logo

SCIENTIA SINICA Vitae, Volume 49, Issue 9: 1086-1099(2019) https://doi.org/10.1360/SSV-2019-0159

Roles of hepatitis B X-interacting protein in tumor development

More info
  • ReceivedJul 26, 2019
  • AcceptedAug 12, 2019
  • PublishedSep 9, 2019

Abstract

Hepatitis B X-interacting protein (HBXIP) was named for its interaction with the hepatitis B virus X protein. HBXIP can affect cell proliferation, migration, invasion, angiogenesis, apoptosis, metabolism, and immune escape, it is involved in the regulation of oncogene expression and multiple cell signaling pathways, playing critical role in tumorigenesis and development. For several years, our group has conducted research on the role and mechanism of HBXIP in cancer. This review summarizes the various roles of HBXIP in tumor development and associated molecular mechanisms.


Funded by

国家重点基础研究发展计划(2015CB553905)

国家自然科学基金(31870752,31670771)


References

[1] Melegari M, Scaglioni P P, Wands J R. Cloning and characterization of a novel hepatitis B virus X binding protein that inhibits viral replication. J Virol, 1998, 72: 1737–1743. Google Scholar

[2] Garcia-Saez I, Lacroix F B, Blot D, et al. Structural characterization of HBXIP: The protein that interacts with the anti-apoptotic protein survivin and the oncogenic viral protein HBx. J Mol Biol, 2011, 405: 331-340 CrossRef PubMed Google Scholar

[3] Hanahan D, Weinberg R A. The hallmarks of cancer. Cell, 2000, 100: 57-70 CrossRef Google Scholar

[4] Fujii R, Zhu C, Wen Y, et al. HBXIP, cellular target of hepatitis B virus oncoprotein, is a regulator of centrosome dynamics and cytokinesis. Cancer Res, 2006, 66: 9099-9107 CrossRef PubMed Google Scholar

[5] Minczuk M, Mroczek S, Pawlak S D, et al. Human ATP-dependent RNA/DNA helicase hSuv3p interacts with the cofactor of survivin HBXIP. FEBS J, 2005, 272: 5008-5019 CrossRef PubMed Google Scholar

[6] Stepien P P, Margossian S P, Landsman D, et al. The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase. Proc Natl Acad Sci USA, 1992, 89: 6813-6817 CrossRef PubMed ADS Google Scholar

[7] Minczuk M, Lilpop J, Boros J, et al. The 5′ region of the human hSUV3 gene encoding mitochondrial DNA and RNA helicase: Promoter characterization and alternative pre-mRNA splicing. BBA-Gene Struct Expr, 2005, 1729: 81-87 CrossRef PubMed Google Scholar

[8] Shu Z, Vijayakumar S, Chen C F, et al. Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change. Biochemistry, 2004, 43: 4781-4790 CrossRef PubMed Google Scholar

[9] Zhang Y, Zhao Y, Li H, et al. The nuclear import of oncoprotein hepatitis B X-interacting protein depends on interacting with c-Fos and phosphorylation of both proteins in breast cancer cells. J Biol Chem, 2013, 288: 18961-18974 CrossRef PubMed Google Scholar

[10] Wang Y, Fang R, Cui M, et al. The oncoprotein HBXIP up-regulates YAP through activation of transcription factor c-Myb to promote growth of liver cancer. Cancer Lett, 2017, 385: 234-242 CrossRef PubMed Google Scholar

[11] Yue L, Li L, Liu F, et al. The oncoprotein HBXIP activates transcriptional coregulatory protein LMO4 via Sp1 to promote proliferation of breast cancer cells. Carcinogenesis, 2013, 34: 927-935 CrossRef PubMed Google Scholar

[12] Zhang Y, Zhao Y, Li L, et al. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells. Biochem Biophys Res Commun, 2013, 434: 305-310 CrossRef PubMed Google Scholar

[13] Jiang Y, Wang D, Ren H, et al. Oncogenic HBXIP enhances ZEB1 through Sp1 to accelerate breast cancer growth. Thorac Cancer, 2018, 9: 1664-1670 CrossRef PubMed Google Scholar

