logo

Chinese Science Bulletin, Volume 65, Issue 1: 91-104(2020) https://doi.org/10.1360/TB-2019-0491

Contrasting precipitation gradient characteristics between westerlies and monsoon dominated upstream river basins in the Third Pole

More info
  • ReceivedSep 5, 2019
  • AcceptedNov 25, 2019
  • PublishedDec 25, 2019

Abstract

Based on precipitation observations from 256 gauges in the westerly and monsoon dominated upstream river basins of the Third Pole (TP), this study determined the relationships between precipitation and elevation. The basins include the upper basins of the Yangtze, Yellow, Lancang, Nujiang, Yarlung Zangbo, Yarkant, Indus, Amu Darya, and Syr Darya. Using the ERA5 data, this work examined the possible reasons for the difference in the characteristics of precipitation gradient, i.e. analyzing the relationships between the total column water vapor (TCWV), convective available potential energy (CAPE), lifting condensation level (LCL) and elevation, respectively. The feasibility of orographic corrections of precipitation data or observation is validated with the improved VIC land surface hydrological model in two mountain basins in the TP. Mean annual precipitation from gauges generally show decreasing trends (17–128 mm/100 m) with increased elevation (2500–5500 m a.s.l.) in the monsoon dominated basins, i.e. upper Yangtze, Yellow, Lancang, Nujiang, and Yarlung Zangbo, while the orographic enhancements are observed at relatively smaller scales, such as, in the very source regions of the upper Lancang and Nujiang, and Rikaze sub-basin with areas of 11000−67740 km2. On the other hand, in the westerly dominated basins, mean annual precipitation tends to increase with elevation (5–64 mm/100 m) in the upper Yarkant, Indus, Amu Darya, and Syr Darya. The precipitation estimates from ERA5 show a good correspondence with the gauge data (R=0.6−0.9, P<0.05), and exhibit a general consistent precipitation gradient pattern with the gauge observations. The ERA5 variables of TCWV, CAPE, and LCL are useful to understand the factors for the spatial pattern of precipitation vertical gradients in the TP basins with different climate control. The TCWV, CAPE, and LCL represent the vertically integrated moisture, instability and condensation necessary for the generation and development of precipitation. The larger TCWV, higher CAPE and lower LCL enhance precipitation. The decrease of precipitation with elevation in monsoon basins is caused by the decrease of TCWV with elevation, while the increase of precipitation with elevation in westerly dominated basins is a result of increasing CAPE and decreasing LCL with elevation. Hydrological modeling results in the upper Yarkant basin and Rikaze basin indicate that the orographic correction of precipitation data significantly improves the model accuracy, reducing the biases to less than 5% relative to flow observations. This work demonstrates that precipitation correction through vertical gradients is an effective way to derive high mountainous precipitation estimates for hydrological modeling from lowland gauges in the TP, especially in the westerly dominated basins, and in monsoon basins at regional or local scales. Knowledge of the spatial and temporal characters and variations of precipitation over the TP is greatly incomplete, which largely hampers the understanding on climate variability and water availability projections in the TP. This study offers a useful reference to derive reliable mountain precipitation through orographic correction, and also provides a scientific basis to establish precipitation observation network in the Second Tibetan Plateau Scientific Expedition and Research.


Funded by

第二次青藏高原综合科学考察研究(2019QZKK0201)

国家自然科学基金(9174720141871057)

中国科学院A类战略性先导科技专项(XDA20060202)


Acknowledgment

感谢中国科学院青藏高原研究所徐柏青研究员、阚宝云博士和慕士塔格西风带环境综合观测研究站对本研究的数据支持, 感谢中国科学院青藏高原研究所兰措研究员、李颖、孟凡冲、李春红和刘铸对本研究提出的修改建议.


Supplement

补充材料

图S1 澜沧江-怒江流域站点年均降水和海拔关系

图S2 澜沧江-怒江流域降水、抬升凝结高度、水汽总量、对流有效势能与海拔的关系

表S1 抬升凝结高度、水汽总量和对流有效势能相关系数在第三极9大源区流域对比

本文以上补充材料见网络版csb.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Yao T D, Chen F H, Cui P, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole (in Chinese). Bull Chin Acad Sci, 2017, 32: 924−931 [姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极. 中国科学院院刊, 2017, 32: 924−931]. Google Scholar

[2] Chen D L, Xu B Q, Yao T D, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau (in Chinese). Chin Sci Bull, 2015, 60: 3025−3035 [陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去, 现在与未来. 科学通报, 2015, 60: 3025−3035]. Google Scholar

