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Abstract Multi-objective optimization algorithms have recently attracted much attention as they can solve

problems involving two or more conflicting objectives effectively and efficiently. However, most existing stud-

ies focus on improving the performance of the solutions in the objective spaces. This paper proposes a novel

multimodal multi-objective pigeon-inspired optimization (MMOPIO) algorithm where some mechanisms are

designed for the distribution of the solutions in the decision spaces. First, MMOPIO employs an improved

pigeon-inspired optimization (PIO) based on consolidation parameters for simplifying the structure of the

standard PIO. Second, the self-organizing map (SOM) is combined with the improved PIO for better control

of the decision spaces, and thus, contributes to building a good neighborhood relation for the improved PIO.

Finally, the elite learning strategy and the special crowding distance calculation mechanisms are used to

prevent premature convergence and obtain solutions with uniform distribution, respectively. We evaluate

the performance of the proposed MMOPIO in comparison to five state-of-the-art multi-objective optimiza-

tion algorithms on some test instances, and demonstrate the superiority of MMOPIO in solving multimodal

multi-objective optimization problems.
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1 Introduction

As effective tools for solving optimization problems [1, 2], evolutionary algorithms (EAs) have recently

drawn considerable research interest. However, for most real-world optimization problems, there may exist

two or more conflicting optimization objectives. This type of problem is usually defined as the multi-

objective problem (MOP). Because single optimal solutions obtained by single-objective optimization

algorithms cannot meet the need for trade-offs among different objectives, an increasing number of multi-

objective optimization algorithms are being developed for solving MOPs. Some studies on MOPs are

discussed below.

In [3], the long-term conflict avoidance problem was formulated as an MOP, which can be divided

into several sub-problems by using a cooperative co-evolution algorithm. Moreover, the multi-objective

evolutionary algorithm based on decomposition (MOEA/D) was introduced to solve each sub-problem in

this paper. Qu et al. [4] introduced an efficient procedure for solving large-scale portfolio optimization
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problems. The MOEAs and preselection methods were used to reduce the complexity and improve the

effectiveness. Most existing MOEAs show poor versatility on problems with different shapes of Pareto

fronts. To address this shortcoming, Tian et al. [5] proposed an MOEA based on an enhanced inverted

generational distance indicator.

In [6], a novel constraint-handling method based on fast sorting differential evolution (DE) was pre-

sented for tackling constraint MOPs. MOPs with interval parameters are ubiquitous and increase the

intrinsic complexity. A novel EA that interacts with a decisionmaker (DM) was proposed in [7]. This

algorithm can obtain the most preferred solution during the optimization process. Rong et al. [8] demon-

strated a multidirectional prediction strategy for solving dynamic MOPs, which used multiple directions

determined by multiple representative solutions coming from the previous environments to predict the

new locations of Pareto-optimal sets (PSs) in the decision space.

Zhang et al. [9] presented a competitive mechanism-based multi-objective particle swarm optimizer.

A competition mechanism-based learning strategy was designed to guide the search of particle swarm

optimization (PSO) to enhance its robustness in handling MOPs.

MOPs with more than three objectives are usually called many-objective optimization problems (Ma-

OPs). In [10], a novel many-objective EA using a one-by-one selection strategy was proposed to help

balance the convergence and diversity of MaOPs in the high-dimensional objective space. Moreover, a

reference point-based evolutionary algorithm was demonstrated by Liu et al. [11] to help maintain an

extensive and uniform distribution among MaOP solutions. A set-based GA [12] was used to solve MaOPs

with interval parameters, which introduced set-based Pareto dominance relations and an evolutionary

scheme to improve the performance of the proposed algorithm.

A space comprising of all possible solutions to an MOP is called a decision space. Moreover, the space

consisting of all possible values of the MOPs objective functions is known as the objective space. The best

trade-off solution set in the decision space is called the PS and the corresponding values in the objective

space are known as the Pareto front (PF). There exist multiple PSs in some practical problems [13].