[14] Liu S, Li L, Zhang Y, et al. The oncoprotein HBXIP uses two pathways to up-regulate S100A4 in promotion of growth and migration of breast cancer cells. J Biol Chem, 2012, 287: 30228-30239 CrossRef PubMed Google Scholar

[15] Xu F, You X, Liu F, et al. The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells. Cancer Lett, 2013, 333: 124-132 CrossRef PubMed Google Scholar

[16] Liu B W, Wang T J, Li L L, et al. Oncoprotein HBXIP induces PKM2 via transcription factor E2F1 to promote cell proliferation in ER-positive breast cancer. Acta Pharmacol Sin, 2019, 40: 530-538 CrossRef PubMed Google Scholar

[17] Shi H, Li Y, Feng G, et al. The oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells. Biochem Biophys Res Commun, 2016, 471: 89-94 CrossRef PubMed Google Scholar

[18] Zou W, Ma X, Yang H, et al. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer. Exp Biol Med (Maywood), 2017, 242: 497-504 CrossRef PubMed Google Scholar

[19] Wang Y, Cai X, Zhang S, et al. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer. Biochem Biophys Res Commun, 2017, 484: 565-571 CrossRef PubMed Google Scholar

[20] Xu F, Zhu X, Han T, et al. The oncoprotein hepatitis B X-interacting protein promotes the migration of ovarian cancer cells through the upregulation of S-phase kinase-associated protein 2 by Sp1. Int J Oncol, 2014, 45: 255-263 CrossRef PubMed Google Scholar

[21] Wang Y, Cui M, Cai X, et al. The oncoprotein HBXIP up-regulates SCG3 through modulating E2F1 and miR-509-3p in hepatoma cells. Cancer Lett, 2014, 352: 169-178 CrossRef PubMed Google Scholar

[22] Liu Q, Lu W, Yang C, et al. HBXIP activates the PPARδ/NF-κB feedback loop resulting in cell proliferation. Oncotarget, 2018, 9: 404-417 CrossRef PubMed Google Scholar

[23] Li H, Liu Q, Wang Z, et al. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer. J Biol Chem, 2015, 290: 22649-22661 CrossRef PubMed Google Scholar

[24] Li Y, Wang Z, Shi H, et al. HBXIP and LSD1 scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc. Cancer Res, 2016, 76: 293-304 CrossRef PubMed Google Scholar

[25] Liu Q, Bai X, Li H, et al. The oncoprotein HBXIP upregulates Lin28B via activating TF II D to promote proliferation of breast cancer cells. Int J Cancer, 2013, 133: 1310-1322 CrossRef PubMed Google Scholar

[26] Liu B, Wang T, Wang H, et al. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol, 2018, 11: 26 CrossRef PubMed Google Scholar

[27] Liu F, You X, Wang Y, et al. The oncoprotein HBXIP enhances angiogenesis and growth of breast cancer through modulating FGF8 and VEGF. Carcinogenesis, 2014, 35: 1144-1153 CrossRef PubMed Google Scholar

[28] Zhao Y, Li H, Zhang Y, et al. Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade. Cancer Res, 2016, 76: 4696-4707 CrossRef PubMed Google Scholar

[29] Wang F, Sha L, Ye L, et al. Promotion of cell proliferation by HBXIP via upregulation of human telomerase reverse transcriptase in human mesenchymal stem cells. Acta Pharmacol Sin, 2008, 29: 83-89 CrossRef PubMed Google Scholar

[30] Wang F Z, Sha L, Zhang W Y, et al. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells. Acta Pharmacol Sin, 2007, 28: 431-438 CrossRef PubMed Google Scholar

[31] Zhang W, Lu Z, Kong G, et al. Hepatitis B virus X protein accelerates hepatocarcinogenesis with partner survivin through modulating miR-520b and HBXIP. Mol Cancer, 2014, 13: 128 CrossRef PubMed Google Scholar

[32] Ruan L, Huang L, Zhao L, et al. The interaction of lncRNA-HEIH and lncRNA-HULC with HBXIP in hepatitis B patients. Gastroenterol Res Pract, 2018, 2018(1): 1-6 CrossRef PubMed Google Scholar

[33] Apone L M, Green M R. Transcription sans TBP. Nature, 1998, 393: 114-115 CrossRef PubMed ADS Google Scholar

