logo

Chinese Science Bulletin, Volume 64, Issue 27: 2894-2906(2019) https://doi.org/10.1360/TB-2019-0053

Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau

More info
  • ReceivedMay 15, 2019
  • AcceptedJun 24, 2019
  • PublishedAug 5, 2019

Abstract

The shift from the Paleogene to the Neogene represents an important timeline in the history of life on Earth: A point when the biotic realm approached that of nature today. The uplift of the Tibetan Plateau in the Cenozoic Era has imposed profound influence on the evolution of the terrestrial ecosystem by creating a sustainable life system in a freezing climate. A reconstruction of this epic scene on the plateau relies on fossil discoveries. Based on a recent study of numerous well-preserved fossils from the Paleogene and Neogene deposits of the Lunpola and Nima basins in the central Tibetan Plateau, we recognized therein, for the first time, the turnover of the Late Oligocene tropical or subtropical ecosystem, and the subsequent transition toward a plateau-type biotic assemblage during the Early Miocene epoch. The fossil biota consisting of fishes, insects and plants from the Upper Oligocene suggests that in 26−24 Ma, the hinterland of the Tibetan Plateau was a warm and humid lowland nourished by tropical moisture from the Indian Ocean, which would have been able to reach northern Tibet then. This biota, represented by climbing perches and palms, shows typical tropical or subtropical climatic patterns and maintained a paleoelevation no higher than 2300 m in the depositional areas. In the Early Miocene, the Tibetan ecosystem underwent comprehensive transformation into the one we recognize today. Primitive snow carps, which are endemic to the plateau today, emerged and, in an “Ascending with the Modifications” mode, evolved into more and more specialized species all the way up until the Pliocene epoch. The vegetation of the Early Miocene was dominated by temperate broad-leaved forests mixed with abundant coniferous trees and booming herbs, hence showing a cool climatic setting. Some mammals adapted to the temperate forest, e.g., Plesiaceratherium (a kind of extinct rhinos), appeared at the center of the plateau during the Early Miocene, and gave way to the ancestors of the Ice Age mammals, e.g., the woolly rhino of the Pliocene epoch. Such a dramatic transformation of the Tibetan ecosystem around the Paleogene and Neogene boundary was due to the cooling-down effect accompanying the rise of the main body of the plateau to ca. 3000 m and the global climate evolution toward icehouse conditions during the Cenozoic.


Funded by

第二次青藏高原综合科学考察研究(2019QZKK0705)

中国科学院战略性先导科技专项(XDA20070203,XDB26000000,XDA20070301)

中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC022,QYZDB-SSW-SMC016)

中国科学院国际伙伴计划(GJHZ1885)

国家自然科学基金(41430102,41872006,41661134049)

中国科学院青年创新促进会(2017103,2017439)


Acknowledgment

衷心感谢青藏高原古生物科考队各位同仁的支持.


References

[1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 2000, 28: 211-280 CrossRef ADS Google Scholar

[2] Ding L, Maksatbek S, Cai F L, et al. Processes of initial collision and suturing between India and Asia. Sci China Earth Sci, 2017, 47: 293–309. Google Scholar

[3] Rao X, Sha J, Peng B, et al. Constraints of bipolar and tropical bivalves on the northward drifting of the Indian Plate. J Asian Earth Sci, 2019, 175: 68-73 CrossRef ADS Google Scholar

[4] Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci, 2010, 38: 77-102 CrossRef ADS Google Scholar

[5] Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 2014, 392: 250-264 CrossRef ADS Google Scholar

[6] Chang M M, Miao D S, Wang N. Ascent with modification: Fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. In: Long M Y, Gu H Y, Zhou Z H, eds. Darwin’s Heritage Today. Beijing: Higher Education Press, 2010. 60−75. Google Scholar

[7] Wang X, Wang Y, Li Q, et al. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 2015, 27: 1335-1354 CrossRef ADS Google Scholar

[8] Deng T, Wang X, Wu F, et al. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 2019, 174: 58-69 CrossRef ADS Google Scholar

[9] Deng T, Hou S K, Wang N, et al. Hipparion fossils of the Dati Basin in Nyalam, Tibet, China and their paleoecological and paleoaltimetry implications (in Chinese). Quat Sci, 2015, 35: 493−501 [邓涛, 侯素宽, 王宁, 等. 西藏聂拉木达涕盆地晚中新世的三趾马化石及其古生态和古高度意义. 第四纪研究, 2015, 35: 493–501]. Google Scholar