Problems that have more than one solution corresponding to the same point in the objective space are

defined as multimodal multi-objective optimization problems (MMOPs) [14]. Finding all PSs in one

decision space can help the DM to obtain multiple solutions and find more robust solutions. Multimodal

multi-objective optimization can also improve the diversity of the population and reveal the potential

properties of the problems. Aiming at multimodal single-objective optimization, many approaches have

been proposed, such as the niching methods [15–17]. However, few studies have been conducted on

multimodal multi-objective optimization. To find methods with good performance in solving MMOPs,

we try to introduce manipulations on the solution distribution into the multi-objective optimization

algorithm.

The method of improving the point distribution in the decision space and objective space is one of the

most efficient ways for solving MMOPs. The Omni-Optimizer proposed by Deb et al. [18] introduced

the method of calculating crowding distance for the non-dominated sorting operation. A method known

as decision-space-based niching NSGAII (DN-NSGA-II) was proposed by Liang et al. [14] for MMOPs.

In DN-NSGA-II, the non-dominated solutions and less-crowded points are obtained from non-dominated

sorting and the crowding distance calculation, respectively, to locate more PSs in the decision space.

Yue et al. [19] presented a new multi-objective particle swarm optimization using ring topology and

special crowding distance (MO-Ring-PSO-SCD) algorithm. The special crowding distance (SCD) cal-

culation method was adopted in this algorithm to improve the point distribution in both decision and

objective spaces. The proposed ring topology technique in the proposed MO-Ring-PSO-SCD can help

generate stable niches. A self-organizing multi-objective particle swarm optimization algorithm for solv-

ing multimodal multi-objective problems (SMPSO-MM) in [20] combined SOM with PSO for MMOPs.

SMPSO-MM can map the individuals in the population to a latent space for building a neighboring

relation to improve the distribution features in the decision space and objective space.

Since the concept of bio-inspired computing was derived from the simulation of complex ecosystems

in the natural world, the related bio-inspired algorithms are provided as a sound scientific basis for

solving practical problems. Swarm intelligence algorithms, such as PSO [21–23] and ant colony algorithm
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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(ACO) [24], have been widely adopted for many real-world problems. A novel intelligent computation

method based on bionics, known as pigeon-inspired optimization (PIO), was proposed by Duan et al. [25]

in 2014. PIO has solved some difficult practical problems, such as biological object recognition [26],

detection of protein complexes [27] and brushless direct current motor parameter design [28]. However,

MOPs, let alone MMOPs, have seldom been involved with PIO.

There exist various EAs for MOPs and multimodal single-objective optimization problems. However,

to the best of our knowledge, there are only a few methods for MMOPs. Moreover, this is the first time

that PIO has been used for tacking MMOPs. Therefore, seeking the most preferred solutions of the DMs

for an MMOP deserves a careful study.

This paper proposes a novel multimodal multi-objective pigeon-inspired optimization (MMOPIO) for

MMOPs by employing the framework of SOM, which clusters similar solutions in the current population at

each generation into the same neighborhood and helps maintain more PSs. The significant characteristics

of the proposed MMOPIO are listed as below.

(1) A consolidation strategy is adopted to simplify the structure of the basic PIO and to perform a

smooth transition from the map-and-compass operator to the landmark operator of PIO.

(2) At each generation, SOM is used to pick up neighboring relation information and help find the

distribution of solutions in the current population.

(3) The elite learning strategy and the SCD are employed to achieve more PSs and improve the diversity

of the solutions.

Following are the main contributions of our study: (1) A self-organizing MMOPIO algorithm is pro-

posed, which is effective for maintaining better PSs because their local topological properties can be

well-preserved. A consolidation parameter is adopted to simplify the structure and perform a smooth

transition between the two operators of PIO. The elite learning strategy and the SCD are used in envi-

ronmental selection for improving the diversity of the obtained PSs. (2) The effectiveness of the proposed

MMOPIO is verified by comparing the performance of MMOPIO with the other four state-of-the-art mul-

timodal multi-objective optimization algorithms and one novel multi-objective optimization algorithm on

MMOP test functions. (3) The parameter analyses of the consolidation parameter and the population

sizes of different comparison algorithms are provided in detail.

The remainder of this paper is organized as follows. Section 2 reviews the concept of MMOPs, and

then, introduces the principles of the basic PIO and its deformation algorithm based on the consolidation

parameter. Section 3 discusses the design of the proposed MMOPIO in detail. Section 4 presents the

experimental studies and the results of the correlation analysis. Finally, Section 5 presents the conclusion

of this paper.

