SCIENTIA SINICA Vitae, Volume 49, Issue 9: 1069-1075(2019) https://doi.org/10.1360/SSV-2019-0153

Molecular mechanisms of infection site recognition by enteric pathogens

More info
  • ReceivedJul 30, 2019
  • AcceptedAug 12, 2019
  • PublishedSep 16, 2019


In humans, the bacterial pathogen infections occur primarily in the intestine. Every year, intestinal diseases cause 1.5–2.5 million deaths, holding the third highest mortality rate among all diseases. Different enteric pathogens recognize different intestinal sites for colonization and infection, among which human small intestine and large intestine are the main infection sites. During the pathogenic process, enteric pathogens sense a series of intestinal signals to accurately identify their infection sites, and adhere to or invade the intestinal epithelium through activating the expression of virulence genes. Here, we review the molecular mechanisms by which two representative enteric pathogens (large intestinal pathogen enterohemorrhagic Escherichia coli and small intestinal pathogen Salmonella typhimurium) recognize their infection sites.

Funded by




[1] Cameron E A, Sperandio V. Frenemies: Signaling and nutritional integration in pathogen-microbiota-host interactions. Cell Host Microbe, 2015, 18: 275-284 CrossRef PubMed Google Scholar

[2] Lustri B C, Sperandio V, Moreira C G, et al. Bacterial chat: Intestinal metabolites and signals in host-microbiota-pathogen interactions. Infect Immun, 2017, 85: e00476-17 CrossRef PubMed Google Scholar

[3] DuPont H L, Formal S B, Hornick R B, et al. Pathogenesis of Escherichia coli diarrhea. N Engl J Med, 1971, 285: 1-9 CrossRef PubMed Google Scholar

[4] Welinder-Olsson C, Kaijser B. Enterohemorrhagic Escherichia coli (EHEC). Scand J Infect Dis, 2005, 37: 405-416 CrossRef PubMed Google Scholar

[5] Garmendia J, Frankel G, Crepin V F. Enteropathogenic and enterohemorrhagic Escherichia coli infections: Translocation, translocation, translocation. Infect Immun, 2005, 73: 2573-2585 CrossRef PubMed Google Scholar

[6] Wong A R C, Pearson J S, Bright M D, et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: Even more subversive elements. Mol Microbiol, 2011, 80: 1420-1438 CrossRef PubMed Google Scholar

[7] Elliott S J, Yu J, Kaper J B. The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E. coli K-12. Infect Immun, 1999, 67: 4260–4263. Google Scholar

[8] Thorpe C M. Shiga toxin—producing Escherichia coli infection. Clin Infect Dis, 2004, 38: 1298-1303 CrossRef PubMed Google Scholar

[9] Saxena S K, O’Brien A D, Ackerman E J. Shiga toxin, shiga-like toxin Ⅱ variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem, 1989, 264: 596–601. Google Scholar

[10] Mellies J L, Barron A M S, Carmona A M. Enteropathogenic and enterohemorrhagic Escherichia coli virulence gene regulation. Infect Immun, 2007, 75: 4199-4210 CrossRef PubMed Google Scholar

[11] Gravel R A, Narang M A. Molecular genetics of biotin metabolism: Old vitamin, new science. J Nutr Biochem, 2005, 16: 428-431 CrossRef PubMed Google Scholar

[12] Beckett D. Biotin sensing at the molecular level. J Nutr, 2009, 139: 167-170 CrossRef PubMed Google Scholar

[13] Said H M. Cell and molecular aspects of human intestinal biotin absorption. J Nutr, 2009, 139: 158-162 CrossRef PubMed Google Scholar

[14] Yang B, Feng L, Wang F, et al. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat Commun, 2015, 6: 6592 CrossRef PubMed ADS Google Scholar

[15] Palchevskiy V, Finkel S E. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol, 2006, 188: 3902-3910 CrossRef PubMed Google Scholar

[16] Finkel S E, Kolter R. DNA as a nutrient: Novel role for bacterial competence gene homologs. J Bacteriol, 2001, 183: 6288-6293 CrossRef PubMed Google Scholar

[17] Valentin-Hansen P, Albrechtsen B, Løve Larsen J E. DNA-protein recognition: Demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J, 1986, 5: 2015-2021 CrossRef Google Scholar

[18] Dandanell G, Valentin-Hansen P, Løve Larsen J E, et al. Long-range cooperativity between gene regulatory sequences in a prokaryote. Nature, 1987, 325: 823-826 CrossRef PubMed ADS Google Scholar

[19] Han R, Xu L, Wang T, et al. A small regulatory RNA contributes to the preferential colonization of Escherichia coli O157:H7 in the large intestine in response to a low DNA concentration. Front Microbiol, 2017, 8: 274 CrossRef Google Scholar

