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a b s t r a c t 

Certain perovskite-type oxynitrides have bandgaps suitable for renewable hydrogen production via photo- 

catalytic and photoelectrochemical water splitting under visible light. Understanding the ordering of ox- 

ide and nitride anions in these materials is important because this ordering affects their semiconductor 

properties. However, the numerous possible orderings complicate systematic analyses based on density 

functional theory (DFT) calculations using defined elemental arrangements. This work shows that anion 

ordering in large-scale supercells within perovskite-type oxynitrides can be rapidly predicted based on 

machine learning, using BaNbO 2 N (capable of oxidizing water under irradiation up to 740 nm) as an ex- 

ample. Machine learning allows the calculation of the total energy of BaNbO 2 N directly from randomly 

selected initial atomic placements without costly structural optimization, thus reducing the computa- 

tional cost by more than 99.99%. Combined with the Metropolis Monte Carlo method, machine learning 

permits exploration of the stable anion orderings of large supercells without costly DFT calculations. This 

work therefore demonstrates a means of predicting the properties of functional materials having com- 

plex compositions based on the most realistic elemental arrangements in conjunction with reasonable 

computational loads. 

© 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published 

by Elsevier B.V. and Science Press. All rights reserved. 
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. Introduction 

Perovskite-type materials can have a variety of compositions

nd thus exhibit varying physical properties, including different

andgap energies, electronic states and formation energies [1] .

n addition, some perovskite-type semiconductors have applica-

ions related to solar energy conversion. These include oxides [2,3] ,

xynitrides [3] and oxysulfides [4] , which can be applied to pho-

ocatalytic and photoelectrochemical water splitting, and halides

5,6] , which can be used for photovoltaics. Perovskite-type oxyni-

rides with the general formula AB(O,N) 3 have attracted partic-

lar interest because their bandgaps are narrower than those of

he corresponding oxides [7–9] . The physical properties of these

xynitrides depend on the ordering of anions in their structures.

s an example, the absorption edge wavelength of SrTaO 2 N has

een predicted to be variable from approximately 600 to 720 nm

10] and the effective mass of charge carriers in CaTaO 2 N to be

ariable by a factor of three [11] . 
y of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 
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Quantum chemistry calculations have been utilized to predict

the physical properties of various functional materials [11–15] .

In the case of perovskite-type oxynitrides, such calculations are

required to identify thermodynamically stable anion ordering

arrangements in various compositions of interest, because these

stable arrangements are dependent on both chemical compo-

sition and temperature. However, it is impractical to employ

conventional quantum chemistry calculations for this purpose

because of the numerous possible anion orderings. In the case

of a 3 × 3 × 3 supercell within an ABO 2 N system (consisting of

135 atoms), the quantity of possible anion orderings is on the

order of 10 18 (specifically, 81 C 27 /3 
3 (translational symmetries)/24

(rotational symmetries of the regular octahedron)/2 (reflection

symmetries)) at a rough estimate, and structural optimization

calculations are needed for each structure before predicting its

physical properties. As a result, the structural optimization step is

the most computationally intensive (and hence the most expen-

sive) aspect of the quantum chemical calculations. For this reason,

calculations for only a few atomic arrangements of small super-

cells within perovskite-type materials have been reported to date.

High-throughput screening of perovskite oxynitrides using first

principles calculations has been carried out, but only limited ar-

rangements of O and N anions were considered [16] . It is therefore

essential to reduce the calculation costs associated with structural

optimization so as to allow detailed theoretical predictions of the

properties of materials such as these having complex compositions.

Recently, machine learning has emerged as a powerful means

of screening various materials [17] . Machine learning based on lin-

ear regression, kernel ridge regression and artificial neural net-

works involves the processing of data to identify lurking patterns.

Unlike conventional density functional theory (DFT) calculations,

it is possible to efficiently predict realistic physical properties for

a randomly-selected structure even if the most stable structures

are not known, once proper models have been learned. In recent

studies, machine learning models were developed to predict the

thermodynamic phase stability of perovskite-type oxides as well

as the bandgap energies of double perovskites, using datasets con-

taining information regarding DFT calculations for more than 1900

perovskite oxides [18] and the Computational Materials Repository

[19] , respectively. 

