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Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and fre-
quent information on impervious surfaces is critical in both social-economic and natural environment
applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However,
annual maps of impervious areas in China with high spatial details do not exist during this period. In this
paper, we made use of reliable impervious surface mapping algorithms that we published before and the
Google Earth Engine (GEE) platform to address this data gap. With available data in GEE, we were able to
map impervious surfaces over the entire country circa 1978, and during 1985–2017 at an annual fre-
quency. The 1978 data were at 60-m resolution, while the 1985–2017 data were in 30-m resolution.
For the 30-m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and
2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious sur-
face in China was not only fast but also considerably exceeding the per capita impervious surface area in
developed countries like Japan. The 40-year continuous and consistent impervious surface distribution
data in China would generate widespread interests in the research and policy-making community. The
impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.

� 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Impervious surfaces, as the major component of human settle-
ments, are mainly artificial structures that are composed of any
material that impedes or prevents natural infiltration of water into
the soil. They include roofs, paved surfaces, hardened grounds
mainly found in human settlements, and major road surfaces
[1,2]. Mapping impervious surfaces with remotely sensed data
onboard satellite has a long history [3–6]. Since Landsat data
became freely accessible in 2008, a considerable amount of
research has been made to map impervious surfaces (or urban land
cover) using time series data [7–14] over all the world. Although a
number of 300–1,000 m resolution urban extent maps were devel-
oped close to an annual basis [15,16], there exists a large uncer-
tainty among those different urban layers due to source of data
used, definition inconsistency, and mapping methods [7,17].
Elsevier B.V. and Science China Pr
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During 1978–2017, China has undergone economic reform and
rapid urbanization. Significant land cover change has occurred in
China [18]. For a number of applications such as regional scale
urban development and management, study of air and water pol-
lution, and climate change and biodiversity research, high-
accuracy data on settlement change at the annual level with rela-
tively high spatial resolution is badly needed for the entire country
[19]. It is possible to collect enough Landsat data, acquired from
the 1970s and onward, that enable us to map impervious surfaces
as a surrogate of human settlements in China since the 1978 eco-
nomic reform. However, thus far, settlement extent data in map
forms only exist in every five years at best [20,21].

The purpose of this research was to develop an annual impervi-
ous surface map whenever the Landsat data were available
between 1978 and 2017. In the remaining of this paper, unless sta-
ted otherwise, we shall make no distinction between human settle-
ments and impervious surfaces as in our method we only extracted
the later. In the following, we introduce the framework of method,
report the result, and compare our results with existing urban lay-
ers developed by others.
ess. All rights reserved.
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2. Method

We developed an automatic impervious surface mapping
framework on Google Earth Engine (GEE), using our previously
developed algorithms [12,22] (Fig. 1). They were successfully
tested in mapping the annual growth of Beijing City and several
other regions in China over 30 years. First, we divided China into
298 image grids, each with approximately 200 km � 200 km in
size. Inside each grid, we collected training sample units in core-
urban and rural areas based on Landsat observation in earlier years
(1980s). Second, we collected all Landsat datasets in GEE and pro-
cessed them through removing clouds (and their shadows). After
that, we applied the developed ‘‘Exclusion/Inclusion” algorithm
to generate initial maps of impervious surface in urban and sur-
rounding rural areas [22]. Finally, we derived annual time series
data of human settlements reflected by impervious surfaces after
implementing the temporal consistency check algorithm [12]. All
these algorithms were compiled in the GEE to ensure mapping effi-
ciency at large scales.