[3] Zhang R H, Su F G , Jiang Z H, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century (in Chinese). Chin Sci Bull, 2015, 60: 3036−3047 [张人禾, 苏凤阁, 江志红, 等. 青藏高原 21 世纪气候和环境变化预估研究进展. 科学通报, 2015, 60: 3036−3047]. Google Scholar

[4] Yang W, Guo X, Yao T, et al. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim Dyn, 2015, 47: 805-815 CrossRef Google Scholar

[5] Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2012, 2: 663-667 CrossRef Google Scholar

[6] Li C, Su F, Yang D, et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. Int J Climatol, 2018, 38: 708-728 CrossRef Google Scholar

[7] Chang Y, Lyu S H, Luo S Q, et al. Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data. Int J Climatol, 2018, 38: 5659−5676. Google Scholar

[8] Yao T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci Bull, 2019, 64: 417 CrossRef Google Scholar

[9] Eltahir E A B, Bras R L. Precipitation recycling. Rev Geophys, 1996, 34: 367-378 CrossRef Google Scholar

[10] Wortmann M, Bolch T, Menz C, et al. Comparison and correction of high-mountain precipitation data based on glacio-hydrological modeling in the tarim river headwaters (High Asia). J Hydrometeorol, 2018, 19: 777-801 CrossRef Google Scholar

[11] Kan B, Su F, Xu B, et al. Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the Upper Yarkant basin in the Karakoram. J Geophys Res Atmos, 2018, 123: 8462-8486 CrossRef Google Scholar

[12] Immerzeel W W, Petersen L, Ragettli S, et al. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour Res, 2014, 50: 2212-2226 CrossRef Google Scholar

[13] Yang D Q, Kane D, Zhang Z Q, et al. Bias corrections of long-term (1973−2004) daily precipitation data over the northern regions. Geophys Res Lett, 2005, 32: L19501. Google Scholar

[14] Zhang L, Su F, Yang D, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J Geophys Res Atmos, 2013, 118: 8500-8518 CrossRef Google Scholar

[15] Tong K, Su F, Yang D, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int J Climatol, 2014, 34: 265-285 CrossRef Google Scholar

[16] Tong K, Su F, Yang D, et al. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J Hydrol, 2014, 519: 423-437 CrossRef Google Scholar

[17] Wang A H, Zeng X B. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res-Atmos, 2012, 117: D05102. Google Scholar

[18] Gao Y C, Liu M F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol Earth Syst Sci, 2013, 17: 837-849 CrossRef Google Scholar

[19] Cuo L, Zhang Y. Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings. Sci Rep, 2017, 7: 5057 CrossRef PubMed Google Scholar

[20] Dahri Z H, Ludwig F, Moors E, et al. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci Total Environ, 2016, 548-549: 289-306 CrossRef PubMed Google Scholar

[21] Curio J, Scherer D. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst Dynam, 2016, 7: 767-782 CrossRef Google Scholar

[22] Bookhagen B, Burbank D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett, 2006, 33: L08405. Google Scholar

[23] Salerno F, Guyennon N, Thakuri S, et al. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere, 2015, 9: 1229-1247 CrossRef Google Scholar

[24] Wulf H, Bookhagen B, Scherler D. Seasonal precipitation gradients and their impact on fluvial sediment flux in the northwest Himalaya. Geomorphology, 2010, 118: 13-21 CrossRef Google Scholar

[25] Wang L, Zhang F, Zhang H, et al. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau. J Hydrol, 2018, 556: 500-509 CrossRef Google Scholar

[26] Dahri Z H, Moors E, Ludwig F, et al. Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus basin. Int J Climatol, 2018, 38: 3842-3860 CrossRef Google Scholar

[27] Wang L, Chen R, Song Y, et al. Precipitation-altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains. Theor Appl Climatol, 2018, 134: 875-884 CrossRef Google Scholar

[28] Ouyang L, Yang K, Qin J, et al. Advances and perspectives in precipitation research for Himalayan Mountains (in Chinese). Plat Meteorol, 2017, 36: 1165−1175 [欧阳琳, 阳坤, 秦军, 等. 喜马拉雅山区降水研究进展与展望. 高原气象, 2017, 36: 1165−1175]. Google Scholar

[29] Yao T D. TPE international program: A program for coping with major future environmental challenges of the Third Pole region (in Chinese). Progr Geogr, 2014, 33: 884−892 [姚檀栋. “第三极环境(TPE)”国际计划——应对区域未来环境生态重大挑战问题的国际计划. 地理科学进展, 2014, 33: 884−892]. Google Scholar