The present study demonstrates that the most stable anion or-

dering of perovskite-type oxynitrides having large supercells can

be predicted using machine learning based on DFT calculations in-

volving small supercells. In this work, the semiconducting proper-

ties of certain supercells were predicted by DFT calculations, after

which a model for the prediction of the total energy was gener-

ated by machine learning. Subsequently, stable anion ordering was

predicted using the Metropolis method [20] . Finally, the validity of

the supercell structures obtained by the Metropolis method was

confirmed by comparison with the results of DFT calculations. This

work focused on anion ordering in BaNbO 2 N because this mate-

rial is promising as a photocatalyst for solar hydrogen production

[21–23] . Specifically, BaNbO 2 N can oxidize water under visible light

irradiation up to 740 nm [21] . In addition, crystallization of the

near-surface regions of BaNbO 2 N particles by annealing leads to a

remarkable photoanodic current (attributable to water oxidation)

of 5.2 mA cm 

−2 under simulated sunlight [23] . 

Our machine learning method is similar to the cluster ex-

pansion method [24–27] in that large systems can be handled.

However, for the cluster expansion method, it is necessary to de-

termine a crystal structure to expand the clusters, and a greater

number of clusters are required when the symmetry of the crys-

tal structure is lower. In addition, it is generally difficult to include

long-range effects in heterovalent ionic systems as in oxynitrides,

which could make significant contributions to electronic proper-

ties of bulk semiconductors, even though it has been attempted
o include electrostatic energy and/or large number of pair clusters

epresenting long-range interactions among clusters [28] . Compar-

tively, our machine learning approach can consider long-range

ffects in any crystal structure regardless of the symmetry by

efining explanatory variables conveying chemically significant in-

ormation explicitly. 

. Calculation and method details 

.1. Software and libraries 

DFT calculations were performed using the VASP 5.4.4 software

ackage [29–32] , in conjunction with the Numpy [33] , Scipy [34] ,

cikit-learn [35] and Atomic Simulation Environment (ASE) [36] li-

raries. Linear regression, ridge regression [37] , lasso regression

38] and Random Forest [39] calculations were performed with the

cikit-learn software program. Both ridge and lasso regression are

inear models that allow the suppression of over-fitting by apply-

ng a regularization term. Ridge regression considers factors with

mall contributions, while lasso regression does not. In contrast to

he other models, Random Forest is a nonlinear method. All graphs

ere plotted with Gnuplot and all crystal structures were illus-

rated using VESTA [40] . 

.2. DFT calculations 

.2.1. BaNbO 2 N models 

Because BaNbO 2 N and BaNbO 3 both have similar cubic struc-

ures [41,42] , the crystal structure of Pm ̄3 m BaNbO 3 was initially

ptimized. The results were then used to generate BaNbO 2 N su-

ercells because the symmetry of the structure was well-suited

o random elemental substitution. Due to the roughly equivalent

nit cell structures of these two materials, the choice of the ini-

ial structure did not affect the results of the structural optimiza-

ion process. In this optimization, one-third of the O atoms in four

ifferent BaNbO 3 supercells having different even-odd periodici-

ies (2 × 2 × 6, 2 × 3 × 3, 2 × 3 × 4, and 3 × 3 × 3) were randomly re-

laced with N atoms to generate BaNbO 2 N structures. The extent

o which the stability of the supercells was affected by the even-

dd periodicity and the span of the periodicity was subsequently

ssessed. In total, 140 structures were generated for each of the

our types of supercells. It is considered that BaNbO 2 N structures

n which each Nb atom is coordinated with two N atoms are more

table. Therefore, 20 structures in which 85%–100% of Nb atoms

ere coordinated with two N atoms and a further 20 structures in

hich 70%–85% of Nb atoms were coordinated with two N atoms

ere generated. Additionally, 100 structures with fully random O/N

rdering were examined because the Metropolis method required

nformation regarding unstable anion ordering. Overall, 560 struc-

ures were generated for the four supercells, and this quantity was

ufficient to produce predictive models. In preparation for the ma-

hine learning process, these 560 structures were randomly di-

ided into 420 structures (80%) for use as the training set and 140

tructures (20%) for use as the test set. 

