logo

Chinese Science Bulletin, Volume 65 , Issue 14 : 1305-1319(2020) https://doi.org/10.1360/TB-2019-0804

Remote sensing of planetary space environment

Fei He 1,2,3,4,*
More info
  • ReceivedDec 9, 2019
  • AcceptedMar 17, 2020
  • PublishedMar 31, 2020

Abstract

Planetary space, a critical region of mass and energy exchange between the planet and the interplanetary space, is an integral part of the planetary multi-layer coupling system. Atmospheres of different compositions and plasmas of different densities and energies exist in planetary space, where mass transportation at different temporal and spatial scales and various energy deposition and dissipation processes occur. These processes are driven by the changes in the solar wind and the internal driving forces of the planet. Knowledge pertaining to the global mass and energy transportation in planetary space is essential to investigate the mass escape from the planets. Understanding the forces and physical processes that drive changes in the planetary space environment is not only beneficial to protecting the life, technical systems, and infrastructures on the Earth, but is also helpful in understanding the past and future. In this regards, the systematic and overall view of planetary space environments is necessary for planetary science.

Optical remote sensing implies a measurement made by indirect or “remote” means, which relies upon either emitted, reflected, or scattered optical radiation. There are three main types of optical remote sensing technologies, namely imaging (photography), spectrograph, and spectrographic imaging. Scientific application of optical remote sensing dates back to 1906 when G. Galilei constructed the first astronomical telescope, using which he discovered the four Galilean satellites of Jupiter and the phase variation of Venus. Since then, several discoveries in planetary science have been made by means of optical remote sensing, such as the discovery of new planets and their moons, the discovery of the primary compositions of planetary atmospheres, global convection of cold plasma in Earth’s space, the discovery of planetary aurora (Earth, Mars, Jupiter, Saturn) and volcanic activity on Io, and water eruption on Enceladus. The optical remote sensing method overcomes the difficulties of capturing global views and distinguishing spatial and temporal variations in in-situ particle and field detections.

Furthermore, through an overview of the history of planetary optical remote sensing, we propose a development strategy for planetary optical remote sensing, in China, based on the national deep-space exploration plan. A “Quaternity” planetary optical detection system that integrates ground-based, balloon-borne, space-based, and moon-based optical remote sensing is proposed. For example, the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) is planning to construct a ground-based optical telescope with an aperture of ~1.5 m in Northwest China to monitor the volcanic activity on Io and to conduct other planetary observations.

As the first planetary optical remote sensing project in China, the balloon-borne planetary optical remote sensing for the Scientific Experiment System in Near Space (SENSE) Program is introduced in detail. The SENSE Program is a five-year Strategic Priority Research Program of the Chinese Academy of Sciences, which began in 2018. A balloon-borne Planetary Atmospheric Spectroscopic Telescope (PAST) with an aperture of 0.8 m will be launched into the stratosphere at the height of 35–40 km to image the planetary atmosphere and plasma in the ultraviolet and visible range. The main scientific target of PAST is to comparatively study the diversity of the planetary space environment and their different drivers. Test and scientific flights are scheduled in 2021 and 2022 in Northwest China and potentially in polar regions. By using the data from PAST and in combination with other data (such as Jupiter’s auroral images from the Hubble Space Telescope, Mars’ space environment data from Mars Atmosphere and Volatile Evolution mission, and Jupiter’s space environment data from Juno mission), the couplings between planetary atmosphere and plasma will be investigated to characterize the diversity of the evolution of the planetary space environment.


Funded by

中国科学院A类战略性先导科技专项(XDA17010201)

国家自然科学基金(41674155)

中国科学院青年创新促进会(2017258)


Acknowledgment

感谢中国科学院地质与地球物理研究所尧中华博士对本文的宝贵建议. 感谢中国科学院地质与地球物理研究所魏勇博士提供图2. “风云三号”广角极光成像仪图像数据来源于国家卫星气象中心. “嫦娥三号”极紫外相机数据来源于中国科学院国家天文台探月工程地面应用系统.