[30] Ye Q, Zong J, Tian L, et al. Glacier changes on the Tibetan Plateau derived from landsat imagery: Mid-1970s–2000-13. J Glaciol, 2017, 63: 273-287 CrossRef Google Scholar

[31] Hennermann K, Berrisford P. ERA5 Data Documentation, Copernicus Knowledge Base. Accessed 19 October 2017. Google Scholar

[32] Bohren C, Albrecht B. Atmospheric Thermodynamics. New York, Oxford: Oxford University Press, 1998. Google Scholar

[33] Sheng P X. Atmospheric Physics (in Chinese). Beijing: Peking University Press, 2013 [盛裴轩. 大气物理学. 北京: 北京大学出版社, 2013]. Google Scholar

[34] Guo X, Wang L, Tian L. Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau. Int J Climatol, 2016, 36: 1901-1916 CrossRef Google Scholar

[35] Lu C X, Wang L, Xie G D, et al. Altitude effect of precipitation and spatial distribution of Qinghai-Tibetan Plateau (in Chinese). J Mt Sci, 2007, 25: 655−663 [鲁春霞, 王菱, 谢高地, 等. 青藏高原降水的梯度效应及其空间分布模拟. 山地学报, 2007, 25: 655−663]. Google Scholar

[36] Xu X D, Lu C G, Shi X H, et al. World water tower: An atmospheric perspective. Geophys Res Lett, 2008, 35: L20815. Google Scholar

[37] Su F G, Zhang L L, Ou T H, et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob Planet Change, 2016, 136: 82−95. Google Scholar

[38] Meng F C, Su F G, Li Y, et al. Changes in terrestrial water storage during 2003−2014 and possible causes in Tibetan Plateau. J Geophys Res-Atmos, 2019, 124: 2909−2931. Google Scholar

[39] Zhao Q D, Ding Y J, Wang J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the Glacier Inventory Data and observed streamflow. J Hydrol, 2019, 573: 60−81. Google Scholar

  • Figure 1

    Location, topography, and distribution of meteorological and hydrological stations in nine upstream basins of the Third Pole

  • Figure 2

    Mean annual cycle of precipitation in nine upstream basins of the Third Pole. (a) Upper Yangtze basin; (b) upper Yellow basin; (c) upper Lancang basin; (d) upper Nujiang basin; (e) Yarlung Zangbo basin; (f) upper Indus basin; (g) upper Amu Darya; (h) upper Syr Darya; (i) upper Yarkant basin

  • Figure 3

    (Color online) Percentages of each elevation band in nine upstream basins of the Third Pole. (a) Upper Yangtze basin; (b) upper Yellow basin; (c) upper Lancang basin; (d) upper Nujiang basin; (e) Yarlung Zangbo basin; (f) upper Indus basin; (g) upper Amu Darya; (h) upper Syr Darya; (i) upper Yarkant basin

  • Figure 4

    Mean annual precipitation against elevations in nine upstream basins in the Third Pole. * represents 95% significant confidence level. (a) Upper Yangtze-Yellow-Lancang-Nujiang basin; (b) Yarlung Zangbo basin; (c) upper Indus basin; (d) upper Amu Darya; (e) upper Syr Darya; (f) upper Yarkant basin

  • Figure 5

    (Color online) The relationship between elevation and precipitation, lifting condensation level (LCL), total column water vapor (TCWV), and convective available potential energy (CAPE) in nine basins of Third Pole, respectively. (a)−(d) The relationship between elevation and precipitation, LCL, TCWV, CAPE in upper Yangtze-Yellow-Lancang-Nujiang basin, respectively; (e)−(h) the relationship between elevation and precipitation, LCL, TCWV, CAPE in Yarlung Zangbo basin, respectively; (i)−(l) the relationship between elevation and precipitation, LCL, TCWV, CAPE in upper Yarkant basin, respectively; (m)−(p) the relationship between elevation and precipitation, LCL, TCWV, CAPE in upper Indus basin, respectively; (q)−(t) the relationship between elevation and precipitation, LCL, TCWV, CAPE in upper Amu Darya, respectively; (u)−(x) the relationship between elevation and precipitation, LCL, TCWV, CAPE in upper Syr Darya, respectively

  • Figure 6

    Comparisons between precipitation with and without orographic corrections (a, b) and the corresponding streamflow simulations (c, d) in the upper Yarkant and Rikaze basins, respectively

