SCIENTIA SINICA Vitae, Volume 49, Issue 9: 1045-1053(2019) https://doi.org/10.1360/SSV-2019-0158

Mechanism of mitophagy in cell homeostasis

More info
  • ReceivedJul 25, 2019
  • AcceptedAug 7, 2019
  • PublishedSep 9, 2019


Mitophagy is an evolutionally conserved mechanism to remove dysfunctional or unwanted mitochondria, thus orchestrates mitochondrial number and cell metabolism. So its molecular mechanism is a hot topic in mitochondrial fields. This review summarizes the current progress in the molecular mechanism of mitochondria, and discusses the related some regulatory mechanism. We review the molecular mechanism and contributions of mitophagy in physiological and pathological contexts and discuss emerging findings, highlighting the potential value of mitophagy regulation. We also hope related mitophagy molecular pathways might be exploited for the mitochondrial function.


[1] Abeliovich H, Zarei M, Rigbolt K T G, et al. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat Commun, 2013, 4: 2789 CrossRef PubMed ADS Google Scholar

[2] Farré J C, Krick R, Subramani S, et al. Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol, 2009, 21: 522-530 CrossRef PubMed Google Scholar

[3] Goldman S J, Zhang Y, Jin S. Autophagic degradation of mitochondria in white adipose tissue differentiation. Antioxidants Redox Signal, 2011, 14: 1971-1978 CrossRef PubMed Google Scholar

[4] Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science, 2011, 334: 1141-1144 CrossRef PubMed ADS Google Scholar

[5] Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol, 2018, 20: 1013-1022 CrossRef PubMed Google Scholar

[6] Liu X, Hajnóczky G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ, 2011, 18: 1561-1572 CrossRef PubMed Google Scholar

[7] Twig G, Elorza A, Molina A J A, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J, 2008, 27: 433-446 CrossRef PubMed Google Scholar

[8] Gomes L C, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. BBA-Bioenerget, 2008, 1777: 860-866 CrossRef PubMed Google Scholar

[9] Mao K, Klionsky D J. Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae. Autophagy, 2013, 9: 1900-1901 CrossRef PubMed Google Scholar

[10] Chen M, Chen Z, Wang Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 2016, 12: 689-702 CrossRef PubMed Google Scholar

[11] Kundu M, Lindsten T, Yang C Y, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood, 2008, 112: 1493-1502 CrossRef PubMed Google Scholar

[12] Pua H H, He Y W. Mitophagy in the little lymphocytes: An essential role for autophagy in mitochondrial clearance in T lymphocytes. Autophagy, 2009, 5: 745-746 CrossRef PubMed Google Scholar

[13] Zhang J, Randall M S, Loyd M R, et al. Mitochondrial clearance is regulated by Atg7-dependent and independent mechanisms during reticulocyte maturation. Blood, 2009, 114: 157-164 CrossRef PubMed Google Scholar

[14] Morishita H, Eguchi S, Kimura H, et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J Biol Chem, 2013, 288: 11436-11447 CrossRef PubMed Google Scholar

[15] Conway K L, Kuballa P, Khor B, et al. ATG5 regulates plasma cell differentiation. Autophagy, 2013, 9: 528-537 CrossRef PubMed Google Scholar

[16] Honda S, Arakawa S, Nishida Y, et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat Commun, 2014, 5: 4004 CrossRef PubMed ADS Google Scholar

[17] González-Polo R A, Boya P, Pauleau A L, et al. The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. J Cell Sci, 2005, 118: 3091-3102 CrossRef PubMed Google Scholar

[18] Chang T K, Shravage B V, Hayes S D, et al. Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol, 2013, 15: 1067-1078 CrossRef PubMed Google Scholar

[19] Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell, 2009, 17: 87-97 CrossRef PubMed Google Scholar

[20] Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell, 2009, 17: 98-109 CrossRef PubMed Google Scholar

[21] Kanki T, Kurihara Y, Jin X, et al. Casein kinase 2 is essential for mitophagy. EMBO Rep, 2013, 14: 788-794 CrossRef PubMed Google Scholar

[22] Narendra D P, Jin S M, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 2010, 8: e1000298 CrossRef PubMed Google Scholar

[23] Geisler S, Holmström K M, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010, 12: 119-131 CrossRef PubMed Google Scholar

[24] Sekine S, Youle R J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol, 2018, 16: 2 CrossRef PubMed Google Scholar

[25] Li J, Qi W, Chen G, et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy, 2015, 11: 1216-1229 CrossRef PubMed Google Scholar

[26] Ordureau A, Sarraf S A, Duda D M, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell, 2014, 56: 360-375 CrossRef PubMed Google Scholar

[27] Aguirre J D, Dunkerley K M, Mercier P, et al. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated Parkin activation. Proc Natl Acad Sci USA, 2017, 114: 298-303 CrossRef PubMed Google Scholar

[28] Lazarou M, Sliter D A, Kane L A, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524: 309-314 CrossRef PubMed ADS Google Scholar

[29] Ordureau A, Heo J M, Duda D M, et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci USA, 2015, 112: 6637-6642 CrossRef PubMed ADS Google Scholar

[30] Kazlauskaite A, Martínez-Torres R J, Wilkie S, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep, 2015, 16: 939-954 CrossRef PubMed Google Scholar

[31] Bingol B, Tea J S, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature, 2014, 510: 370-375 CrossRef PubMed ADS Google Scholar

[32] Chun Y, Kim J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells, 2018, 7: 278 CrossRef PubMed Google Scholar

[33] Richter B, Sliter D A, Herhaus L, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci USA, 2016, 113: 4039-4044 CrossRef PubMed ADS Google Scholar