[10] Wang N, Wu F. New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 2015, 62: 274-285 CrossRef Google Scholar

[11] Wang X M, Li Q, Xie G P. Earliest record of Sinicuon in Zanda Basin, southern Tibet and implications for hypercarnivores in cold environments. Quatern Int, 2015, 355: 3−10. Google Scholar

[12] Chang M M, Miao D S. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment (in Chinese). Chin Sci Bull, 2016, 61: 981−995 [张弥曼, 苗德岁. 青藏高原的新生代鱼化石及其古环境意义. 科学通报, 2016, 61: 981−995]. Google Scholar

[13] Wu F, Miao D, Chang M M, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene. Sci Rep, 2017, 7: 878 CrossRef PubMed ADS Google Scholar

[14] Wu F, He D, Fang G, et al. Into Africa via docked India: A fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 2019, 64: 455-463 CrossRef Google Scholar

[15] Xu C, Su T, Huang J, et al. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. J Syst Evol, 2019, 57: 169-179 CrossRef Google Scholar

[16] Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 2017, 45: 215-218 CrossRef ADS Google Scholar

[17] Jia L, Su T, Huang Y, et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. J Syst Evol, 2019, 57: 94-104 CrossRef Google Scholar

[18] Jiang H, Su T, Wong W O, et al. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 2019, 175: 99-108 CrossRef ADS Google Scholar

[19] Yang T, Zhang L, Li W, et al. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleont, 2018, 38: e1442840 CrossRef Google Scholar

[20] Su T, Farnsworth A, Spicer R A, et al. No high Tibetan Plateau until the Neogene. Sci Adv, 2019, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[21] Low S L, Su T, Spicer T, et al. Oligocene Limnobiophyllum (Araceae) from central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J Syst Paleont, 2019, doi: 10.1080/14772019.2019.1611673. Google Scholar

[22] Tang H, Liu J, Wu F, et al. The extinct genus Lagokarpos reveals a biogeographic connection of Tibet with other regions in the Northern Hemisphere during the Paleogene. J Syst Evol, 2019, : jse.12505 CrossRef Google Scholar

[23] Liu J, Su T, Spicer R A, et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[24] Deng T, Wang X, Fortelius M, et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 2011, 333: 1285-1288 CrossRef PubMed ADS Google Scholar

[25] Deng T, Li Q, Tseng Z J, et al. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 2012, 109: 7374−7378. Google Scholar

[26] Deng T, Wang S Q, Xie G P, et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 2012, 57: 261-269 CrossRef ADS Google Scholar

[27] Ma P F, Wang L C, Wang C S, et al. Organic-matter accumulation of the lacustrine Lunpola oil shale, central Tibetan Plateau: Controlled by the paleoclimate, provenance, and drainage system. Int J Coal Geol, 2017, 147/148: 58–70. Google Scholar

[28] Mao Z, Meng Q, Fang X, et al. Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 525: 44-56 CrossRef ADS Google Scholar

[29] Luo B J, Dai G Y, Pan Z X. Oil and gas potential in Paleogene terrestrial Bangonghu-Dingqing suture zone (in Chinese). Earth Sci, 1996, 21: 162−167 [罗本家, 戴光亚, 潘泽雄. 班公湖-丁青缝合带老第三纪陆相盆地含油前景. 地球科学, 1996, 21: 163−167]. Google Scholar

[30] Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 2006, 439: 677-681 CrossRef PubMed ADS Google Scholar

[31] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol Soc Am Bull, 2007, 119: 654-680 CrossRef ADS Google Scholar

[32] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull, 2007, 119: 917-933 CrossRef ADS Google Scholar

[33] Wang C, Zhao X, Liu Z, et al. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987-4992 CrossRef PubMed ADS Google Scholar

[34] Wang L, Wang C, Li Y, et al. Organic geochemistry of potential source rocks in the Tertiary Dingqinghu Formation, Nima Basin, central Tibet. J Pet Geol, 2011, 34: 67-85 CrossRef ADS Google Scholar

[35] Wang C S, Dai J G, Zhao X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 2014, 621: 1–43. Google Scholar