[34] Tora L, Timmers H T M. The TATA box regulates TATA-binding protein (TBP) dynamics in vivo. Trends Biochem Sci, 2010, 35: 309-314 CrossRef PubMed Google Scholar

[35] Cai X, Wang X, Cao C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett, 2018, 415: 11-19 CrossRef PubMed Google Scholar

[36] Okada M, Jang S W, Ye K. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci USA, 2008, 105: 8649-8654 CrossRef PubMed ADS Google Scholar

[37] Gayer C P, Chaturvedi L S, Wang S, et al. Strain-induced proliferation requires the phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J Biol Chem, 2009, 284: 2001-2011 CrossRef PubMed Google Scholar

[38] Zhao L, Vogt P K. Class I PI3K in oncogenic cellular transformation. Oncogene, 2008, 27: 5486-5496 CrossRef PubMed Google Scholar

[39] Liu P, Cheng H, Roberts T M, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov, 2009, 8: 627-644 CrossRef PubMed Google Scholar

[40] Wang F Z, Wu L Y, Qiao L, et al. Effect of hepatitis B virus X-interacting protein (HBXIP) on cell cycle (in Chinese). Chin J Biochem Mol Biol, 2007, 23: 487–491 [王凤泽, 吴莲英, 乔玲, 等. 乙型肝炎病毒X蛋白结合蛋白(HBXIP)对细胞周期的影响. 中国生物化学与分子生物学报, 2007, 23: 487–491]. Google Scholar

[41] Wang F, Fei H, Lian L, et al. Hepatitis B X-interacting protein induces HepG2 cell proliferation through activation of the phosphatidylinositol 3-kinase/Akt pathway. Exp Biol Med (Maywood), 2011, 236: 62-69 CrossRef PubMed Google Scholar

[42] Li L, Fang R, Liu B, et al. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. Oncogene, 2016, 35: 4048-4057 CrossRef PubMed Google Scholar

[43] Li H, Wang Z, Jiang M, et al. The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol Sin, 2018, 39: 1787-1796 CrossRef PubMed Google Scholar

[44] Wang Y, Li N, Che S, et al. HBXIP suppression reduces cell proliferation and migration and its overexpression predicts poor prognosis in non-small-cell lung cancer. Tumour Biol, 2017, 39: 101042831770967 CrossRef PubMed Google Scholar

[45] Wang Y, Sun J, Li N, et al. HBXIP overexpression is correlated with the clinical features and survival outcome of ovarian cancer. J Ovarian Res, 2017, 10: 26 CrossRef PubMed Google Scholar

[46] Xia H, Ma L, Li J, et al. Elevated HBXIP expression is associated with aggressive phenotype and poor prognosis in esophageal squamous cell carcinoma. Am J Cancer Res, 2017, 7: 2190–2198. Google Scholar

[47] Li W W, Zhang L L. Expression and clinical significance of hepatitis BX-interacting protein in endometrial cancer (in Chinese). Shanxi Med J, 2016, 45: 1631–1633 [李巍巍, 张丽丽. 肝炎BX-相互作用蛋白在子宫内膜癌中的表达及临床意义. 山西医药杂志, 2016, 45: 1631–1633]. Google Scholar

[48] Zhang H M, Li N, Sun J, et al. The significance of overexpression of hepatitis B virus X-interacting protein in the diagnosis and prognosis of breast cancer (in Chinese). J Prac Med, 2015, 31: 737–740 [张华敏, 李楠, 孙洁, 等. 乙肝病毒X蛋白结合蛋白过表达在乳腺癌诊断及预后评估中的意义. 实用医学杂志, 2015, 31: 737–740]. Google Scholar

[49] Li N, Wang Y, Che S, et al. HBXIP over expression as an independent biomarker for cervical cancer. Exp Mol Pathol, 2017, 102: 133-137 CrossRef PubMed Google Scholar

[50] Li X, Liu S. Suppression of HBXIP reduces cell proliferation, migration and invasion in vitro, and tumorigenesis in vivo in human urothelial carcinoma of the bladder. Cancer Biother Radiopharm, 2016, 31: 311-316 CrossRef PubMed Google Scholar

[51] Inuzuka H, Gao D, Finley L W S, et al. Acetylation-dependent regulation of Skp2 function. Cell, 2012, 150: 179-193 CrossRef PubMed Google Scholar