Landsat imagery is our main source in this mapping project,
with an ancillary dataset of nighttime light (NTL) data. The data
source for the 1970 s is mainly from Landsat 1–3, of which the sen-
sor is Multispectral Scanner (MSS) with a resampled pixel size of
60 m. Due to the limitation of data acquisition and data quality,
annual coverage of MSS data is not possible in the 1970s. Fortu-
nately, the settlement development in China, particularly urban
development, was slow during that period. Thus we used data
acquired around 1978 with complete coverage of China to extract
settlements. For the remaining years, 30-m resolution images
acquired on board Landsat 4, 5, 7, and Landsat 8 can mostly cover
the entire country on an annual basis. The NTL data were derived
from the Day/Night Band (DNB) detectors of the Suomi-NPP Visible
Infrared Imaging Radiometer Suite (VIIRS) [23]. To mitigate uncer-
tainties in mapped impervious surfaces, we used the NTL derived
lit areas (annual mean of 2017) as a mask, for grids located in arid
or semi-arid areas (i.e., west of Tengchong-Aihui line). We devel-
oped annual settlement layers from 1985 to 2017. In total, we have
34 settlement layers covering the entire 40-year time span.
Fig. 1. Flowchart of mapping procedures in this study. (a) Mapping unit and training sam
rural areas; (d) temporal consistency check of derived time series data.
We implemented different algorithms for the processing of the
60-m resolution MSS and 30-m resolution Landsat Thematic Map-
per (TM), Enhanced Thematic Mapper Plus (ETM+), and Opera-
tional Land Imager (OLI) data. For MSS, we used the digital
number (DN) values, which were calibrated through geometric
and terrain correction. Clouds (and their shadows) were excluded
using a threshold based approach proposed in [24]. For TM, ETM
+, and OLI, we used the surface reflectance data, which had been
processed with geometric, terrain, and radiometric corrections
and identified cloudy regions [25]. We systematically corrected
the OLI surface reflectance data to make it consistent with other
sensors (i.e., TM and EMT+) [26]. For each year, we used all images
acquired from the green season (June-August) for image composi-
tion, through filling each pixel with the data that have the highest
Normalized Difference Vegetation Index (NDVI) among those
images. Comparing to widely used mean or median strategies,
our composition can substantially reduce the effect of the scanline
drop-off issue in Landsat 7 images (e.g., ETM+) since 2003.

We classified the initial impervious surface areas using training
sample units collected in core-urban and rural areas in earlier
years (1980s), and derived annual impervious surface dynamics
(1985–2017) with the consideration of temporal consistency of
urban development (Fig. 2). The adopted sample collection strat-
egy (Fig. 2a) ensures (1) a sample unit would remain as an imper-
vious surface in subsequent years because for most places
development is irreversible; (2) each sample unit can be spatially
extended (i.e., 3 � 3 pixels) to more sample units for training
[27]. For each year, we mapped initial impervious surface extent
using NDVI, modified normalized difference water index (MNDWI),
and shortwave infrared (SWIR) data extracted from Landsat images
using the ‘‘Exclusion-Inclusion” approach [22] (Fig. 2b). Thresholds
used for impervious surface mapping are determined for each
mapping year. Masks derived from the time-series data and NTL
data were used as spatial constraints to derive impervious surfaces
(Fig. 2c). This helps reduce potential confusion between impervi-
ous cover and bare land, particularly in arid and semi-arid areas.
Given that mean values of such indices as NDVI, MNDWI, and SWIR
are different in urban and rural areas, thresholds were separately
ples; (b) data processing of Landsat images; (c) initial classification of annual urban/



Fig. 2. Illustration of generating annual urban impervious surface using Landsat time series data. (a) Image composition and sampling (1985); (b), (c) main and ancillary
features used for initial classification; (d) temporal consistency; (e) derived annual settlement dynamics reflected by the impervious surfaces. The city within circles is
Tangshan. NTL data is not included here because they were used for arid and semi-arid regions. Features in (c) were derived using all time-series data within a year.
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determined to extract time-series urban and rural settlements
using collected urban and rural sample units, respectively. We then
applied ‘‘temporal consistency check” (Fig. 2d), which consists of
temporal filtering and logistic reasoning, on the initial classifica-
tion results [12]. That is, misclassified impervious surface of indi-
vidual years caused by poor-quality Landsat images were
modified using results from temporally neighboring years. Also,
the derived time series data follow the development logic – only
from undeveloped land to impervious surface. Finally, we derived
annual settlement dynamics from the impervious data in urban
and rural areas from 1985 to 2017 (Fig. 2e). For 1978, we mapped
the settlement extent from the composite NDVI layer (from MSS)
using the same approach, and the resultant settlement extent in
1978 was further constrained using the settlement extent of 1985.