  • Table 1   Information of nine upstream basins in the Third Pole

    长江

    黄河

    澜沧江

    怒江

    雅鲁藏布江

    叶尔羌河

    印度河

    锡尔河

    阿姆河

    水文站

    直门达

    唐乃亥

    昌都

    嘉玉桥

    奴下

    卡群

    Besham

    Chardara

    KERKI

    地理位置

    纬度(°N)

    33.02

    35.30

    31.11

    30.51

    29.27

    37.98

    34.92

    41.24

    37.83

    经度(°E)

    97.13

    100.09

    97.11

    96.12

    94.34

    76.90

    72.88

    67.97

    65.25

    流域面积(km2)

    137704

    121972

    53800

    67740

    201200

    46704

    162896

    200300

    284800

    平均海拔(m)

    4881

    4464

    4489

    4798

    4913

    1450

    4323

    1769

    2532

    年均降水(mm)a)

    358

    544

    549

    530

    470

    276

    351

    395

    416

    降水时段(年)

    1961~2015

    1961~2015

    1961~2015

    1961~2015

    1961~2015

    1961~2015

    1980~2007

    1951~1990

    1951~1990

    年均径流(m3/s)b)

    416

    645

    473

    678

    1888

    213

    2412

    531

    1556

    径流时段(年)

    1961~2011

    1961~2013

    1961~2000

    1980~1985

    1961~2015

    1961~2014

    1969~2013

    1981~2016

    1959~1989

    冰川面积(km2)c)

    1062

    103

    151

    839

    2941

    4329

    19425

    1864

    9786

    冰川占比(%)

    0.8

    0.1

    0.3

    1.2

    1.5

    9.3

    11.9

    0.9

    3.4

    积雪面积(km2)d)

    22694

    20003

    10448

    18500

    31065

    15753

    57942

    66099

    105376

    积雪占比(%)

    16.5

    16.4

    19.4

    27.3

    15.4

    33.7

    35.6

    33.0

    37.0

    长江、黄河、澜沧江、怒江、雅鲁藏布江降水数据源自国家气象站数据; 印度河、阿姆河和锡尔河降水数据源自NCDC国际气候数据中心; 叶尔羌河降水数据源自 Kan等人[11]; b) 径流数据源自青海和西藏水文局; c) 长江、黄河、澜沧江、怒江、雅鲁藏布江和叶尔羌河流域冰川数据来自2013年的Tibetan Plateau Glacier Data[30], http://www.tpedatabase.cn; 印度河、锡尔河和阿姆河流域冰川数据来自The Randolph Glacier Inventory V6.0, http://www.glims.org/RGI/; d) 积雪数据来自2001~2014年的The Moderate Resolution Imaging Spectroradiometer (MODIS)10C2数据, https://nsidc.org/data

  • Table 2   Comparisons between precipitation estimates from stations and the corresponding grid cells in ERA5

    流域

    时段(年)

    站点年均降水(mm)

    ERA5年均降水(mm)

    相关系数

    R

    相对误差(%)

    季风区

    长江-黄河-澜沧-怒江上游

    1981~2016

    511

    753

    0.93*

    47

    雅鲁藏布江

    2014~2016

    460

    808

    0.88*

    76

    西风区

    叶尔羌河上游

    2014~2015

    152

    395

    0.14

    160

    印度河上游

    1998~2012

    574

    1189

    0.17

    107

    阿姆河上游

    1981~1990

    456

    762

    0.65*

    67

    锡尔河上游

    1981~1990

    416

    835

    0.60*

    101

    *表示在95%的置信水平

  • Table 3   Standardized partial regression coefficients () of precipitation with LCL, TCWV and CAPE in 9 source river basins of the Third Pole

    流域

    抬升凝结高度

    水汽总量

    对流有效势能

    季风区

    长江上游

    −0.15

    0.65*

    0.48*

    黄河上游

    −0.25

    0.65*

    0.37*

    澜沧江上游

    −0.36*

    0.70*

    0.41*

    怒江上游

    −0.39*

    0.56*

    0.46*

    雅鲁藏布江

    −0.39*

    0.79*

    0.70*

    西风区

    叶尔羌河上游

    −0.46*

    0.26

    0.45*

    印度河上游

    −0.74*

    0.02

    0.31*

    阿姆河上游

    −0.73*

    0.28

    0.57*

    锡尔河上游

    −0.87*

    0.26

    0.75*

    *表示在95%的置信水平

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1