao L Z. Octoradiate spiral organisms in the Ediacaran of South China. Acta Geol Sin-Engl Ed, 2008, 82: 27-34 CrossRef Google Scholar

[293] Tang F, Bengtson S, Wang Y, Wang X L, Yin C Y. Eoandromeda and the origin of Ctenophora. Evol Dev, 2011, 13: 408-414 CrossRef PubMed Google Scholar

[294] Topper T P, Guo J F, Clausen S, Skovsted C B, Zhang Z F. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. Nat Commun, 2019, 10: 1366 CrossRef PubMed ADS Google Scholar

[295] Valentine J W. 2004. On the Origin of Phyla. Chicago: University of Chicago Press. 614. Google Scholar

[296] Valentine J W, Marshall C R. 2015. Fossil and transcriptomic perspectives on the origins and success of metazoan multicellularity. In: Ruiz-Trillo I, Nedelcu A M, eds. Evolutionary Transitions to Multicellular Life. Adv Mar Genom, 2: 31–46. Google Scholar

[297] Vannier J, Steiner M, Renvoisé E, Hu S X, Casanova J P. Early Cambrian origin of modern food webs: Evidence from predator arrow worms. Proc R Soc B, 2007, 274: 627-633 CrossRef PubMed Google Scholar

[298] Vannier J, Calandra I, Gaillard C, Zylinska A. Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology, 2010, 38: 711-714 CrossRef ADS Google Scholar

[299] Walcott C D. 1910. Abrupt appearance of the Cambrian fauna on the North American continent. Cambrian Geology and Paleontology, II. Smithson Misc Collect, 57: 1–16. Google Scholar

[300] Wang D, Ling H F, Struck U, Zhu X K, Zhu M, He T, Yang B, Gamper A, Shields G A. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nat Commun, 2018, 9: 2575 CrossRef PubMed ADS Google Scholar

[301] Wang D, Vannier J, Schumann I, Wang X, Yang X G, Komiya T, Uesugi K, Sun J, Han J. Origin of ecdysis: Fossil evidence from 535-million-year-old scalidophoran worms. Proc R Soc B, 2019, 286: 20190791 CrossRef PubMed Google Scholar

[302] Wei G Y, Planavsky N J, Tarhan L G, Chen X, Wei W, Li D, Ling H F. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology, 2018, 46: 587-590 CrossRef ADS Google Scholar

[303] Whiteaves J F. 1892. Description of a new genus and species of phyllocarid crustacea from the Middle Cambrian of Mount Stephen, B C. Can Record Sci, 5: 205–208. Google Scholar

[304] Wu W, Yang A H, Janussen D, Steiner M, Zhu M Y. Hexactinellid sponges from the Early Cambrian black shale of South Anhui, China. J Paleontol, 2005, 79: 1043-1051 CrossRef Google Scholar

[305] Wu W, Zhu M Y, Steiner M. Composition and tiering of the Cambrian sponge communities. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 398: 86-96 CrossRef ADS Google Scholar

[306] Xiao S H, Knoll A H. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. J Paleontol, 2000, 74: 767-788 CrossRef Google Scholar

[307] Xiao S H, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391: 553-558 CrossRef ADS Google Scholar

[308] Xiao S H, Yuan X L, Knoll A H. Eumetazoan fossils in terminal Proterozoic phosphorites?. Proc Natl Acad Sci USA, 2000, 97: 13684-13689 CrossRef PubMed ADS Google Scholar

[309] Xiao S H, Muscente A D, Chen L, Zhou C M, Schiffbauer J D, Wood A D, Polys N F, Yuan X L. The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes. Natl Sci Rev, 2014, 1: 498-520 CrossRef Google Scholar

[310] Xing Y S, Luo H L. Precambrian-Cambrian boundary candidate, Meishucun, Jinning, Yunnan, China. Geol Mag, 1984, 121: 143-154 CrossRef ADS Google Scholar

[311] Xing Y S, Ding Q X, Luo H L. Biotic characteristics of the Sinian-Cambrian boundary beds in China and the boundary problems. Precambrian Res, 1982, 17: 77-85 CrossRef ADS Google Scholar

[312] Xue X F. Research on the isotopic age of the Sinian-Cambrian boundary at the Meishucun section in Jinning County, Yunnan Province, China. Geol Mag, 1984, 121: 171-173 CrossRef ADS Google Scholar

[313] Yang B, Steiner M, Zhu M Y, Li G, Liu J, Liu P G. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: Implications for chronostratigraphy and metazoan evolution. Precambrian Res, 2016, 285: 202-215 CrossRef ADS Google Scholar

[314] Yang C, Li X H, Zhu M Y, Condon D J, Chen J Y. Geochronological constraint on the Cambrian Chengjiang biota, South China. J Geol Soc, 2018, 175: 659-666 CrossRef ADS Google Scholar