.2.2. Structural optimization and calculations of energy and 

andgap values 

Structural optimization and calculations of energy and bandgap

alues were carried out using the VASP software package. The pro-

ector augmented wave (PAW) [43,44] method with the regular

GA-PBE exchange-correlation functional [45,46] was used in con-

unction with a cutoff energy of 520 eV. This process employed

 × 3 × 1, 3 × 2 × 2, 3 × 2 × 2 and 2 × 2 × 2 �-centered k-point sam-

lings of the Brillouin zone for the 2 × 2 × 6, 2 × 3 × 3, 2 × 3 × 4,

nd 3 × 3 × 3 supercells, respectively, and optimization was con-

inued until the forces on all atoms were less than 0.05 eV/ ̊A.
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Fig. 1. BaNbO 2 N unit cell structures with different anion placements. Green, blue, red and gray balls represent Ba, Nb, O and N atoms, respectively. 
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he total energies and bandgaps of the optimized structures were

alculated using 6 × 6 × 2, 6 × 4 × 4, 6 × 4 × 3 and 4 × 4 × 4 �-

entered k-point samplings of the Brillouin zone for the 2 × 2 × 6,

 × 3 × 3, 2 × 3 × 4, and 3 × 3 × 3 supercells, respectively. Each

andgap was calculated from the difference between the minimum

nd the maximum eigenvalues located above and below the Fermi

evel among all calculated k-points, respectively. 

.3. Machine learning 

.3.1. Explanatory and objective variables 

Three explanatory variables were considered: D Coord , D Order and

 exp2 . D Coord ( n ) is the proportion of Nb atoms that are coordinated

ith n N (0 ≤ n ≤ 6) atoms, and is associated with the electrical

tability of the material. In a supercell in which each Nb atom is

oordinated with two N atoms ( Fig. 1 (a) and (b)), D Coord (2) is unity

hile the D Coord ( n ) values ( n = 0, 1, 3, 4, 5 or 6) are zero. 

D Order ( n ) is the proportion of Nb atoms having n trans NbN

hain(s) (0 ≤ n ≤ 3). This variable represents local anion ordering

nd is related to the overlap of Nb 4 d and N 2 p orbitals. The local

nion ordering can be distinguished based on the D Coord and D Order 

alues. Fig. 1 shows three BaNbO 2 N unit cells with different anion

lacements. The unit cells in Fig. 1 (a) and (b) have the same D Coord 

ut different D Order values ( D Order (1) is one and zero, respectively).

n contrast, the unit cells in Fig. 1 (b) and (c) have the same D Order 

 D Order ( n ) = 1 when n = 0 and otherwise D Order ( n ) = 0), but different

 Coord ( D Coord ( n ) = 1 when n = 2 and otherwise D Order ( n ) = 0 for the

ormer and D Coord ( n ) = 1 when n = 3 and otherwise D Order ( n ) = 0 for

he latter). 

D exp2 ( I, J, n x , n y , n z ) is defined as follows. 

 exp 2 ( I, J, n x , n y , n z ) = 

1 

N 

∑ 

i ∈ I, j∈ J 

∑ 

R 

∣∣x i − x j + R x 

∣∣n x 

∣∣y i − y j + R y 

∣∣n y 
∣∣z i − z j + R z 

∣∣n z 
e −| r i −r j + R | 2 

n x = 0, 1, 2 or 3 and n y = 0, 1, 2 or 3 and n z = 0, 1, 2 or 3 

I, J : atomic species 

N : number of atoms in a supercell 

r i : position vector of atom I 

x i , y i and z i : x, y and z components of r i , respectively 

R : supercell lattice vector 

The variables x i , y i , z i , r i and R are normalized so that

.5 × lattice constant is 1 and the space is dimensionless. D exp2 is

elated to the overlap of atomic orbitals, being a function of two

tomic species ( I and J ) and various powers ( n i ) ( i = x, y and z ),

nd is similar to the overlap integral of Gaussian basis functions,

hich are often used in first-principles calculations [47] . Therefore,

 exp2 can express the effects of chemical bonds and long-range in-

eractions. All the explanatory variables were standardized using

he training set. Employing the present method, the values of these

xplanatory variables could be calculated more than 10,0 0 0 times
aster than possible when using the standard DFT approach. That