2 Related work

2.1 Multimodal multi-objective problems

There always exist some different objectives in optimization problems. In MOPs, there are two or more

conflicting objectives to be optimized, which can be defined as

Min F (x ) = (f1(x ), f2(x ), . . . , fm(x )), (1)

where x i = (x 1, x 2, . . ., xn) expresses the decision vector (a vector in the n-dimensional decision space);

f (x i) is the corresponding objective value of x i and is the objective vector (a vector in the m-dimensional

objective space); m are the number of objectives to be optimized in MOPs. x and y represent two decision

vectors. We can state that y is dominated by x (x≺y) if the relation between these two vectors is as

follows:

(∀i ∈ {1, 2, . . . ,m} : fi(x ) 6 fi(y)) ∧ (∃j ∈ {1, 2, . . . ,m} : fj(x ) < fj(y)). (2)

In MOPs, we compare all obtained solutions according to the Pareto dominance relation expressed by

(2). If a solution x is not dominated by any other solution in the decision space, we term this decision
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 1 (Color online) Example of multimodal multi-objective problem.

vector x as a non-dominated solution, i.e., the PS is formed by a set of all non-dominated solutions in the

MOPs decision space. The objective values f (x i) obtained according to these non-dominated solutions

comprise the corresponding PF. However, sometimes, the PF obtained in the MOPs may correspond to

more than one PS. In this case, these MOPs are belong to MMOPs. As shown in Figure 1, the PF in

the right coordinate system (objective space) corresponds to two different PSs (PS1 and PS2) in the left

coordinate system (decision space), and the shape points (A1 in the PS1 and A2 in the PS2) in the left

correspond to the same shape dot (A′) in the right system simultaneously. With the conventional multi-

objective optimization algorithms, even though we can find one of the PSs or part of the PSs and their

corresponding PF accurately, some non-dominated solutions will be missing. Therefore, it is necessary

to design more effective strategies to seek out all existing PSs and maintain them in the search process.

2.2 Framework of PIO

The PIO, proposed by Duan et al. [25] is a novel population-based optimization algorithm derived from

the natural behavior of pigeons, which always find their destination accurately. The basic PIO mainly

consists of two operators: the map-and-compass operator and the landmark operator. The details of

these two processes are described below.

In the first stage, the map-and-compass operator helps guide the flight directions of virtual pigeons.

This process can be described as follows:

v i(t) = v i(t− 1) · e−R×t + rand · (x gbest − x i(t− 1)), i = 1, 2, . . . , N, (3)

x i(t) = x i(t− 1) + v i(t), (4)

where R ∈ [0, 1] represents the map-and-compass operator parameter; t is the current iteration number;

x gbest denotes the best global position; N is the population size of the virtual pigeons; and x i and v i

indicate the positions and velocities, respectively, of the pigeons.

In the second stage, all pigeons obtained according to the first stage are sorted by calculating their

corresponding fitness values. Moreover, only half of these pigeons are reserved for the next operation.

This reservation mechanism is carried out in every generation. The realization of the landmark operator

can be expressed as

x center(t− 1) =

∑N(t−1)
i=1 x i(t− 1) · F (x i(t− 1))

N(t− 1) ·
∑N(t−1)

i=1 F (x i(t− 1))
, (5)

N(t) =
N(t− 1)

2
, (6)

x i(t) = x i(t− 1) + rand · (x center(t− 1)− x i(t− 1)), (7)

where

F (x i(t− 1)) =







1

fitness(x i(t− 1))+ε
, for minimization problem,

fitness(x i(t− 1)), for maximization problem,

(8)
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Figure 2 (Color online) Illustration of improved PIO.

x center is defined as the supposed destination of the pigeons and F (x i) presents the evaluation criterion

of the reservation mechanism based on fitness values. For a maximization problem, half of the pigeons

with larger fitness values will be reserved, and vice versa.