[52] Yamamoto H, Ochiya T, Takahama Y, et al. Detection of spatial localization of Hst-1/Fgf-4 gene expression in brain and testis from adult mice. Oncogene, 2000, 19: 3805-3810 CrossRef PubMed Google Scholar

[53] Zhou X L, Zhu C Y, Wu Z G, et al. The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis. Oncogene, 2019, 38: 4028-4046 CrossRef PubMed Google Scholar

[54] Cui L Y, Zhang Z R, Fei H R, et al. Hepatitis B virus X-interacting protein promotes HepG2 cell migration and regulates β-catenin expression. Chin J Pathophysiol, 2012, 28: 1128–1131 [崔利园, 张钊瑞, 费洪荣, 等. 乙肝病毒X蛋白相互作用蛋白促进HepG2细胞迁移并调节β-catenin表达. 中国病理生理杂志, 2012, 28: 1128–1131]. Google Scholar

[55] Dourdin N, Bhatt A K, Dutt P, et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem, 2001, 276: 48382-48388 CrossRef PubMed Google Scholar

[56] Bai D S, Dai Z, Zhou J, et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology, 2009, 49: 460-470 CrossRef PubMed Google Scholar

[57] Li Y, Zhang Z, Zhou X, et al. The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Lett, 2014, 355: 288-296 CrossRef PubMed Google Scholar

[58] Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol, 2003, 4: 938-948 CrossRef PubMed Google Scholar

[59] Burgess R J, Zhou H, Han J, et al. A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell, 2010, 37: 469-480 CrossRef PubMed Google Scholar

[60] Li L, Liu B, Zhang X, et al. The oncoprotein HBXIP promotes migration of breast cancer cells via GCN5-mediated microtubule acetylation. Biochem Biophys Res Commun, 2015, 458: 720-725 CrossRef PubMed Google Scholar

[61] Nicholson D W, Thornberry N A. Caspases: Killer proteases. Trends Biochem Sci, 1997, 22: 299-306 CrossRef Google Scholar

[62] Crusz S M, Balkwill F R. Inflammation and cancer: Advances and new agents. Nat Rev Clin Oncol, 2015, 12: 584-596 CrossRef PubMed Google Scholar

[63] Marques-Fernandez F, Planells-Ferrer L, Gozzelino R, et al. TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death Dis, 2013, 4: e493 CrossRef PubMed Google Scholar

[64] Dondelinger Y, Jouan-Lanhouet S, Divert T, et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell, 2015, 60: 63-76 CrossRef PubMed Google Scholar

[65] McFarland B C, Hong S W, Rajbhandari R, et al. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS ONE, 2013, 8: e78728 CrossRef PubMed ADS Google Scholar

[66] De Simone V, Franzè E, Ronchetti G, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene, 2015, 34: 3493-3503 CrossRef PubMed Google Scholar

[67] Bromberg J F, Wrzeszczynska M H, Devgan G, et al. Stat3 as an oncogene. Cell, 1999, 98: 295-303 CrossRef Google Scholar

[68] Cai X, Cao C, Li J, et al. Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget, 2017, 8: 58338-58352 CrossRef PubMed Google Scholar

[69] Suswam E, Li Y, Zhang X, et al. Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res, 2008, 68: 674-682 CrossRef PubMed Google Scholar

[70] Snoeks L, Weber C R, Turner J R, et al. Tumor suppressor Foxo3a is involved in the regulation of lipopolysaccharide-induced interleukin-8 in intestinal HT-29 cells. Infect Immun, 2008, 76: 4677-4685 CrossRef PubMed Google Scholar

[71] Seaton A, Scullin P, Maxwell P J, et al. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis, 2008, 29: 1148-1156 CrossRef PubMed Google Scholar

[72] Hu N, Zhang J, Cui W, et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem, 2011, 286: 13714-13722 CrossRef PubMed Google Scholar

[73] Coulon S, Heindryckx F, Geerts A, et al. Angiogenesis in chronic liver disease and its complications. Liver Int, 2011, 31: 146-162 CrossRef PubMed Google Scholar

[74] Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 2010, 10: 116-129 CrossRef PubMed Google Scholar