[315] Yang J, Ortega-Hernández J, Butterfield N J, Zhang X G. Specialized appendages in fuxianhuiids and the head organization of early euarthropods. Nature, 2013, 494: 468-471 CrossRef PubMed ADS Google Scholar

[316] Yang J, Ortega-Hernández J, Butterfield N J, Liu Y, Boyan G S, Hou J B, Lan T, Zhang X G. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc Natl Acad Sci USA, 2016, 113: 2988-2993 CrossRef PubMed ADS Google Scholar

[317] Yang J, Ortega-Hernández J, Legg D A, Lan T, Hou J B, Zhang X G. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat Commun, 2018, 9: 470 CrossRef PubMed ADS Google Scholar

[318] Yin L M, Zhu M Y, Knoll A H, Yuan X L, Zhang J M, Hu J. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661-663 CrossRef PubMed ADS Google Scholar

[319] Yin Z J, Zhu M Y, Tafforeau P, Chen J Y, Liu P J, Li G. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng’an Biota, South China. Precambrian Res, 2013, 225: 44-57 CrossRef ADS Google Scholar

[320] Yin Z J, Zhu M Y, Davidson E H, Bottjer D J, Zhao F C, Tafforeau P. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Natl Acad Sci USA, 2015, 112: E1453-E1460 CrossRef PubMed ADS Google Scholar

[321] Yin Z J, Zhu M Y, Bottjer D J, Zhao F C, Tafforeau P. Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology, 2016, 44: 735-738 CrossRef ADS Google Scholar

[322] Yin Z J, Cunningham J A, Vargas K, Bengtson S, Zhu M Y D P C J. Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng’an Biota. Precambrian Res, 2017, 301: 145-151 CrossRef ADS Google Scholar

[323] Yin Z J, Zhao D D, Pan B, Zhao F C, Zeng H, Li G X, Bottjer D J, Zhu M Y. Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 2018, 46: 387-390 CrossRef ADS Google Scholar

[324] Yuan X L, S H, Parsley R L, Zhou C, Chen Z, Hu J. Towering sponges in an Early Cambrian Lagerstätte: Disparity between nonbilaterian and bilaterian epifaunal tierers at the Neoproterozoic-Cambrian transition. Geology, 2002, 30: 363-366 CrossRef Google Scholar

[325] Yuan X L, Chen Z, Xiao S H, C M, Hua H. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 2011, 470: 390-393 CrossRef PubMed ADS Google Scholar

[326] Zeng H, Zhao F C, Yin Z J, Li G X, Zhu M Y. A Chengjiang-type fossil assemblage from the Hongjingshao Formation (Cambrian Stage 3) at Chenggong, Kunming, Yunnan. Chin Sci Bull, 2014, 59: 3169-3175 CrossRef ADS Google Scholar

[327] Zeng H, Zhao F C, Yin Z J, Zhu M Y. Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China. J Syst Palaeontol, 2018, 16: 1-37 CrossRef Google Scholar

[328] Zhao Y L, Chen M E, Peng J, Yu M Y, He M H, Wang Y, Yang R D, Wang P L, Zhang Z H. Discovery of a Miaohe-type Biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China. Chin Sci Bull, 2004, 49: 2224-2226 CrossRef ADS Google Scholar

[329] Zhao Y L, Yuan J L, Babcock L E, Guo Q J, Peng J, Yin L M, Yang X L, Peng S C, Wang C J, Gaines R R, Esteve J, Tai T S, Yang R D, Wang Y, Sun H J, Yang Y N. Global Standard Stratotype-section and Point (GSSP) for the conterminous base of the Miaolingian Series and Wuliuan Stage (Cambrian) at Balang, Jianhe, Guizhou, China. Episodes, 2019, 42: 165-184 CrossRef Google Scholar

[330] Zhang F F, Xiao S H, Romaniello S J, Hardisty D, Li C, Melezhik V, Pokrovsky B, Cheng M, Shi W, Lenton T M, Anbar A D. Global marine redox changes drove the rise and fall of the Ediacara biota. Geobiology, 2019, 86: gbi.12359 CrossRef PubMed Google Scholar

[331] Zhang H Q, Xiao S H, Liu Y H, Yuan X L, Wan B, Muscente A D, Shao T Q, Gong H, Cao G. Armored kinorhynch-like scalidophoran animals from the early Cambrian. Sci Rep, 2015, 5: 16521 CrossRef PubMed ADS Google Scholar

[332] Zhang Q R, Chu X L, Feng L J. Chapter 32 Neoproterozoic glacial records in the Yangtze Region, China. Geol Soc Lond Memoirs, 2011, 36: 357-366 CrossRef Google Scholar

[333] Zhang S H, Jiang G Q, Han Y. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 2008, 20: 289-294 CrossRef ADS Google Scholar