[36] Clark M K. Early Tibetan Plateau uplift history eludes. Geology, 2011, 39: 991-992 CrossRef ADS Google Scholar

[37] Sun J, Xu Q, Liu W, et al. Palynological evidence for the latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 399: 21-30 CrossRef ADS Google Scholar

[38] Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 2019, 363: eaaq1436 CrossRef PubMed Google Scholar

[39] Cai C, Huang D, Wu F, et al. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J Asian Earth Sci, 2019, 175: 121-127 CrossRef ADS Google Scholar

[40] Berra T M. Freshwater Fish Distribution. Chicago: University of Chicago Press, 2007. Google Scholar

[41] Skelton P H. A Complete Guide to the Freshwater Fishes of Southern Africa. Cape Town: Struik, 2001. Google Scholar

[42] Wu Y F, Chen Y Y. Fossil cyprinid fishes from the late Tertiary of North Xizang, China (in Chinese). Vert PalAsiat, 1980, 18: 15−20 [武云飞, 陈宜瑜. 西藏北部新第三纪的鲤科鱼类化石. 古脊椎动物学报, 1980, 18: 15−20]. Google Scholar

[43] Zhang S, Wang B. Global summer monsoon rainy seasons. Int J Climatol, 2008, 28: 1563-1578 CrossRef ADS Google Scholar

[44] Norris S M. The osteology and phylogenetics of the Anabantidae (Osteichthyes, Perciformes). Doctor Dissertation. Tempe: Arizona State University, 1994. Google Scholar

[45] Forselius S. Studies of anabantid fishes. Zool Bidrag Uppsala, 1957, 32: 93–597. Google Scholar

[46] Wolfe J. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. Geol Surv Prof Pap US, 1979, 1106: 1−37. Google Scholar

[47] Reichgelt T, West C K, Greenwood D R. The relation between global palm distribution and climate. Sci Rep, 2018, 8: 4721 CrossRef PubMed ADS Google Scholar

[48] Li H M, Guo S X. Angiospermae. In: Nanjing Institute of Geology and Mineral Resources, ed. Paleontological Atlas of East China (3), Mesozoic and Cenozoic. Beijing: Geological Publishing House, 1982. 294−316. Google Scholar

[49] Li H M. Neogene floras from eastern Zhejiang, China. In: Whyte R O, ed. The Evolution of the East Asian Environment, Vol. 2, Palaeobotany, Palaeozoology and Palaeoanthropology. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1984. 461−466. Google Scholar

[50] Yeng W S. Rheophytism in Bornean Schismatoglottideae (Araceae). Syst Bot, 2013, 38: 32-45 CrossRef Google Scholar

[51] Mkandawire M, Dudel E G. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ, 2005, 336: 81-89 CrossRef PubMed ADS Google Scholar

[52] Mkandawire M, Dudel E G. Assignment of Lemna gibba L. (duckweed) bioassay for in situ ecotoxicity assessment. Aquat Ecol, 2005, 39: 151-165 CrossRef Google Scholar

[53] Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 2008, 451: 279-283 CrossRef PubMed ADS Google Scholar

[54] Potter P E, Szatmari P. Global Miocene tectonics and the modern world. Earth-Sci Rev, 2009, 96: 279-295 CrossRef ADS Google Scholar

[55] Wu F, Miao Y, Meng Q, et al. Late Oligocene Tibetan Plateau warming and humidity: Evidence from a sporopollen record. Geochem Geophys Geosyst, 2019, 20: 434-441 CrossRef ADS Google Scholar

[56] Cao W X, Chen Y Y, Wu Y F, et al. Origin and evolution of schizothoracine fishes in relation to the upheaval of the Qinghai-Xizang Plateau (in Chinese). In: Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences, ed. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau. Beijing: Science Press, 1981. 118−130 [曹文宣, 陈宜瑜, 武云飞, 等. 裂腹鱼类的起源和演化及其与青藏高原隆起的关系. 见: 中国科学院青藏高原综合科学考察队, 编. 青藏高原隆起的时代、幅度和形式问题. 北京: 科学出版社, 1981. 118−130]. Google Scholar