Inspired by the multi-objective pigeon-inspired optimization (MPIO) proposed by Qiu et al. [28], for

simplicity, we combine the map-and-compass operator with the landmark operator by setting a consoli-

dation parameter λ. The new implementation can be denoted as

v i(t) =v i(t− 1) · e−R×t + rand1 · λ · (1− lgtT ) · (x gbest − x i(t− 1))

+ rand2 · λ · lgtT ·(x center(t− 1)− x i(t− 1)), (9)

x i(t) = x i(t− 1) + v i(t), (10)

where T is the maximum iteration. As shown in Figure 2, the pigeons put more emphasis on coming

close to x center rather than x gbest as the number of iterations increase.

The map-and-compass operator is combined with the landmark operator by the parameter λ. Since

different λ values affect the performance of PIO to a large extent, an experimental study is conducted to

explore the impact of varying the consolidation parameter λ, as described in Subsection 4.3. The value

of λ can balance the performance of the diversity and convergence of PIO, as proven in [28]. When the

value of λ is small, the algorithm emphasizes the map-and-compass operator. Then, the diversity of the

population is increased. Moreover, the convergence effect of the landmark operator increases along with

the consolidation parameter λ.

2.3 Self-organizing map

SOM is an unsupervised clustering algorithm proposed by Kohonen [29]. Because of the merits of high-

dimensional data visualization and simplicity [30,31], SOM has been widely used to deal with data mining

problems [32]. Recently, an increasing number of researchers have been combining SOM with optimization

algorithms to solve optimization problems [33–35]. Our proposed MMOPIO integrates SOM with PIO

to solve MMOPs.

SOM can map the input data (high-dimensional input space) to output data (low-dimensional repre-

sentation space). The structure of a two-dimensional SOM is shown in Figure 3, where SOM comprises

the input layer and the latent layer. There exists a certain number of neurons in each layer. We hypothe-

size that the input data are n-dimensional and the latent space includes M = M1×M2 neurons. zu = (zu1 ,

zu2 ) expresses the position of a neuron, and wu= (wu
1 , w

u
2 , . . ., w

u
n) represents the weight vector. The

information of both the position and the weight vector is contained in each neuron (u ∈ (1, 2, . . . ,M)).

At first, the training data are selected randomly from the input data, and then, the best neuron (u ′) is
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 3 (Color online) Illustration of a two-dimensional SOM.

found by (14) according to the calculation of Euclidean distance. Afterward, the weight vector of u ′ and

its neighboring neurons (SOM model) are updated iteratively according to (15) and (16). The testing

data are mapped onto the obtained SOM model. Then, the best neuron and its neighboring neurons are

selected, and finally, recorded.

3 Details of MMOPIO

3.1 Framework of MMOPIO

As a population-based algorithm, PIO has the ability and the advantage of solving various real-world

problems [25–28]. Inspired by the self-organizing multi-objective evolutionary algorithm proposed by

Zhang et al. [33], we propose an MMOPIO algorithm with SOM. In this subsection, the MMOPIO

procedure is presented, followed by a detailed description of its underlying mechanism.

The framework of the proposed MMOPIO is shown in Algorithm 1, where nbest represents the neigh-

boring leader pigeon that is found by SOM. We use the training data (D) to update the SOM model.

The best pigeon is found when we import the P (test data) into the updated SOM model. The best

pigeons are retained in archive (A). By using A, the position of each pigeon can be improved generation

by generation in a stable fashion.

Algorithm 1 Framework of MMOPIO

Require: N (pigeon size), x (current positions of pigeons),v (current velocities of pigeons), δe (standard deviation)

R (the map-and-compass operator parameter), λ (the consolidation parameter), A (archive), D (training data)

P (test data);

1: (x, v, A, D) ← Initialize(N);

2: while termination criterion not fulfilled do

3: nbest ← Self-OrganizingBasedLearning(x , v);

4: x ← Inversemap(nbest) , find the pigeon particle corresponding to nbest according to (14);

5: Sorted x ← non-dominated-SCD-sort(x);

6: /*Select the elite pigeons*/

7: for each xi ∈ Sorted x do

8: (x i, v i) ← Update positions and velocities of pigeons by (9) and (10);

9: xi ← Generate offspring by the elite learning strategy according to (11);

10: /*Update A and D*/

11: Temp A ← A ∪ {x i}, i is the current iteration;

12: Sorted A ← non-dominated-SCD-sort(Temp A);

13: D ← Sorted A \ A;

14: end for

15: end while

Ensure: x (final positions of pigeons).