[334] Zhang S H, Evans D A D, Li H Y, Wu H C, Jiang G Q, Dong J, Zhao Q L, Raub T D, Yang T S. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block. J Asian Earth Sci, 2013, 72: 164-177 CrossRef ADS Google Scholar

[335] Zhang X G, Pratt B R. Middle Cambrian arthropod embryos with blastomeres. Science, 1994, 266: 637-639 CrossRef PubMed ADS Google Scholar

[336] Zhang X L, Hua H, Reitner J. A new type of Precambrian megascopic fossils: The Jinxian biota from northeastern China. Facies, 2006, 52: 169-181 CrossRef Google Scholar

[337] Zhang X L, Shu D G, Han J, Zhang Z F, Liu J N, Fu D J. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Res, 2014, 25: 896-909 CrossRef ADS Google Scholar

[338] Zhang X L, Cui L H. Oxygen requirements for the Cambrian explosion. J Earth Sci, 2016, 27: 187-195 CrossRef Google Scholar

[339] Zhang Y, Yuan X L, Yin L M, Li C W, Chen J Y, Hua T E. Interpreting Late Precambrian microfossils. Science, 1998, 282: 1783a-1783 CrossRef ADS Google Scholar

[340] Zhao F C, Caron J B, Hu S X, Zhu M Y. Quantitative analysis of taphofacies and paleocommunities in the early Cambrian Chengjiang Lagerstätte. Palaios, 2009, 24: 826-839 CrossRef ADS Google Scholar

[341] Zhao F C, Hu S X, Caron J B, Zhu M Y, Yin Z J, Lu M. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 346-347: 54-65 CrossRef ADS Google Scholar

[342] Zhao F C, Caron J B, Bottjer D J, Hu S X, Yin Z J, Zhu M Y. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology, 2014, 40: 50-69 CrossRef Google Scholar

[343] Zhou C M, Xiao S H. Ediacaran δ13C chemostratigraphy of South China. Chem Geol, 2007, 237: 89-108 CrossRef ADS Google Scholar

[344] Zhou C M, Tucker R, Xiao S H, Peng Z X, Yuan X L, Chen Z. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 2004, 32: 437-440 CrossRef ADS Google Scholar

[345] Zhou C M, Bao H M, Peng Y B, Yuan X L. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology, 2010, 38: 903-906 CrossRef ADS Google Scholar

[346] Zhou C M, Li X H, Xiao S H, Lan Z W, Ouyang Q, Guan C G, Chen Z. A new SIMS zircon U-Pb date from the Ediacaran Doushantuo Formation: Age constraint on the Weng’an biota. Geol Mag, 2017, 154: 1193-1201 CrossRef ADS Google Scholar

[347] Zhou C M, Huyskens M H, Lang X G, Xiao S H, Yin Q. Calibrating the terminations of Cryogenian global glaciations. Geology, 2019, 47: 251-254 CrossRef ADS Google Scholar

[348] Zhu M Y. 1997. Precambrian-Cambrian trace fossils from eastern Yunnan, China: Implications for Cambrian explosion. Bull Natl Mus Nat Sci, 10: 275–312. Google Scholar

[349] Zhu M Y. 2004. Biological and geological processes of the Cambrian explosion: Evidence from the Yangtze Platform of South China. Introduction. In: Zhu M, Steiner M, eds. Biological and Geological Processes of the Cambrian Explosion. Prog Nat Sci, Special Issue: V–X. Google Scholar

[350] Zhu M Y, Li X H. Introduction: From snowball Earth to the Cambrian explosion-evidence from China. Geol Mag, 2017, 154: 1187-1192 CrossRef ADS Google Scholar

[351] Zhu M Y, Zhang J M, Steiner M, Yang A H, Li G X, Erdtmann B D. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 2003, 13: 951-960 CrossRef Google Scholar

[352] Zhu M Y, Babcock L E, Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld, 2006, 15: 217-222 CrossRef Google Scholar

[353] Zhu M Y, Strauss H, Shields G A. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 2007a, 254: 1-6 CrossRef ADS Google Scholar

[354] Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 2007b, 254: 7-61 CrossRef ADS Google Scholar

[355] Zhu M Y, Gehling J G, Xiao S H, Zhao Y L, Droser M L. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 2008, 36: 867-870 CrossRef ADS Google Scholar

[356] Zhu M Y, Lu M, Zhang J M, Zhao F C, Li G X, Yang A H, Zhao X, Zhao M J. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 2013, 225: 7-28 CrossRef ADS Google Scholar

[357] Zhu M Y, Zhuravlev A Y, Wood R A, Zhao F, Sukhov S S. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform. Geology, 2017, 45: 459-462 CrossRef ADS Google Scholar

[358] Zhuravlev A Y, Wood R A. The two phases of the Cambrian Explosion. Sci Rep, 2018, 8: 16656 CrossRef PubMed ADS Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1