s, in the same amount of CPU time, it was possible to consider

00 times the quantity of supercells by calculating the explana-

ory variables rather than running DFT calculations. During this

rocess, the total energy per atom and the bandgap of the opti-

ized structure were selected as objective variables. Our machine

earning model predicts the properties of relaxed structures from

xplanatory variables of unoptimized cubic supercell structures

ased on an assumption that the atomic arrangement of unrelaxed

tructures and the atomic coordinates (including lattice vector) of

elaxed structures have a one-to-one relationship. Therefore, the

xplanatory variables contain only information of the atomic ar-

angement. This assumption is considered to be correct taking the

oodness of fit of the model (see Section 3.2 ). 

.3.2. Optimization of hyperparameters 

Hyperparameters included in ridge regression, lasso regression

nd Random Forest calculations were determined by five-fold cross

alidation (CV). The original training set of 420 supercells was di-

ided into a training set of 336 structures (80%) for fitting and a

alidation set of 84 structures (20%) for the calculation of the root

ean square error (RMSE). This operation was repeated five times

hile exchanging the training and validation sets, and the average

f the RMSE values was used as the estimated RMSE for the pre-

ictive model. In this approach, hyperparameters were selected so

s to minimize the estimated RMSE. 

.4. Search for stable anion ordering 

Based on a predictive model for total energy obtained from the

achine learning process, stable anion orderings were searched for

sing the Metropolis method. The inverse temperature β was set

o 50,0 0 0 eV 

−1 atom. Eight 3 × 3 × 3 BaNbO 2 N supercell structures,

n which O and N atoms were randomly ordered, were employed

s initial structures. The simulation was stopped after 60 0 0 steps

ecause the total energy was sufficiently converged, as described

n Section 3.3 . 

. Results and discussion 

.1. Validity of explanatory variables 

Fig. 2 shows the relationship between the D Coord and total en-

rgy values for the 420 BaNbO 2 N supercells in the original training

et as calculated by DFT in association with structural optimiza-

ion. From Fig. 2 (c), it is evident that the total energy decreased

ith increasing D Coord (2), indicating that the BaNbO 2 N supercells

ere more stable when each Nb atom was coordinated with two

 atoms, which in turn is associated with the spatial dispersion

f N atoms in the supercell. Conversely, the total energy tended to

ncrease along with increasing D Coord ( n ) for n � = 2. Therefore, the

umber of N atoms coordinated with each Nb atom is expected to
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Fig. 2. Relationship between the D Coord ( n ) and total energy values for BaNbO 2 N supercells as calculated using DFT. The values of n are (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, and 

(f) 5. 

Fig. 3. Relationship between the D Order ( n ) and total energy values for BaNbO 2 N supercells as calculated using DFT. The values of n are (a) 0, (b) 1, and (c) 2. 
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converge to a value of two during the search for stable anion or-

derings via the Metropolis method, regardless of the initial anion

orderings. Because D Coord ( n ) was correlated with the total energy,

it is suitable for use as an explanatory variable. 

Fig. 3 presents the relationship between the D Order and total

energy values for the same 420 BaNbO 2 N supercells as calculated

by DFT. Fig. 3 (a) demonstrates that the total energy decreases as

the proportion of Nb atoms without trans-NbN chains (that is,

the D Order (0) value) becomes greater. In contrast, the total en-

ergy increases with increasing D Order (1) and D Order (2). These re-

sults indicate that cis-NbN chains are more stable than trans-NbN

chains in the supercells. The structures of perovskite-type oxyni-

trides have been studied experimentally and theoretically [48–53] .

It has been shown that BaTaO 2 N with a d 0 -type electronic
onfiguration had TaN chains in the cis-configuration [48,51–53] . It

s expected that BaNbO 2 N and BaTaO 2 N exhibit similar properties

ecause both Nb 5 + and Ta 5 + are group V elements and have the

ame valency. In this regard, our calculation result is considered

o be consistent with the findings in these earlier studies. Because

he D Order ( n ) results obtained in the present work are in agreement

ith the earlier DFT calculations and also correlate with the to-

al energy, and this parameter is also an appropriate explanatory

ariable. 