References

[1] Wei Y, Yue X A, Rong Z J, et al. A planetary perspective on Earth’s space environment evolution. Earth Planet Phys, 2017, 1: 63-67 CrossRef ADS Google Scholar

[2] Brown M E, Bouchez A H. The response of Jupiter’s magnetosphere to an outburst on Io. Science, 1997, 278: 268-271 CrossRef PubMed ADS Google Scholar

[3] van Allen J A, Frank L A. Radiation around the Earth to a radial distance of 107400 km. Nature, 1959, 183: 430-434 CrossRef ADS Google Scholar

[4] Cahill L J, Amazeen P G. The boundary of the geomagnetic field. J Geophys Res, 1963, 68: 1835-1843 CrossRef ADS Google Scholar

[5] Gringauz K I. The structure of the ionized gas envelope of earth from direct measurements in the U.S.S.R. of local charged particle concentrations. Planet Space Sci, 1963, 11: 281-296 CrossRef Google Scholar

[6] Neugebauer M, Snyder C W. Solar plasma experiment. Science, 1962, 138: 1095-1097 CrossRef PubMed ADS Google Scholar

[7] Van Allen J A, Randall B A, Baker D N, et al. Pioneer 11 observations of energetic particles in the Jovian magnetosphere. Science, 1975, 188: 459-462 CrossRef PubMed ADS Google Scholar

[8] Acuna M H, Connerney J E P, Ness N F, et al. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 1999, 284: 790-793 CrossRef PubMed ADS Google Scholar

[9] Zhang T L, Lu Q M, Baumjohann W, et al. Magnetic reconnection in the near Venusian magnetotail. Science, 2012, 336: 567-570 CrossRef PubMed ADS Google Scholar

[10] Guo R L, Yao Z H, Wei Y, et al. Rotationally driven magnetic reconnection in Saturn’s dayside. Nat Astron, 2018, 2: 640-645 CrossRef ADS Google Scholar

[11] Yang Z J, Wang L, Fang J H. Space Optical Instruments and Their Calibration and Measurement Techniques (in Chinese). Beijing: China Metrology Publishing House, 2009. 13 [杨照金, 王雷, 范纪红. 空间光学仪器设备及其校准检测技术. 北京: 中国计量出版社, 2009. 13]. Google Scholar

[12] Yu D Y, Tan H Y. Engineering Optics (in Chinese). 4th ed. Beijing: China Machine Press, 2014. 16 [郁道银, 谈恒英. 光学工程. 第四版. 北京: 机械工业出版社, 2016. 16]. Google Scholar

[13] He F, Zhang X X, Wang X Y, et al. EUV emissions from solar wind charge exchange in the Earth’s magnetosheath: Three-dimensional global hybrid simulation. J Geophys Res Space Phys, 2015, 120: 138-156 CrossRef ADS Google Scholar

[14] Yang X N, Yang Y. Space Environment Engineering for Spacecraft. Beijing: Beijing Institute of Technology Press, 2018. 2 [杨晓宁, 杨勇. 航天器空间环境工程. 北京: 北京理工大学出版社, 2018. 2]. Google Scholar

[15] He F, Zhang X X, Chen B, et al. Moon-based EUV imaging of the Earth’s plasmasphere: Model simulations. J Geophys Res Space Phys, 2011, 118: 7085-7103 CrossRef ADS Google Scholar

[16] Meier R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci Rev, 1991, 58: 1-185 CrossRef ADS Google Scholar

[17] Baumgardner J, Wilson J, Mendillo M. Imaging the sources and full extent of the sodium tail of the planet Mercury. Geophys Res Lett, 2008, 35: L03201. Google Scholar

[18] Nara Y, Yoshikawa I, Yoshioka K, et al. Extreme ultraviolet spectra of Venusian airglow observed by EXCEED. Icarus, 2018, 307: 207-215 CrossRef ADS Google Scholar

[19] Chaffin M S, Chaufray J Y, Deighan J, et al. Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophys Res Lett, 2015, 42: 9001-9008 CrossRef ADS Google Scholar

[20] Leblanc F, Chaufray J Y, Lilensten J, et al. Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J Geophys Res, 2006, 111: E09S11 CrossRef ADS Google Scholar

[21] Schneider N M, Trauger J T, Wilson J K, et al. Molecular origin of Io’s fast sodium. Science, 1991, 253: 1394-1397 CrossRef PubMed ADS Google Scholar

[22] Mendillo M, Flynn B, Baumgardner J. Imaging obsearvations of Jupiter’s sodium magneto-nebula during the Ulysses encounter. Science, 1992, 257: 1510-1512 CrossRef PubMed ADS Google Scholar

[23] Gladstone G R, Waite Jr J H, Grodent D, et al. A pulsating auroral X-ray hot spot on Jupiter. Nature, 2002, 415: 1000-1003 CrossRef PubMed ADS Google Scholar