[75] Sonvilla G, Allerstorfer S, Stättner S, et al. FGF18 in colorectal tumour cells: Autocrine and paracrine effects. Carcinogenesis, 2008, 29: 15-24 CrossRef PubMed Google Scholar

[76] Tanaka A, Miyamoto K, Minamino N, et al. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci USA, 1992, 89: 8928-8932 CrossRef PubMed ADS Google Scholar

[77] Ruohola J K, Viitanen T P, Valve E M, et al. Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast cancer cells. Cancer Res, 2001, 61: 4229–4237. Google Scholar

[78] Tuomela J, Grönroos T J, Valta M P, et al. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts. BMC Cancer, 2010, 10: 596 CrossRef PubMed Google Scholar

[79] Wang F, Fei H, Qi B, et al. Overexpression of hepatitis B X-interacting protein in HepG2 cells enhances tumor-induced angiogenesis. Mol Cell Biochem, 2012, 364: 165-171 CrossRef PubMed Google Scholar

[80] Fei H, Zhou Y, Li R, et al. HBXIP, a binding protein of HBx, regulates maintenance of the G2/M phase checkpoint induced by DNA damage and enhances sensitivity to doxorubicin-induced cytotoxicity. Cell Cycle, 2017, 16: 468-476 CrossRef PubMed Google Scholar

[81] Fei H R, Li Z J, Ying-Zhang , et al. HBXIP regulates etoposide-induced cell cycle checkpoints and apoptosis in MCF-7 human breast carcinoma cells. Gene, 2018, 647: 39-47 CrossRef PubMed Google Scholar

[82] Miao J, Wang Z, Provencher H, et al. HOXB13 promotes ovarian cancer progression. Proc Natl Acad Sci USA, 2007, 104: 17093-17098 CrossRef PubMed ADS Google Scholar

[83] Madan E, Gogna R, Kuppusamy P, et al. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex. Mol Cell Biol, 2013, 33: 1285-1302 CrossRef PubMed Google Scholar

[84] Cairns R A, Harris I S, Mak T W. Regulation of cancer cell metabolism. Nat Rev Cancer, 2011, 11: 85-95 CrossRef PubMed Google Scholar

[85] Matoba S, Kang J G, Patino W D, et al. p53 regulates mitochondrial respiration. Science, 2006, 312: 1650-1653 CrossRef PubMed ADS Google Scholar

[86] Vousden K H, Ryan K M. p53 and metabolism. Nat Rev Cancer, 2009, 9: 691-700 CrossRef PubMed Google Scholar

[87] DeBerardinis R J, Thompson C B. Cellular metabolism and disease: What do metabolic outliers teach us?. Cell, 2012, 148: 1132-1144 CrossRef PubMed Google Scholar

[88] Wallace D C. Mitochondria and cancer. Nat Rev Cancer, 2012, 12: 685-698 CrossRef PubMed Google Scholar

[89] Smolle M, Prior A E, Brown A E, et al. A new level of architectural complexity in the human pyruvate dehydrogenase complex. J Biol Chem, 2006, 281: 19772-19780 CrossRef PubMed Google Scholar

[90] Zhang C, Lin M, Wu R, et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA, 2011, 108: 16259-16264 CrossRef PubMed ADS Google Scholar

[91] Liu F, Zhang W, You X, et al. The oncoprotein HBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer. Oncotarget, 2015, 6: 27199-27213 CrossRef PubMed Google Scholar

[92] Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature, 2003, 423: 550-555 CrossRef PubMed ADS Google Scholar

[93] Schilling M M, Oeser J K, Boustead J N, et al. Re-evaluating the FOXO1-PGC-1α connection. Nature, 2006, 443: E10-E11 CrossRef PubMed ADS Google Scholar

[94] Zhang L F, Lou J T, Lu M H, et al. Suppression of miR-199a maturation by HuR is crucial for hypoxia-induced glycolytic switch in hepatocellular carcinoma. EMBO J, 2015, 34: 2671-2685 CrossRef PubMed Google Scholar

[95] Matkar S, Sharma P, Gao S, et al. An epigenetic pathway regulates sensitivity of breast cancer cells to HER2 inhibition via FOXO/c-Myc axis. Cancer Cell, 2015, 28: 472-485 CrossRef PubMed Google Scholar