[34] Ambivero C T, Cilenti L, Main S, et al. Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal, 2014, 26: 2921-2929 CrossRef PubMed Google Scholar

[35] Szargel R, Shani V, Abd Elghani F, et al. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol Genet, 2016, 25: 3476-3490 CrossRef PubMed Google Scholar

[36] Villa E, Proïcs E, Rubio-Patiño C, et al. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep, 2017, 20: 2846-2859 CrossRef PubMed Google Scholar

[37] He X, Zhu Y, Zhang Y, et al. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation. EMBO J, 2019, 38: e100978 CrossRef PubMed Google Scholar

[38] Novak I, Kirkin V, McEwan D G, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 2010, 11: 45-51 CrossRef PubMed Google Scholar

[39] Zhu Y, Massen S, Terenzio M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem, 2013, 288: 1099-1113 CrossRef PubMed Google Scholar

[40] Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 2012, 14: 177-185 CrossRef PubMed Google Scholar

[41] Bhujabal Z, Birgisdottir Å B, Sjøttem E, et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep, 2017, 18: 947-961 CrossRef PubMed Google Scholar

[42] Otsu K, Murakawa T, Yamaguchi O. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32. Autophagy, 2015, 11: 1932-1933 CrossRef PubMed Google Scholar

[43] Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun, 2015, 6: 7527 CrossRef PubMed ADS Google Scholar

[44] Strappazzon F, Nazio F, Corrado M, et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of Parkin and p62/SQSTM1. Cell Death Differ, 2015, 22: 419-432 CrossRef PubMed Google Scholar

[45] Wei Y, Chiang W C, Sumpter Jr. R, et al. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell, 2017, 168: 224-238.e10 CrossRef PubMed Google Scholar

[46] Zhang Y, Yao Y, Qiu X, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol, 2019, 20: 433-446 CrossRef PubMed Google Scholar

[47] Chu C T, Ji J, Dagda R K, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol, 2013, 15: 1197-1205 CrossRef PubMed Google Scholar

[48] Sentelle R D, Senkal C E, Jiang W, et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol, 2012, 8: 831-838 CrossRef PubMed Google Scholar

[49] Schweers R L, Zhang J, Randall M S, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA, 2007, 104: 19500-19505 CrossRef PubMed ADS Google Scholar

[50] Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell, 2014, 54: 362-377 CrossRef PubMed Google Scholar

[51] Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep, 2017, 18: 495-509 CrossRef PubMed Google Scholar

[52] Kuang Y, Ma K, Zhou C, et al. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy, 2016, 12: 2363-2373 CrossRef PubMed Google Scholar

[53] Li Y, Xue Y, Xu X, et al. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity. EMBO J, 2019, 38: e98786 CrossRef PubMed Google Scholar

[54] Zhang W, Ren H, Xu C, et al. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife, 2016, 5: e21407 CrossRef PubMed Google Scholar

[55] Wu S, Lu Q, Wang Q, et al. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation, 2017, 136: 2248-2266 CrossRef PubMed Google Scholar

[56] Zhou H, Zhu P, Wang J, et al. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ, 2018, 25: 1080-1093 CrossRef PubMed Google Scholar

[57] Li W, Li Y, Siraj S, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology, 2019, 69: 604-621 CrossRef PubMed Google Scholar

[58] Yan C, Gong L, Chen L, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy, 2019, 41: 1-16 CrossRef PubMed Google Scholar

[59] McLelland G L, Lee S A, McBride H M, et al. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol, 2016, 214: 275-291 CrossRef PubMed Google Scholar

[60] McLelland G L, Soubannier V, Chen C X, et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J, 2014, 280: 282-295 CrossRef PubMed Google Scholar

[61] Kerr J S, Adriaanse B A, Greig N H, et al. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci, 2017, 40: 151-166 CrossRef PubMed Google Scholar

[62] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392: 605-608 CrossRef PubMed ADS Google Scholar

[63] Valente E M, Abou-Sleiman P M, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 2004, 304: 1158-1160 CrossRef PubMed ADS Google Scholar

[64] Gautier C A, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA, 2008, 105: 11364-11369 CrossRef PubMed ADS Google Scholar

[65] Pickrell A M, Huang C H, Kennedy S R, et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron, 2015, 87: 371-381 CrossRef PubMed Google Scholar

[66] Sandoval H, Thiagarajan P, Dasgupta S K, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature, 2008, 454: 232-235 CrossRef PubMed ADS Google Scholar

[67] Dorn G W. Mitochondrial pruning by Nix and BNip3: An essential function for cardiac-expressed death factors. J Cardiovasc Trans Res, 2010, 3: 374-383 CrossRef PubMed Google Scholar

[68] Zhang W, Siraj S, Zhang R, et al. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy, 2017, 13: 1080-1081 CrossRef PubMed Google Scholar

[69] Ma K, Zhang Z, Chang R, et al. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ, 2019, CrossRef PubMed Google Scholar

[70] Shimada K, Crother T R, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36: 401-414 CrossRef PubMed Google Scholar

[71] Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, 464: 104-107 CrossRef PubMed ADS Google Scholar

[72] Cai X, Chiu Y H, Chen Z J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell, 2014, 54: 289-296 CrossRef PubMed Google Scholar

[73] Parikh S M, Yang Y, He L, et al. Mitochondrial function and disturbances in the septic kidney. Semin Nephrol, 2015, 35: 108-119 CrossRef PubMed Google Scholar

[74] Zhao Y, Huang S, Liu J, et al. Mitophagy contributes to the pathogenesis of inflammatory diseases. Inflammation, 2018, 41: 1590-1600 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有