[57] Chen Y Y, Chen Y F, Liu H Z. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its eastern demarcation line (in Chinese). Acta Hydrobiol Sin, 1996, 20: 97−103 [陈宜瑜, 陈毅峰, 刘焕章. 青藏高原动物地理区的地位和东部界线问题. 水生生物学报, 1996, 20: 97−103]. Google Scholar

[58] Chang M, Wang X, Liu H, et al. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Natl Acad Sci USA, 2008, 105: 13246-13251 CrossRef PubMed ADS Google Scholar

[59] Wang N, Chang M. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 2010, 53: 485-500 CrossRef Google Scholar

[60] Young C C. On a Miocene mammalian fauna from Shantung. Bull Geol Soc China, 1937, 17: 209–238. Google Scholar

[61] Chen G F, Wu W Y. Miocene mammalian fossils of Jiulongkou, Cixian district, Hebei (in Chinese). Vert PalAsiat, 1976, 14: 6−15 [陈冠芳, 吴文裕. 河北磁县九龙口中新世哺乳动物. 古脊椎动物学报, 1976, 14: 6−15]. Google Scholar

[62] Heissig K. Family Rhinocerotidae. In: Rössner G E, Heissig K, eds. The Miocene Land Mammals of Europe. München, Verlag Dr. Friedrich Pfeil, 1999. 175–188. Google Scholar

[63] Böhme M. The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 195: 389-401 CrossRef ADS Google Scholar

[64] Tseng Z J, Wang X, Slater G J, et al. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc Roy Soc B-Biol Sci, 2014, 281: 20132686 CrossRef PubMed Google Scholar

[65] Wang X, Tseng Z J, Li Q, et al. From “third pole” to north pole: A Himalayan origin for the arctic fox. Proc Roy Soc B-Biol Sci, 2014, 281: 20140893 CrossRef PubMed Google Scholar

[66] Wang X, Li Q, Takeuchi G T. Out of Tibet: An early sheep from the Pliocene of Tibet, Protovis himalayensis, genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vert Paleont, 2016, 36: e1169190 CrossRef Google Scholar

[67] Deng T, Ding L. Paleo-altimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2015, 2: 468−488. Google Scholar

[68] Wang K F, Yang J W, Li Z, et al. On the Tertiary sporopollen assemblages from Lunpola Basin of Xizang, China and their palaeogeographic significance (in Chinese). Sci Geol Sin, 1975, 4: 366–374 [王开发, 杨蕉文, 李哲, 等. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理. 地质科学, 1975, 4: 366–374]. Google Scholar

[69] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992, 255: 1663−1670. Google Scholar

[70] Zhong D L, Ding L. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism. Sci China Ser D: Earth Sci, 1996, 39: 369−379. Google Scholar

[71] Zhang K X, Wang G C, Ji J L, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci China Earth Sci, 2010, 53: 1271−1294. Google Scholar

[72] Wang E Q. Evolution of the Tibetan Plateau: As constrained by major tectonic-thermo events and a discussion on their origin (in Chinese). Chin J Geol, 2013, 48: 334−353 [王二七. 青藏高原大地构造演化——主要构造-热事件的制约及其成因探讨. 地质科学, 2013, 48: 334−353]. Google Scholar

[73] Sun J M, Liu W G, Liu Z H, et al. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys Ocean on the stepwise aridification of mid-latitude Asian Interior (in Chinese). Bull Chin Acad Sci, 2017, 32: 951−958 [孙继敏, 刘卫国, 柳中晖, 等. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响. 中国科学院院刊, 2017, 32: 951−958]. Google Scholar

[74] Meng J, Coe R S, Wang C, et al. Reduced convergence within the Tibetan Plateau by 26 Ma?. Geophys Res Lett, 2017, 44: 6624-6632 CrossRef ADS Google Scholar

[75] Pan T, Wu S, Dai E, et al. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China. Appl Energy, 2013, 107: 384-393 CrossRef Google Scholar

[76] Jiang X, Li Z X, Li H. Uplift of the West Kunlun Range, northern Tibetan Plateau, dominated by brittle thickening of the upper crust. Geology, 2013, 41: 439-442 CrossRef ADS Google Scholar

[77] Yin A, Dang Y Q, Wang L C, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin. Geol Soc Am Bull, 2008, 120: 813-846 CrossRef ADS Google Scholar

[78] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671-1677 CrossRef PubMed ADS Google Scholar