[96] Shi H, Fang R, Li Y, et al. The oncoprotein HBXIP suppresses gluconeogenesis through modulating PCK1 to enhance the growth of hepatoma cells. Cancer Lett, 2016, 382: 147-156 CrossRef PubMed Google Scholar

[97] Li H, Wang Z, Li Y, et al. Hepatitis B X-interacting protein promotes the formation of the insulin gene—transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem, 2018, 293: 2053-2065 CrossRef PubMed Google Scholar

[98] Graner E, Tang D, Rossi S, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell, 2004, 5: 253-261 CrossRef Google Scholar

[99] Horton J D, Goldstein J L, Brown M S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 2002, 109: 1125-1131 CrossRef Google Scholar

[100] Suh J H, Gong E Y, Kim J B, et al. Sterol regulatory element-binding protein-1c represses the transactivation of androgen receptor and androgen-dependent growth of prostatic cells. Mol Cancer Res, 2008, 6: 314-324 CrossRef PubMed Google Scholar

[101] Dif N, Euthine V, Gonnet E, et al. Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J, 2006, 400: 179-188 CrossRef PubMed Google Scholar

[102] Yap F, Craddock L, Yang J. Mechanism of AMPK suppression of LXR-dependent Srebp-1c transcription. Int J Biol Sci, 2011, 7: 645-650 CrossRef PubMed Google Scholar

[103] Bai Q, Xu L, Kakiyama G, et al. Sulfation of 25-hydroxycholesterol by SULT2B1b decreases cellular lipids via the LXR/SREBP-1c signaling pathway in human aortic endothelial cells. Atherosclerosis, 2011, 214: 350-356 CrossRef PubMed Google Scholar

[104] Morello F, de Boer R A, Steffensen K R, et al. Liver X receptors α and β regulate renin expression in vivo. J Clin Invest, 2005, 115: 1913-1922 CrossRef PubMed Google Scholar

[105] Vedin L L, Lewandowski S A, Parini P, et al. The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis, 2009, 30: 575-579 CrossRef PubMed Google Scholar

[106] Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest, 2006, 116: 607-614 CrossRef PubMed Google Scholar

[107] Grefhorst A, Oosterveer M H, Brufau G, et al. Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis, 2012, 222: 382-389 CrossRef PubMed Google Scholar

[108] Salum L B, Andricopulo A D, Honório K M. A fragment-based approach for ligand binding affinity and selectivity for the liver X receptor beta. J Mol Graphics Model, 2012, 32: 19-31 CrossRef PubMed Google Scholar

[109] Menendez J A, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 2007, 7: 763-777 CrossRef PubMed Google Scholar

[110] Alò P L, Visca P, Trombetta G, et al. Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori J, 1999, 85: 35-40 CrossRef Google Scholar

[111] Carracedo A, Weiss D, Leliaert A K, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest, 2012, 122: 3088-3100 CrossRef PubMed Google Scholar

[112] Santos C R, Schulze A. Lipid metabolism in cancer. FEBS J, 2012, 279: 2610-2623 CrossRef PubMed Google Scholar

[113] Ellis J M, Frahm J L, Li L O, et al. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidology, 2010, 21: 212-217 CrossRef Google Scholar

[114] Phillips C M, Goumidi L, Bertrais S, et al. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res, 2010, 51: 1793-1800 CrossRef PubMed Google Scholar

[115] Su M Y, Morris K L, Kim D J, et al. Hybrid structure of the RagA/C-ragulator mTORC1 activation complex. Mol Cell, 2017, 68: 835-846.e3 CrossRef PubMed Google Scholar

[116] Ambrosini G, Adida C, Altieri D C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 1997, 3: 917-921 CrossRef Google Scholar

[117] Li F, Ackermann E J, Bennett C F, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol, 1999, 1: 461-466 CrossRef Google Scholar

[118] O’Connor D S, Schechner J S, Adida C, et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol, 2000, 156: 393-398 CrossRef Google Scholar

[119] Marusawa H, Matsuzawa S, Welsh K, et al. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J, 2003, 22: 2729-2740 CrossRef Google Scholar

[120] Zangemeister-Wittke U, Simon H U. An IAP in action: The multiple roles of survivin in differentiation, immunity and malignancy. Cell Cycle, 2004, 3: 1119-1121 CrossRef Google Scholar