[24] Grodent D, Bonfond B, Yao Z, et al. Jupiter’s aurora observed with HST during Juno orbits 3 to 7. J Geophys Res Space Phys, 2018, 123: 3299-3319 CrossRef ADS Google Scholar

[25] Kivelson M G, Bagenal F. Planetary magnetosphere. In: McFadden L A, Weissman P R, Johnson T V, eds. Encyclopedia of the Solar System. 2nd ed. New York: Academic Press, 2007. 519–540. Google Scholar

[26] Fink U, Larson H P, Poppen R F. A new upper limit for an atmosphere of CO2, CO on Mercury. Astrophys J, 1974, 187: 407-415 CrossRef ADS Google Scholar

[27] Broadfoot A L, Kumar S, Belton M J S, et al. Mercury’s atmosphere from Mariner 10: Preliminary results. Science, 1974, 185: 166-169 CrossRef PubMed ADS Google Scholar

[28] Potter A, Morgan T. Discovery of sodium in the atmosphere of Mercury. Science, 1985, 229: 651-653 CrossRef PubMed ADS Google Scholar

[29] Potter A E, Morgan T H. Potassium in the atmosphere of Mercury. Icarus, 1986, 67: 336-340 CrossRef Google Scholar

[30] Bida T A, Killen R M, Morgan T H. Discovery of calcium in Mercury’s atmosphere. Nature, 2000, 404: 159-161 CrossRef PubMed ADS Google Scholar

[31] Killen R M, Potter A, Fitzsimmons A, et al. Sodium D2 line profiles: Clues to the temperature structure of Mercury’s exosphere. Planet Space Sci, 1999, 47: 1449-1458 CrossRef Google Scholar

[32] Goldstein B E, Suess S T, Walker R J. Mercury: Magnetospheric processes and the atmospheric supply and loss rates. J Geophys Res, 1981, 86: 5485-5499 CrossRef ADS Google Scholar

[33] Killen R M, Potter A E, Morgan T H. Spatial distribution of sodium vapor in the atmosphere of Mercury. Icarus, 1990, 85: 145-167 CrossRef Google Scholar

[34] Potter A E, Morgan T H. Evidence for magnetospheric effects on the sodium atmosphere of Mercury. Science, 1990, 248: 835-838 CrossRef PubMed ADS Google Scholar

[35] Solomon S C, McNutt Jr R L, Gold R E, et al. MESSENGER mission overview. Space Sci Rev, 2007, 131: 3-39 CrossRef ADS Google Scholar

[36] Zurbuchen T H, Raines J M, Gloeckler G, et al. MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science, 2008, 321: 90-92 CrossRef PubMed ADS Google Scholar

[37] Merkel A W, Cassidy T A, Vervack Jr R J, et al. Seasonal variations of Mercury’s magnesium dayside exosphere from MESSENGER observations. Icarus, 2017, 281: 46-54 CrossRef ADS Google Scholar

[38] Benkhoff J, van Casteren J, Hayakawa H, et al. BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals. Planet Space Sci, 2010, 58: 2-20 CrossRef ADS Google Scholar

[39] Adel A, Slipher V M. Concerning the carbon dioxide content of the atmosphere of the planet Venus. Phys Rev, 1934, 46: 240. Google Scholar

[40] Bottema M, Plummer W, Strong J. Water vapor in the atmosphere of Venus. Astrophys J, 1964, 139: 1021–1022. Google Scholar

[41] Fink U, Larson H P, Kuiper G P, et al. Water vapor in the atmosphere of Venus. Icarus, 1972, 17: 617-631 CrossRef Google Scholar

[42] Connes P, Connes J, Benedict W S, et al. Traces of HCl and HF in the atmosphere of Venus. Astrophys J, 1967, 147: 1230-1237 CrossRef ADS Google Scholar

[43] Dollfus A. Venus: Evolution of the upper atmospheric clouds. J Atmos Sci, 1975, 32: 1060-1070 CrossRef Google Scholar

[44] Peralta J, Lee Y J, McGouldrick K, et al. Overview of useful spectral regions for Venus: An update to encourage observations complementary to the Akatsuki mission. Icarus, 2017, 288: 235-239 CrossRef ADS Google Scholar

[45] Barth C A, Pearce J B, Kelly K K, et al. Ultraviolet emissions observed near Venus from Mariner V. Science, 1967, 158: 1675-1678 CrossRef PubMed ADS Google Scholar