The general procedure for implementing MMOPIO is as follows. First, the current positions (x ) and

velocities (v) of the pigeons, the training data (D), and the archive (A) are initialized. Then, x and v

 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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are imported into the Self-OrganizingBasedLearning operator to generate the neighboring leader pigeon

(nbest), which is chosen from the neighborhood that guides the pigeons flying to promising positions.

Moreover, we can find the updated x corresponding to nbest according to (14). After inverse mapping,

the non-dominated-SCD-sort method [19] is used to sort x according to the dominance relation. Then,

the steps of selecting the elite pigeons are executed in a loop. x and v are updated according to the

improved (9) and (10), respectively. Then the candidate offspring are reproduced by the elite learning

strategy, which can be expressed as

x i = nbesti +Gauss(0, (δe)2) · (bi − a i), if rand < δe, (11)

where δe is the standard deviation and a and b are the minimum and maximum positions of the pigeons

in MMOPIO. The Gaussian distribution mechanism (Gauss(0, (δe)2)) is used in the elite learning strategy

to help improve the diversification in the early global search stage and accelerate the convergence in the

subsequent local search stage. The mutation operation and boundary treatment are also implemented to

avoid falling into local optima [20].

After selecting the elite pigeons, A is updated by removing the dominated solutions from A ∪ {x i}.

Then, the new solutions generated by the non-dominated-SCD-sort algorithm and the current population

are combined to accomplish the updating of D . The above steps are repeated until the termination

conditions are met.

3.2 Learning mechanism based on self-organizing strategy

Because SOM can represent data by mapping them from a high-dimensional space to a low-dimensional

space and preserve the local topological properties at the same time [29], some researchers have combined

SOM with an evolutionary multi-objective optimization algorithm to help generate better solutions.

In [33], SOM is used to extract neighboring relation information, which can help guide recombination

within the neighborhood to generate new solutions. In [20], SOM helps gather good and similar solutions

together in MOPSO to build a neighboring relation in the decision space. The proposed SMPSO-MM

improves the PS distribution on MMOPs. In this study, we use SOM to establish the neighboring relation

of the current solutions and help improve the quality of the new solutions of PIO on MMOPs.

The neighboring leader pigeons play an essential role in the local search on MMOPs. SOM has the

advantage of preserving the local topological properties of PSs well. In this study, SOM is used to cluster

similar solutions into the same neighborhood and help find the distribution of the current population and

A. According to non-dominated-SCD-sort, the best solutions and their neighboring information stored in

A are updated. The pigeons with larger SCD are preferred as the new offspring. The self-organizing-based

learning mechanism is described by Algorithm 2.

Algorithm 2 Self-OrganizingBasedLearning(x , v)

Require: x (current positions of pigeons), v (current velocities of pigeons), wu (neuron weight vectors) η0 (learning rate),

σ0 (learning radius), R (the map-and-compass operator parameter) λ (the consolidation parameter);

1: /*Update SOM model*/

2: wu ← Initialize(x );

3: (η, σ) ← Calculate values of learning rate and radius by (12) and (13);

4: Find the best neuron in D by (14);

5: Find the neighboring neurons of u′ by (15);

6: Update the neuron weight vectors wu according to (16);

7: /*Find the nbest pigeons*/

8: Map the pigeons of P to the updated SOM latent space and record the best neuron to the archive AA. The best neuron

is found according to (14);

9: Map the pigeons of A to the updated SOM latent space and record nbest to the archive BA, nbest=BA {Iu
m
}, Iu

m

indicates the index of the m-th nearest neuron to neuron u in the latent space;

Ensure: nbest (the neighborhood pigeons).

There are two important parts in the mechanism: SOM model updating and the selection of nbest

pigeons. In the updating part of the SOM model, the neuron weight vectors (wu) are initialized first.
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 4 (Color online) The process of finding nbest.