[121] Zhang X D, Ma H T, Ye L H, et al. Effect of HBXIP gene on apoptosis induced by hepatitis B virus X protein (in Chinese). Chin J Biochem Mol Biol, 2005, 21: 403–407 [张晓东, 马宏涛, 叶丽虹, 等. HBXIP基因对乙肝病毒X蛋白诱导细胞凋亡的影响. 中国生物化学与分子生物学报, 2005, 21: 403–407]. Google Scholar

[122] Chu S F, Zhang Z, Zhang W, et al. Upregulating the expression of survivin-HBXIP complex contributes to the protective role of IMM-H004 in transient global cerebral ischemia/reperfusion. Mol Neurobiol, 2017, 54: 524-540 CrossRef PubMed Google Scholar

[123] Chu X F. HBXIP reduces the radiation sensitivity of breast cancer cells (in Chinese). Dissertation for Master’s Degree. Beijing: Peking Union Medical College, 2016 [储小飞. HBXIP降低乳腺癌细胞辐射敏感性的研究. 硕士学位论文. 北京: 北京协和医学院, 2016]. Google Scholar

[124] Inoue T, Yamakawa M, Takahashi T. Expression of complement regulating factors in gastric cancer cells. Mol Pathol, 2002, 55: 193-199 CrossRef PubMed Google Scholar

[125] Gorter A, Blok V T, Haasnoot W H, et al. Expression of CD46, CD55, and CD59 on renal tumor cell lines and their role in preventing complement-mediated tumor cell lysis. Lab Invest, 1996, 74: 1039–1049. Google Scholar

[126] Rushmere N K, Knowlden J M, Gee J M W, et al. Analysis of the level of mRNA expression of the membrane regulators of complement, CD59, CD55 and CD46, in breast cancer. Int J Cancer, 2004, 108: 930-936 CrossRef PubMed Google Scholar

[127] Cui W, Zhao Y, Shan C, et al. HBXIP upregulates CD46, CD55 and CD59 through ERK1/2/NF-κB signaling to protect breast cancer cells from complement attack. FEBS Lett, 2012, 586: 766-771 CrossRef PubMed Google Scholar

[128] Cui W, Zhang Y, Hu N, et al. miRNA-520b and miR-520e sensitize breast cancer cells to complement attack via directly targeting 3′UTR of CD46. Cancer Biol Ther, 2010, 10: 232-241 CrossRef PubMed Google Scholar

  • Figure 1

    The role of HBXIP in tumor development

  • Table 1   HBXIP as a coactivator interacts with transcription factors to activate target genes

    受调节转录因子

    调控的靶基因

    肿瘤类型

    功能作用

    c-Myb[10]

    YAP

    肝癌

    促进生长

    Sp1[11~13]

    ZEB1

    乳腺癌

    促进生长

    Sp1[11~13]

    LMO4

    乳腺癌

    促进生长

    Sp1[11~13]

    PDGFB

    乳腺癌

    促进生长

    Sp1[17]

    FGF4

    乳腺癌

    促进迁移

    Sp1[18]

    CD147

    卵巢癌

    促进顺铂耐药

    Sp1[19]

    ACSL1

    乳腺癌

    促进脂代谢重编程

    Sp1[20]

    Skp2

    卵巢癌

    促进生长

    STAT4[14]

    S100A4

    乳腺癌

    促进生长

    E2F1[15,16]

    Skp2

    乳腺癌

    促进生长

    E2F1[15,16]

    PKM2

    乳腺癌

    促进生长

    E2F1[21]

    SCG3

    肝癌

    促进生长

    NF-κB[22]

    PPARδ

    结肠癌

    促进生长

    p53[23]

    MDM2

    乳腺癌

    促进生长

    c-Myc[24]

    cyclinA, eIF4E, LDHA

    乳腺癌

    促进生长

    TFIID[25]

    Lin28B

    乳腺癌

    促进生长

    HOXB13[26]

    IL-6, ER-α

    乳腺癌

    促进TAM耐药

    CREB[27]

    FGF8

    乳腺癌

    促进血管生成

    LXR[28]

    SREBP-1c

    乳腺癌

    促进脂代谢重编程

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1