.2. Prediction of the total energy 

Table 1 summarizes the RMSE values obtained by predicting the

otal energy using D and D . Linear combinations of these
Order Coord 
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Table 1. Total energy RMSE values based on predictions using D Order and D Coord 
a . 

Data Model 

Linear regression Lasso regression Ridge regression Random forest 

Training (five-fold CV) 3.6 3.6 3.6 3.7 

Training (non CV) 3.5 3.5 3.5 2.5 

Test 3.8 3.8 3.8 3.7 

a Reported in units of meV/atom. 
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Fig. 4. Relationships between the total energy values for BaNbO 2 N supercells in the 

training set (rhombuses) and the test set (triangles) predicted by ridge regression 

and those calculated by DFT. The explanatory variables employed were (a) D Order 

and D Coord , and (b) D Order , D Coord and D exp2 . The total energy values for the eight 

BaNbO 2 N supercells obtained using the Metropolis method are shown as red circles 

in (b). 

3

 

g  

t  
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T

xplanatory variables were evidently sufficient because the RMSEs

ssociated with the CV and test calculations were almost equal in

he case of the linear, ridge and lasso regressions. As in the group

ontribution method, the total energy can be represented by the

um of the local structures. Among these methods, ridge regression

as the most accurate and thus was employed in subsequent trials.

Fig. 4 (a) summarizes the relationships between the total energy

alues for BaNbO 2 N supercells predicted using the ridge regression

ethod in conjunction with D Order and D Coord and those calculated

y DFT. The ridge regression approach was found to produce a con-

istent trend for the BaNbO 2 N supercells in the test set (that were

ot included in the training set) based on the DFT calculation out-

uts, without outliers. The total energy values were predicted ac-

urately (with a high R 2 value of 0.84 for the test set) when using

 Order and D Coord alone, indicating that the energy was highly de-

endent on the local anion ordering structure. 

D exp2 was incorporated into the predictive model because it

as thought that the total energy could be predicted more accu-

ately by incorporating long-range interactions. Table 2 provides

he RMSE values obtained by predicting the total energy using

 Order , D Coord and D exp2 . In contrast to the results obtained when

onsidering only the local anion ordering ( Table 1 ), the RMSE val-

es resulting from CV and test calculations were found to depend

n the method. Specifically, the Random Forest model produced a

MSE for the training set that was an order of magnitude smaller

han that for the test set, indicating overlearning. It is believed

hat the Random Forest approach overestimated D exp2 terms with

mall contributions. However, the accuracy of the total energy

redictions obtained from the other regression methods was im-

roved by including D exp2 in the model. Considering the RMSE val-

es associated with the five-fold CV calculations, ridge regression

as the most accurate regression method. This approach was pre-

umably more accurate than lasso regression because many D exp2 

erms made slight contributions to the total energy. However, it is

ifficult to identify which specific terms made significant contri-

utions in terms of improving the prediction accuracy because of

ssues related to multiple collinearity. 

Fig. 4 (b) shows the relationships between the total energy val-

es for BaNbO 2 N supercells predicted by ridge regression using

 Order , D Coord and D exp2 and those obtained by DFT. Compared to

he predictions based on D Order and D Coord ( Fig. 4 (a)), the accuracy

as improved, suggesting that not only local steric structures but

lso long-range interactions affect the stability of the supercells.

 one-to-one relationship between the atomic arrangement and

tomic coordinates (including lattice vectors) of optimized struc-

ures is correct in this system because the R 2 value was as high as

.91. 
p  

able 2. Total energy RMSE values based on predictions using D Order , D Coord and D exp2 
a . 