[46] Murray B C, Belton M J S, Danielson G E, et al. Venus: Atmospheric motion and structure from Mariner 10 pictures. Science, 1974, 183: 1307-1315 CrossRef PubMed ADS Google Scholar

[47] Reese D E, Swan P R. Venera 4 probes atmosphere of Venus. Science, 1968, 159: 1228-1230 CrossRef PubMed ADS Google Scholar

[48] Keldysh M V. Venus exploration with the Venera 9 and Venera 10 spacecraft. Icarus, 1977, 30: 605-625 CrossRef Google Scholar

[49] Sagdeev R Z, Linkin V M, Kerzhanovich V V, et al. Overview of VEGA Venus balloon in situ meteorological measurements. Science, 1986, 231: 1411-1414 CrossRef PubMed ADS Google Scholar

[50] Rasool S I, De Bergh C. The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature, 1970, 226: 1037-1039 CrossRef PubMed ADS Google Scholar

[51] Bertaux J L, Clarke J T. Deuterium content of the Venus atmosphere. Nature, 1989, 338: 567-568 CrossRef ADS Google Scholar

[52] Svedhem H, Titov D V, Taylor F W, et al. Venus as a more Earth-like planet. Nature, 2007, 450: 629-632 CrossRef PubMed ADS Google Scholar

[53] Wei Y, Fraenz M, Dubinin E, et al. A teardrop-shaped ionosphere at Venus in tenuous solar wind. Planet Space Sci, 2012, 73: 254-261 CrossRef ADS Google Scholar

[54] Nakamura M, Imamura T, Ishii N, et al. Overview of Venus orbiter, Akatsuki. Earth Planet Sp, 2011, 63: 443-457 CrossRef ADS Google Scholar

[55] Horinouchi T, Murakami S Y, Satoh T, et al. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki. Nat Geosci, 2017, 10: 646-651 CrossRef PubMed ADS arXiv Google Scholar

[56] Fukuhara T, Futaguchi M, Hashimoto G L, et al. Large stationary gravity wave in the atmosphere of Venus. Nat Geosci, 2017, 10: 85-88 CrossRef ADS Google Scholar

[57] Navarro T, Shubert G, Lebonnois S. Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate. Nat Geosci, 2018, 11: 487–491. Google Scholar

[58] Storey L R O. Protons outside the Earth’s atmosphere. Ann Geophys, 1958, 14: 144–153. Google Scholar

[59] Russell C T. A brief history of solar-terrestrial physics. In: Kivelson M G, Russell C T, eds. Introduction to Space Physics. Cambridge: Cambridge University Press, 1995. 1–26. Google Scholar

[60] Kamide Y, Chian A C L. Handbook of the Solar-Terrestrial Environment. Berlin: Springer-Verlag, 2007. 355–488. Google Scholar

[61] Carruthers G R, Page T. Apollo 16 far-ultraviolet camera/spectrograph: Earth observations. Science, 1972, 177: 788–791. Google Scholar

[62] Sandel B R, Goldstein J, Gallagher D L, et al. Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci Rev, 2003, 109: 25-46 CrossRef Google Scholar

[63] Frey H U, Phan T D, Fuseller S A, et al. Continuous magnetic reconnection at Earth’s magnetopause. Nature, 2003, 426: 533–537. Google Scholar

[64] Laundi K M, Østgaard N. Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres. Nature, 2009, 460: 491–493. Google Scholar

[65] Sagawa E, Immel T J, Frey H U, et al. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res, 2005, 110: A11302. Google Scholar

[66] Immel T J, Sagawa E, England S L, et al. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett, 2006, 33: L15108. Google Scholar

[67] Chen B, Song K F, Li Z H, et al. Development and calibration of the Moon-based EUV camera for Chang’e-3. Res Astron Astrophys, 2014, 14: 1654-1663 CrossRef ADS Google Scholar

[68] Zhang X X, Chen B, He F, et al. Wide-field auroral imager onboard the Fengyun satellite. Light Sci Appl, 2019, 8: 47. Google Scholar

[69] Kuiper G P. The Atmospheres of the Earth and Planets. 2nd ed. Chicago: University of Chicago Press, 1952. 360. Google Scholar

[70] Kliore A, Cain D L, Levy G S, et al. Occultation experiment: Results of the first direct measurement of Mars’s atmosphere and ionosphere. Science, 1965, 149: 1243-1248 CrossRef PubMed ADS Google Scholar