3. Results and validations

The derived impervious surfaces well reflect the urbanization
process over the period of four decades (Fig. 3). In 1978, settle-
ments were mainly located in the urban center in an aggregated
form. Thereafter, they were spatially expanded from urban core
at an unprecedented rate, particularly after 2000. In addition, these
newly urbanized regions are more spatially disaggregated when
compared to earlier settlements. In particular, Shenzhen had
hardly any settlement in 1978, and its dynamics matches well with
the ‘‘opening and reform” policy.

We developed a validation sample set from interpretation,
using time series data and high resolution images. Based on our
annual impervious surface sequence, we extract strata of (1)
non-urban; (2) urbanized in 1985; (3) urbanized during 1985–
1990; (4) urbanized during 1990–1995; (5) urbanized during
1995–2000; (6) urbanized during 2000–2005; (7) urbanized during
2005–2010; and (8) urbanized during 2010–2015 (Fig. S1a online).
Each contains 100 sample units randomly located in the corre-
sponding stratum. Identification on whether or not a sample unit
is an impervious surface is based on manual interpretation of a
long-term NDVI time series, local views of Landsat images, and
high resolution Google Earth Images (Fig. S1b online). For accuracy
assessment, we used the non-urban stratum and urban stratum for
different years (Table 1). The average overall accuracy (OA) is
93.42% over these seven periods. In general, accuracies in earlier
periods are higher. Most errors are caused by confusion between
barren areas and urban lands according to the interpretion result.

We also validated the results with locations in geoNames
(http://download.geonames.org) due to its nearly full coverage of
human settlements with different sizes in the world. Each sample
location reflects a point falling in a town or city. The validation is
done to the 2017 settlement map. Out of the 2,354 sample loca-
tions (Fig. 4), 2,039 fell inside our impervious surface areas
(87%). It can be seen that the coastal areas were accurately
mapped. Only Inner Mongolia, Qinghai, Tibet, Xijiang, and Yunnan
provinces have lower than 70% accuracies. The low accuracies in
western China fall in arid (or semi-arid), cold, and highly moun-
tainous regions in China. It implies that nightlight data are not
strong enough to help preserve settlements in those areas.

We also compared 1990, 2000, and 2010 mapped settlement
areas with the same year manual interpretation urban extent maps
for all 650 cities in China [7]. With the urban extent masks we ran-
domly selected 14,268, 15,220 and 17,760 sample locations from
the 1990, 2000, and 2010 layers, respectively. The overall agree-
ment of these three years are 78.28%, 79.13% and 80.08%, respec-
tively. This shows our mapping results are fairly consistent. As
the urban extent data were manually delineated to encompass a
connected urban area including vegetation, water surfaces and
other non-impervious surfaces, the approximately 80% agreement
does not mean that it was the accuracy of our map products
because there is a chance that our selected sample locations fall
into vegetation or water within the urban extent maps manually
delineated.

There is an overall trend of settlement expansion in every pro-
vince in China (Fig. 5). By 2017, the top urban expansion provinces
are Shandong, Jiangsu, Hebei, Guangdong, and Henan. At the total
rural and urban expansion level, the order of the top 3 remains the
same but the 4th and 5th became Henan and Anhui. These indicate
the high level of land development in eastern China. Guangdong
may be limited by its high proportion of relief terrain and other

http://download.geonames.org


Fig. 3. Illustration of extracted settlements for Beijing (a), Shanghai (b), and Shenzhen (c). Grey images in dotted frames are NDVI of different years overlaid settlement
extraction in red.