Data Method 

Linear regression Lasso re

Training (five-fold CV) 3.2 3.5 

Training (non CV) 2.0 3.3 

Test 2.7 3.6 

a Reported in units of meV/atom. 
.3. Searching for stable anion ordering 

The ridge regression model predicted the total energy with the

reatest accuracy using D Order , D Coord and D exp2 as the explana-

ory variables. Therefore, stable anion orders were predicted based

n this model in conjunction with the Metropolis method. Fig. 5

rovides the total energy for each step of the Metropolis method
gression Ridge regression Random forest 

2.7 3.6 

2.5 0.38 

2.8 3.9 
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Fig. 5. (a) Total energy values for a 3 × 3 × 3 BaNbO 2 N supercell at each step in the 

Metropolis method, and drawings of NbN chains in the supercell at the (b) initial, 

(c) 40th and (d) final steps of the Metropolis method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Drawings of NbN chains in (a) 4 × 4 × 4 and (b) 5 × 5 × 5 supercells as pre- 

dicted by the Metropolis method. The inverse temperature β and the number of 

steps were set to 50,0 0 0 eV −1 atom and 30 0 0, respectively. 
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applied to a randomly-generated 3 × 3 × 3 BaNbO 2 N supercell. The

total energy decreased rapidly in the initial stage of this procedure

and converged sufficiently following 20 0 0 steps. The predicted to-

tal energy values were lower than those for the initial structure

by at least 0.01 eV/atom, which exceeds the RMSE of the predictive

model. Therefore, the supercell structures obtained following 20 0 0

steps can be regarded as stable. Fig. 5 (b)–(d) provides images of

NbN chains in a 3 × 3 × 3 BaNbO 2 N supercell during the search for

stable anion ordering by the Metropolis method. Following stabi-

lization of the supercell, all the NbN chains had a cis conformation

and N atoms were not localized but rather were dispersed three-

dimensionally. The other seven randomly-generated 3 × 3 × 3 su-

percells and those with different even/odd periodicities also exhib-

ited the same features, characterized by delocalization of N atoms

and the dominance of NbN chains in the cis conformation (Fig. S1

in the Supporting Information). Note that the supercells including

short periodicities tended to be less stable, because the ability of

the NbN chains to adopt a cis conformation was restricted (Fig.

S2). Even so, these results are in agreement with earlier studies of

ABO 2 N-type material CaTaO 2 N based on DFT calculations, in that

three-dimensional anion ordering with d 0 -cation—N chains in the

cis conformation was found to be the most thermodynamically sta-

ble structure [11] . These data demonstrate the feasibility of readily

reproducing the results of DFT calculations by machine learning. 

The total energy values for the eight 3 × 3 × 3 BaNbO 2 N super-

cells obtained by the Metropolis method were also calculated using

DFT and the results are superimposed in Fig. 4 (b). The predicted

total energies closely match the total energies calculated by DFT

even though supercells with random anion orders were adopted as

the initial structures. It should be noted that the supercell struc-

tures identified by the Metropolis method were not included in

either the training or test sets because thermodynamically stable

supercell structures were actively explored based on the predic-

tive model. Moreover, the total energies for the eight BaNbO 2 N su-

percells were lower than those for the 560 BaNbO N supercells
2 
nitially generated as the training and test data sets. This result

ndicates the ability of the predictive model to explore stable an-

on ordering with accuracy comparable to that of DFT calculations.

uccessful extrapolation of the predictions suggests that overlearn-

ng was avoided and that the explanatory variables used were not

nly statistically but also chemically meaningful. 

Fig. 6 shows images of NbN chains in 4 × 4 × 4 and 5 × 5 × 5

aNbO 2 N supercells as generated by the Metropolis method based

n the predictive model established using the 3 × 3 × 3 super-

ells. The 4 × 4 × 4 and 5 × 5 × 5 supercells had NbN chains in

he cis conformation exclusively, with N atoms evenly distributed

hroughout. These results are consistent with the data obtained

or the 3 × 3 × 3 supercells, and indicate the applicability of the

redictive model to larger supercells. DFT calculations involving

arge supercells are typically computationally expensive, although

t is possible to estimate the total energy by applying a predictive

odel based on DFT calculations with relatively small supercells.
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Fig. 7. Relationships between the bandgap energy values for BaNbO 2 N supercells 

in the training set (rhombuses) and the test set (triangles) as predicted using (a) 

D Order , D Coord and D exp2 , and (b) solely D Order and D Coord (employing ridge regression) 

and the values calculated by DFT. The bandgap energies for the eight BaNbO 2 N su- 

percells obtained by the Metropolis method are shown in (a) as red circles. 
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t is anticipated that machine learning could therefore allow calcu-

ations involving low concentrations of dopants and defect genera-

ion, which require large supercells. 