[71] Barth C A, Fastie W G, Hord C W, et al. Mariner 6: Ultraviolet spectrum of Mars upper atmosphere. Science, 1969, 165: 1004-1005 CrossRef PubMed ADS Google Scholar

[72] Nier A O, McElroy M B. Structure of the neutral upper atmosphere of Mars: Results from Viking 1 and Viking 2. Science, 1969, 194: 1298-1300 CrossRef PubMed ADS Google Scholar

[73] Spinrad H, Münch G, Kaplan L D. The detection of water vapor on Mars. Astrophys J, 1963, 137: 1319–1321. Google Scholar

[74] Krasnopolsky V A, Maillard J P, Owen T C. Detection of methane in the Martian atmosphere: Evidence of life? Icarus, 2004, 172: 537–547. Google Scholar

[75] Formisano V, Atreya S, Encrenaz T, et al. Detection of methane in the atmosphere of Mars. Science, 2004, 306: 1758-1761 CrossRef PubMed ADS Google Scholar

[76] Ouyang Z Y, Zou Y L. Introduction to Mars Science (in Chinese). Shanghai: Shanghai Science Technology and Education Press, 2015. 15–52 [欧阳自远, 邹永廖. 火星科学概论. 上海: 上海科技教育出版社, 2015. 15–52]. Google Scholar

[77] Schneider N M, Deighan J I, Jain S K, et al. Discovery of diffuse aurora on Mars. Science, 2015, 350: aad0313 CrossRef PubMed ADS Google Scholar

[78] Broadfoot A L, Belton M J S, Takacs P Z, et al. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science, 1979, 204: 979–982. Google Scholar

[79] Broadfoot A L, Sandel B R, Shemansky D E, et al. Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science, 1981, 212: 206–211. Google Scholar

[80] Bhardwaj A, Gladstone G R. Auroral emissions of the giant planets. Rev Geophys, 2000, 38: 295–353. Google Scholar

[81] Broadfoot A L, Atreya S K, Bertaux J L, et al. Ultraviolet spectrometer observations of Neptune and Triton. Science, 1989, 246: 1459–1466. Google Scholar

[82] Philips J L, Stewart A I F, Luhmann J G. The Venus ultraviolet aurora: Observations at 130.4 nm. Geophys Res Lett, 1986, 13: 1047–1050. Google Scholar

[83] Deighan J I, Jain S K, Chaffin M S, et al. Discovery of a proton aurora at Mars. Nat Astron, 2018, 2: 802–807. Google Scholar

[84] Nagy A F, Winterhalter D, Sauer K, et al. The plasma environment of Mars. Space Sci Rev, 2004, 111: 33-114 CrossRef Google Scholar

[85] Wei Y, Fraenz M, Dubinin E, et al. Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region. J Geophys Res, 2012, 117: A03208. Google Scholar

[86] Jakosky B M, Grebowsky J M, Luhmann J G, et al. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350: aad0210 CrossRef PubMed ADS Google Scholar

[87] Halekas J S. Seasonal variability of the hydrogen exosphere of Mars. J Geophys Res Planets, 2017, 122: 901–911. Google Scholar

[88] Hall B E S, Lester M, Sánnchez-Cano B, et al. Annual variations in the Martian bow shock location as observed by the Mars Express mission. J Geophys Res Space Phys, 2016, 121: 11474–11494. Google Scholar

[89] Gehrels T, Baker L R, Beshore E, et al. Imaging photopolarimeter on pioneer saturn. Science, 1980, 207: 434-439 CrossRef PubMed ADS Google Scholar

[90] Hansen C J, Esposito L, Stewart A I F, et al. Enceladus’ water vapor plume. Science, 2006, 311: 1422-1425 CrossRef PubMed ADS Google Scholar

[91] Palmaerts B, Radioti A, Grodent D, et al. Auroral storm and polar arcs at Saturn—Final Cassini/UVIS auroral observations. Geophys Res Lett, 2018, 45: 6832-6842 CrossRef ADS Google Scholar

[92] Mura A, Adriani A, Connerney J E P, et al. Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361: 774-777 CrossRef PubMed ADS Google Scholar

[93] Dunn W R, Branduardi-Raymont G, Ray L C, et al. The independent pulsations of Jupiter’s northern and southern X-ray auroras. Nat Astron, 2017, 1: 758-764 CrossRef ADS Google Scholar