[79] Horton B K, Yin A, Spurlin M S, et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geol Soc Am Bull, 2002, 114: 771-786 CrossRef Google Scholar

[80] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Am Bull, 2005, 117: 865-878 CrossRef ADS Google Scholar

[81] Jia G, Bai Y, Ma Y, et al. Paleoelevation of Tibetan Lunpola Basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes. Glob Planet Change, 2015, 126: 14-22 CrossRef ADS Google Scholar

[82] Wang G C, Zhang K X, Cao K, et al. Expanding processes of the Qinghai-Tibet Plateau during Cenozoic: An insight from spatio-temporal difference of uplift (in Chinese). Earth Sci, 2010, 35: 713−727 [王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程. 地球科学, 2010, 35: 713−727]. Google Scholar

[83] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693 CrossRef PubMed ADS Google Scholar

[84] Pekar S F, DeConto R M. High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 231: 101-109 CrossRef ADS Google Scholar

[85] Zachos J C, Lohmann K C, Walker J C G, et al. Abrupt climate change and transient climates during the Paleogene: A marine perspective. J Geol, 1993, 101: 191-213 CrossRef ADS Google Scholar

[86] Wang P. Neogene stratigraphy and paleoenvironments of China. Palaeogeogr Palaeoclimatol Palaeoecol, 1990, 77: 315-334 CrossRef ADS Google Scholar

[87] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate regime by the Early Miocene. Clim Past Discuss, 2008, 4: 535-584 CrossRef Google Scholar

[88] Sun X, Wang P. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222 CrossRef ADS Google Scholar

[89] Xiao G Q, Zhang C X, Guo Z T. Initiation of East Asian monsoon system related to Tibetan Plateau uplift from the latest Oligocene to the earliest Miocene (in Chinese). Chin J Nat, 2014, 36: 165−169 [肖国桥, 张春霞, 郭正堂. 晚渐新世-早中新世青藏高原隆升与东亚季风演化. 自然杂志, 2014, 36: 165−169]. Google Scholar

[90] Pan B T, Li J J, Chen F H. Qinghai-Tibetan Plateau: A driver and amplifier of global climatic changes, I: Basic characteristics of climatic changes in Cenozoic Era (in Chinese). J Lanzhou Univ Nat Sci, 1995, 3: 120−128 [潘保田, 李吉均, 陈发虎. 青藏高原: 全球气候变化的驱动机与放大器I: 新生代气候变化的基本特征. 兰州大学学报: 自然科学版, 1995, 3: 120−128]. Google Scholar

  • Figure 1

    Survey regions of the Paleogene-Neogene fossils in the central Tibetan Plateau and fossiliferous sections in aerial view

  • Figure 2

    Lithological sequence, fossiliferous beds, and fossils of the Paleogene-Neogene Dingqing Formation in the Lunpola Basin of northern Tibet. A, Sabalites tibetensis; B, Eoanabas thibetana; C, Tchunglinius tchangii; D, Limnobiophyllum pedunculatum; E, Aquarius lunpolaensis; F, Cedrelospermum tibeticum; G, Koelreuteria lunpolaensis; H, Ailanthus maximus; I, Plesiaceratherium sp.; J, Plesioschizothorax microcephalus; K, Marsilea sp.; L, conifers

  • Figure 3

    Reconstruction of the latest Paleogene ecosystem in the central Tibetan Plateau: A warm and humid tropical or subtropical lowland. Reconstructed taxa: ① Tchunglinius tchangii; ② Eoanabas thibetana; ③ new cyprinid form A; ④ new cyprinid form B; ⑤ raptor and cuckoo; ⑥ Aquarius lunpolaensis; ⑦ Koelreuteria lunpolaensis; ⑧ Sabalites tibetensis; ⑨ Ailanthus maximus; ⑩ Limnobiophyllum pedunculatum (Art by Feixiang Wu)

  • Figure 4

    Reconstruction of the earliest Neogene ecosystem in the central Tibetan Plateau: A temperate and cool alpine biota. Reconstructed taxa and geological phenomena: ① Plesioschizothorax microcephalus; ② Plesiaceratherium sp.; ③ broadleaved trees; ④ conifers; ⑤ Marsilea sp.; ⑥ volcano (Art by Feixiang Wu)

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1