.4. Prediction of the bandgap energy 

Because stable anion ordering was successfully predicted, the

andgap energy of BaNbO 2 N supercells was also analyzed, since

his is related to the electronic state of the material. Fig. S3

lots the relationship between the total energy and the bandgap

btained by DFT for the 420 BaNbO 2 N supercells in the training

et. The bandgap became wider as the supercell became more sta-

le, because the energy of the N 2 p and O 2 p orbitals constitut-

ng the valence band maximum was reduced. The data points also

onverged to a greater extent as the total energy of the supercell

ecame lower. Therefore, the bandgap can be predicted from the

otal energy once stable supercell structures have been identified. 

Fig. 7 (a) shows the relationship between the bandgaps of

aNbO 2 N supercells as predicted by ridge regression using D Order ,

 Coord and D exp2 and the values calculated by DFT. The relation-

hip based on predictions using solely D Order and D Coord is also

resented for comparison in Fig. 7 (b). The bandgap energy was

vidently not accurately predicted using the local anion arrange-

ents alone, as the R 2 values for the training and test sets were
.58 and 0.49, respectively. This lack of correlation is attributed to

ontinuous spreading of the wave function representing the elec-

ronic state in the crystal, such that local information regarding

nion ordering alone cannot reproduce the bandgap correctly. In

articular, supercell structures having extremely small bandgap en-

rgies based on DFT were not well reproduced, although it should

e noted that such structures were unstable and thus unrealistic. 

The bandgap prediction accuracy was remarkably improved

hen long-range interactions were considered by incorporating

 exp2 as an explanatory variable. The average of the estimated

andgap energy for the supercells was 1.44 eV and therefore closer

o the experimental value of 1.68 eV [21] than those of the initially

enerated 560 supercells. Notably, DFT calculations for some of the

upercell structures identified by the Metropolis method produced

ven closer bandgap energies. Improvements in the explanatory

ariables should enable more accurate prediction of the bandgap

nergy based on machine learning in future. 

. Conclusions 

Stable anion ordering in perovskite-type BaNbO 2 N supercells

as predicted using a regression model established by machine

earning based on DFT calculation outputs. In this process, the total

nergies for small BaNbO 2 N supercells (up to 27 unit cells) with

andom anion ordering were calculated by DFT. The explanatory

ariables D Order and D Coord (reflecting the local anion ordering) and

 exp2 (associated with chemical bonds and long-range interactions)

ere found to be applicable to predictions of the total energy, and

ncluding D exp2 was shown to improve the prediction accuracy. The

ost accurate model, based on ridge regression, reproduced

he local anion ordering generated by DFT calculations, in which

he most stable supercells had each Nb atom coordinated with two

 atoms, along with NbN chains in a cis conformation. 

By combining this predictive model with the Metropolis Monte

arlo method, stable anion orders were rapidly obtained without

he need to input the most stable supercell having optimized an-

on ordering or the requirement for costly structural optimization

ased on DFT calculations. Supercells predicted by the Metropolis

ethod following the predictive model were more stable than any

f the supercells used for machine learning and had a total energy

lose to that calculated by DFT. These results indicate the ability of

he predictive model developed herein to explore stable anion or-

ering with a level of accuracy comparable to that obtained from

ostly DFT calculations. It was also possible to predict stable anion

rdering in larger (e.g., 4 × 4 × 4 and 5 × 5 × 5) supercells by ap-

lying the same predictive model. The stable anion ordering gen-

rated in this manner can be used to accurately predict electronic

roperties, such as bandgap energy. This work suggests a means

f predicting the properties of functional materials with complex

ompositions at reasonable computational costs via the appropri-

te choice of the explanatory variables and the use of machine

earning. We expect that this method is applicable to other semi-

onductors through modifications of explanatory variables consid-

ring material systems and crystal structures. 
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