[20] Chaban B, Hughes H V, Beeby M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin Cell Dev Biol, 2015, 46: 91-103 CrossRef PubMed Google Scholar

[21] Yang B, Wang S, Huang J, et al. Transcriptional activator GmrA, encoded in genomic island OI-29, controls the motility of enterohemorrhagic Escherichia coli O157:H7. Front Microbiol, 2018, 9: 338 CrossRef Google Scholar

[22] Fàbrega A, Vila J. Salmonella enterica serovar typhimurium skills to succeed in the host: Virulence and regulation. Clin Microbiol Rev, 2013, 26: 308-341 CrossRef PubMed Google Scholar

[23] Hoelzer K, Moreno Switt A I, Wiedmann M. Animal contact as a source of human non-typhoidal salmonellosis. Vet Res, 2011, 42: 34 CrossRef PubMed Google Scholar

[24] Mather A E, Reid S W J, Maskell D J, et al. Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. Science, 2013, 341: 1514-1517 CrossRef PubMed ADS Google Scholar

[25] Valdez Y, Ferreira R B R, Finlay B B. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol, 2009, 337: 93–127. Google Scholar

[26] LaRock D L, Chaudhary A, Miller S I. Salmonellae interactions with host processes. Nat Rev Microbiol, 2015, 13: 191-205 CrossRef PubMed Google Scholar

[27] Hébrard M, Kröger C, Sivasankaran S K, et al. The challenge of relating gene expression to the virulence of Salmonella enterica serovar typhimurium. Curr Opin Biotech, 2011, 22: 200-210 CrossRef PubMed Google Scholar

[28] Jones B D. Salmonella invasion gene regulation: A story of environmental awareness. J Microbiol, 2005, 43: 110–117. Google Scholar

[29] Altier C. Genetic and environmental control of Salmonella invasion. J Microbiol, 2005, 43: 85–92. Google Scholar

[30] Jiang L, Feng L, Yang B, et al. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella typhimurium invasion. PLoS Pathog, 2017, 13: e1006429 CrossRef PubMed Google Scholar

[31] den Besten G, van Eunen K, Groen A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013, 54: 2325-2340 CrossRef PubMed Google Scholar

[32] Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science, 2012, 336: 1262-1267 CrossRef PubMed ADS Google Scholar

[33] Macfarlane S, Macfarlane G T. Regulation of short-chain fatty acid production. Proc Nutr Soc, 2003, 62: 67-72 CrossRef PubMed Google Scholar

[34] Vogt S L, Peña-Díaz J, Finlay B B. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe, 2015, 34: 106-115 CrossRef PubMed Google Scholar

[35] Lawhon S D, Maurer R, Suyemoto M, et al. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol, 2002, 46: 1451-1464 CrossRef PubMed Google Scholar

[36] Huang Y, Suyemoto M, Garner C D, et al. Formate acts as a diffusible signal to induce Salmonella invasion. J Bacteriol, 2008, 190: 4233-4241 CrossRef PubMed Google Scholar

[37] Chiang J Y L. Bile acids: Regulation of synthesis. J Lipid Res, 2009, 50: 1955-1966 CrossRef PubMed Google Scholar

[38] Ridlon J M, Kang D J, Hylemon P B. Bile salt biotransformations by human intestinal bacteria. J Lipid Res, 2006, 47: 241-259 CrossRef PubMed Google Scholar

[39] Thanassi D G, Cheng L W, Nikaido H. Active efflux of bile salts by Escherichia coli. J Bacteriol, 1997, 179: 2512-2518 CrossRef PubMed Google Scholar

[40] Prouty A M, Gunn J S. Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile. Infect Immun, 2000, 68: 6763-6769 CrossRef PubMed Google Scholar

[41] Eade C R, Hung C C, Bullard B, et al. Bile acids function synergistically to repress invasion gene expression in Salmonella by destabilizing the invasion regulator HilD. Infect Immun, 2016, 84: 2198-2208 CrossRef PubMed Google Scholar

[42] McKenney E S, Kendall M M, Napier B. Microbiota and pathogen “pas de deux”: Setting up and breaking down barriers to intestinal infection. Pathogens Dis, 2016, 74: ftw051 CrossRef PubMed Google Scholar

[43] Proulx F, Turgeon J P, Delage G, et al. Randomized, controlled trial of antibiotic therapy for Escherichia coli O157:H7 enteritis. J Pediatrics, 1992, 121: 299-303 CrossRef Google Scholar

[44] Bosworth B T, Samuel J E, Moon H W, et al. Vaccination with genetically modified shiga-like toxin Ⅱe prevents edema disease in swine. Infect Immun, 1996, 64: 55–60. Google Scholar

[45] Lim J Y, Yoon J, Hovde C J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol, 2010, 20: 5–14. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有