[94] Wei Y, Yao Z, Wan W. China’s roadmap for planetary exploration. Nat Astron, 2018, 2: 346-348 CrossRef ADS Google Scholar

[95] Wan W X, Wei Y, Guo Z T, et al. Toward a power of planetary science from a giant of deep space exploration (in Chinese). Bull Chin Acad Sci, 2019, 34: 748–755 [万卫星, 魏勇, 郭正堂, 等. 从深空探测大国迈向行星科学强国. 中国科学院院刊, 2019, 34: 748–755]. Google Scholar

[96] Wei Y, Zhu R X. Planetary science: Frontier of science and national strategy (in Chinese). Bull Chin Acad Sci, 2019, 34: 756–759 [魏勇, 朱日祥. 行星科学: 科学前沿与国家战略. 中国科学院院刊, 2019, 34: 756–759]. Google Scholar

[97] Rong Z J, Cui J, He F, et al. Status and prospect for Chinese planetary physics (in Chinese). Bull Chin Acad Sci, 2019, 34: 760–768 [戎昭金, 崔峻, 何飞, 等. 我国行星物理学的发展现状与展望. 中国科学院院刊, 2019, 34: 760–768]. Google Scholar

  • Figure 1

    Three typical methods of optical remote sensing. (a) Imaging; (b) spectrograph; (c) spectrographic imaging

  • Figure 2

    Shapes of ionosphere at Venus under different solar wind conditions. (a) Normal ionosphere; (b) tear-dropped ionosphere. Source: Dr. Yong Wei

  • Figure 3

    Side view of the Earth’s plasmasphere imaged by the Extreme Ultraviolet Camera onboard the Chang’E-3 lunar lander. The Earth’s size is marked by the white circle and the Sun is denoted by the filled yellow circle. Typical structures in the image are marked by white arrows

  • Figure 4

    Far ultraviolet auroral image observed by the wide-field auroral imager onboard the Fengyun-3D satellite. The coordinate system is magnetic latitude and magnetic local time

  • Table 1   Table 1 Parameters of planetary magnetosphere[25]

    参数

    水星

    金星

    地球

    火星

    木星

    土星

    天王星

    海王星

    日心距离(AU)a)

    0.31~0.47

    0.723

    1

    1.524

    5.2

    9.5

    19

    30

    半径, RP(km)

    2439

    6051

    6373

    3390

    71398

    60330

    25559

    24764

    表面气压(atm)b)

    <10−14

    90

    1

    0.006

    >>1000

    >>1000

    >>1000

    >>1000

    磁矩(MEarth)c)

    4×10−4

    1

    20000

    600

    50

    25

    表面磁场, B0(nT)

    3×102

    <2

    3.1×104

    <10

    4.28×105

    0.22×105

    0.23×105

    0.14×105

    太阳风密度, ρ(cm−3)

    35~80

    16

    8

    3.5

    0.3

    0.1

    0.02

    0.008

    磁层顶鼻点距离(RMP)d)

    1.4~1.6

    10

    42

    19

    25

    24

    等离子体密度(cm−3)

    ~1

    1~4000

    >3000

    ~100

    3

    2

    主要成分

    H+

    O+/H+

    On+/Sn+

    O+/H2O+/H+

    H+

    N+/H+

    主要来源

    太阳风

    电离层e)

    木卫一Io

    环/卫星f)

    大气

    卫星g)

    时间尺度

    min

    d/he)

    10~100 d

    30 d~a

    1~30 d

    d

    等离子体运动

    太阳风驱动

    h)

    转动/对流e)

    转动

    转动

    对流/转动

    转动/对流

    1 AU=1.5×108 km; b) 参考美国宇航局行星情况说明书: https://nssdc.gsfc.nasa.gov/planetary/planetfact.html; c) 以地球磁矩归一化, MEarth=7.906×1015 T m3; d) 磁层顶鼻点距离RMP = (B02/2μ0ρu2)1/6/RP, 采用表中典型太阳风密度和太阳风速度u ~ 400 km s−1计算, 对于外行星, 该计算值偏低; e) 等离子体层顶[15]内主要来自电离层, 主要受地球共转电场控制, 时间尺度为天量级, 等离子体顶外主要来自太阳风, 主要受太阳风对流电场控制, 时间尺度为小时量级; f) 土卫二: Enceladus, 土卫三: Tethys, 土卫四: Dione; g) 海卫一: Triton; h) “—”代表该行星不存在此项或无相关测量结果

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号