Table 1
Accuracy table for each mapping time intervals.a

Year Non-urban Urban PA (%) Year Non-urban Urban PA (%)

1985 Non-urban 99 1 99 1990 99 1 99
Urban 10 90 90 13 87 87
UA (%) 91 99 88 99
OA (%) 94.5 Kappa 0.89 93 Kappa 0.86

1995 Non-urban 99 1 99 2000 99 1 99
Urban 8 92 92 9 91 91
UA (%) 93 99 92 99
OA (%) 95.5 Kappa 0.91 95 Kappa 0.9

2005 Non-urban 99 1 99 2010 99 1 99
Urban 15 85 85 13 87 87
UA (%) 87 99 88 99
OA (%) 92 Kappa 0.84 93 Kappa 0.86

2015 Non-urban 99 1 99
Urban 17 83 83
UA (%) 85 99
OA (%) 91 Kappa 0.82

a UA: users’ accuracy; PA: producer’s accuracy; OA: overall accuracy.
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Fig. 5. Settlement change trends from 1985 to 2017 by provinces.

Fig. 4. Distribution of geoNames samples (a) for accuracy assessment (b).

760 P. Gong et al. / Science Bulletin 64 (2019) 756–763
socio-economic constraints. In total, by 2017, the urban settlement
areas reflected by impervious surfaces in China were 146,102 km2,
while the urban and rural as a whole was 209,950 km2, approxi-
mately 13.6 times of the 15,364 km2 mapped in 1978.

Taking as the base the 1980s land cover and land use map of
China developed by the Institute of Geographic Sciences and
Natural Resources Research of Chinese Academy of Sciences [20],
we overlaid the impervious surface growth maps on top of it, the
sources of different land cover and land use types that were con-
verted into impervious surfaces can be estimated (Fig. S2a online).
The expansion of impervious surface area occupied about
147,551 km2 of natural lands. Among this, 80% were originally
agricultural land, 8.1% converted from forested land, 6.6% came
from grassland. At the provincial level, the contribution of cropland
to impervious surface in 2017 has been shown in Fig. S2b (online).
Jiangsu, Shandong, Hebei, Henan, and Anhui are among the top
five. More than 15,000 km2 croplands have been lost in Jiangsu.
Our results can be compared with several existing settlement
data layers, the 300-m resolution Global Human Settlement
(GHS) [16] and the 30-m resolution manually interpreted national
land cover dynamics layers (NLCD) in every five years [20] (Fig. 6).
While more systematic comparison can be done by users, our pre-
liminary comparison indicates that our results are the most bal-
anced in rural and urban impervious surface mapping. For
example, the manually interpreted NLCD is not pixel-based and
the level of generalization is particularly variable in rural areas.
The GHS data omit rural settlements in some cities in central China
(e.g., Xi’an).

Japan is a country with similar climate to eastern China and it
had experienced a long-term urbanization. We applied the same
method to completely map impervious surfaces in Japan over
1985–2017. Japan’s land development rate as measured by imper-
vious surface growth is considerably different from China. Com-
pared with 1990, China’s grown impervious surface tripled by



Fig. 6. Comparison of Guangzhou, Xi’an, and Chongqing in different products. Our results are human settlements in both urban and rural areas.
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2017 while it was only 96% in Japan (Fig. S3 online). By 2017, the
total impervious surface area in China has been 209,950 km2 while
in Japan this value was 14,290 km2, 6.8% of China’s total. The 2017
per capita impervious surface area of Chinese people (151.7 m2)
was 35% more than that of Japanese people (112.7 m2). China’s
over-expansion in land development is worthy of deeper analysis.
4. Discussion

Our method cannot detect vegetation-covered impervious sur-
face areas due to the top-down view of satellite data used in this
study. On the other hand, there could also be bias due to mixed
pixel effect in urban areas. Since the 30-m resolution pixel in Land-
sat images is still considerably greater than many man-made
structures, our method has to deal with the problem that a large
proportion of pixels in human settlement areas is spectral mixture
of impervious surface, green space, water and soil cover types. If
the spectral contribution of impervious surfaces are heavily
weighted in a pixel, the chance for a pixel to be identified as imper-
vious surface would be high although this over-weighting effect
maybe cancelled out by pixels dominated by green space or other
non-impervious surfaces. The effect of spectral mixture problem
on the extraction of impervious surface from mixed pixels in Land-
sat data cannot be properly evaluated until a careful comparison
with impervious surfaces extracted with sub-meter resolution data
over various human settlement areas is done. Instead, we did some
comparison with several existing data products in the following.

Overall, our human settlement dynamics reflected by the
impervious surface agree with other existing urban extent prod-
ucts (Table 2), although their definitions, methods, and satellite
data sources may be different. The NLCD includes artificial surfaces
both in urban and rural areas, and it is comparable with our results.
Our estimation of total settlements in 2015 and 2010 are 186,227
and 127,512 km2, respectively, which are lower than NLCD
(227,792 and 198,653 km2). It should be noted that NLCD does
not distinguish impervious surfaces from its human settlement
land use classes. For human settlements in urban areas, our esti-
mations in 1995 and 2000 are in the middle of results derived from
GHS and a night-time light based urban dynamics product NTLUD
[28]. However, our result is the highest in 2015 with an area of
131,719 km2. From the temporal perspective, the rate of urban set-
tlement increment in 2015 relatively to 1995 is 2.26 in our result,
while it is 0.75 and 4.25 in GHS and NTLUD derived results,



Table 2
Comparison of some human settlement products over China.

Year This study (urban and rural) NLCD GHS This study (urban) NTLUD

1995 65,117 168,331 60,950 40,405 24,917
2000 80,989 173,357 76,929 49,863 35,294
2005 100,106 189,105 64,003 55,879
2010 127,512 198,653 86,673 91,075
2015 186,227 227,792 106,947 131,719 130,916
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respectively. The GHS results are likely to underestimate the urban
growth over past decades, because the built-up areas increased
more than 2 times during the period of 1990–2010, based on
human interpreted results [7]. In addition, it is reasonable for our
increment to be lower than NTLUD results since less light was
emitted from cities in earlier years.

Uncertainty exists both in time and space in our product.
Although we used NTL data as a mask to delineate human settle-
ment boundaries in arid and semi-arid regions, the confusion
between impervious surfaces and barren (e.g., rock or dry soil) is
a primary difficulty due to similar spectral signatures. This issue
has been widely reported in other studies [9,12,21]. Change infor-
mation derived from time series analysis can be regarded as a com-
plement to reduce the spectral confusion in future attempts [29].
Also, there are limited good-quality Landsat images in earlier years
(e.g., circa 1980s), which is an additional source of uncertainty in
our product. For example, the Landsat MSS data had fewer bands
and were not converted into reflectance data, which is different
from those in Landsat TM, ETM+, and OLI data. This issue cannot
be fully resolved due to the limitation of historical data, even
although we have done temporal consistency check.

5. Conclusions and perspectives

China has undergone rapid land development during the past
40 years. We developed the first annual human settlement map
from 1985 to 2017 with a circa 1978 map produced at the begin-
ning of the economic reform in China. Checking against our own
validation sample the overall accuracy exceeded 90% but with an
imbalance of the eastern coastal areas higher than the interior
regions. Between 1978 and 2017, over 118,205 km2 of croplands
were converted into impervious surfaces. Considering that imper-
vious surfaces were only one part of the urbanization, it is clear
that this is a lower end of estimate on China’s agricultural land
conversion to urban areas. The total human settlement area
exceeded 209,950 km2 which is bigger than the size of United
Kingdom. Compared with Japan, China’s per capita settlement is
over 35% more in 2017.

The growth trend of settlements will continue in China at a
rapid pace before 2030 [30–32]. There is continuing needs for fre-
quent monitoring of human settlement growth. However, the
method presented here is less accurate in less developed arid
and cold regions in China. Occupying a small portion of the land
area on Earth, human settlement mapping is proven difficult in
automatic general-purpose land cover mapping [33]. As can be
seen from our comparison with manual interpretation results,
small human settlements are poorly delineated in manual inter-
pretation results. It is important to incorporate new sources of data
and explore new mapping algorithms [19,34–37]. Only with con-
sistently accurate, high resolution and frequent monitoring of
human settlement areas can it be possible to meet the data needs
in urban planning and management, beautiful and specialized vil-
lage and township development, and many other applications
including climate change, energy conservation, and environment
protection in China [38–40]. The framework developed here can
be extended to mapping the entire world in the GEE platform [41].
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