Then, the learning rate (η0) and the learning radius (σ0) are updated [36] according to the current

iteration (t) and the maximum iteration (T ):

η=η0 ·

(

1−
t

T

)

, (12)

σ=σ0 ·

(

1−
t

T

)/

t. (13)

Afterward, the best neuron in D and its neighboring neurons are sought by

u′ = arg min
16u6M

‖x −wu‖2, (14)

U =
{

1 6 u 6 M ∧
∥

∥

∥
zu − zu′

∥

∥

∥

2
< σ

}

. (15)

The new values of wu are finally obtained by

wu = wu + η · exp
(∥

∥

∥
zu − z u′

∥

∥

∥

2

)

(x −wu). (16)

In the nbest pigeon selection part, once the SOM model is updated, the nbest pigeons can be selected

and recorded by the following operations. The pigeons in the test data (P) are mapped to the new SOM

latent space and u′ is first logged to AA. Then, the pigeons in A are mapped to the updated SOM

latent space and the best neuron is recorded to BA. Afterward, the non-dominated-SCD-sort operation

proposed by Yue et al. [19] is adopted for BA and the nbest pigeons are selected via the sorted BA.

The process of finding the nbest pigeons is illustrated in Figure 4. The SOM model is updated by

the newly generated non-dominated solutions that are sorted in D . The updated SOM model can reflect

the dynamic changes in the pigeons in the decision space and improve the diversification of the obtained

solutions. According to the built neighboring relation, the best neuron will be found and recorded when

the pigeons in the test data (P) are mapped onto the updated SOM latent space. The pigeon particle in

the input space corresponding to nbest is calculated by (14) and the solutions of the neighboring neurons

of nbest are calculated by (15).

The nbest pigeons consist of the solutions of the neighboring neurons of the best neuron clustered by

SOM. By this mechanism, the neuron weight vectors wu are updated when the solutions are sorted by

non-dominated-SCD-sort in each generation. In the decision space, the nbest pigeons are close to other

non-dominated solutions assigned to the neighboring pigeons. Different leader pigeons can improve the

diversity of the algorithm and maintain more multimodal solutions.

4 Experimental studies

4.1 Test functions and performance indicators

Eleven multimodal multi-objective test functions are applied in the experimental studies. These test func-

tions contain MMF1, MMF2 (designed by Liang et al. [14]), six test instances (MMF3–MMF8) proposed
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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by Yue et al. [19], two complex benchmarks named SYM-PART-simple and SYM-PART-rotated [37], and

Omni-test function [18] with n=3.

Pareto set proximity (PSP) is a new indicator proposed by Yue et al. [19]. A PSP value can reflect

both the convergence of the obtained PS and the degree of similarity between the obtained PS and the

true PS. PSP can be defined as

PSP =
CR

IGDX
, (17)

where CR is the cover rate of the solutions modified from the maximum spread (MS) [38], and IGDX [39]

presents the inverted generational distance in the decision space. CR can be expressed by

CR =

(

n
∏

i=1

δi

)1/2n

, (18)

where

δi =























1, Qmax
i = Qmin

i ,

0, qmin
i > Qmax

i ‖ qmax
i 6 Qmin

i ,
(

min(qmax
i ,Qmax

i )−max(qmin
i ,Qmin

i )

Qmax
i −Qmin

i

)

, otherwise.

(19)

The dimensionality of the decision space is denoted by n, where i= (1, 2, . . ., n), qmin
i , and Qmin

i

are the minimum of the achieved PS and the true PS in i-dimensional space, respectively, and qmax
i and

Qmax
i are the maximum of the obtained PS and the true PS in i-dimensional space, respectively. IGDX

can be written as

IGDX(O ,P∗) =

∑

q∈P∗ d(q ,O)

|P∗|
, (20)

where P* indicates a set whose solutions are distributed uniformly in the true PS. All achieved solutions

in the decision space form a set denoted as O . d(q , O) reflects the Euclidean distance between q and

the solutions in O .

Since PSP is a metric that can be used to measure the performances of algorithms in the decision

space, another indicator named IGDf is employed to demonstrate the optimization effects of the proposed

MMOPIO in the objective space. The calculation formula of IGDf is similar to (20), where P* can be

expressed by a set formed by the points in the true PF and the solutions in O can be replaced by points

distributed in the obtained PF in the objective space. A larger PSP and smaller IGDf values mean that

the proposed MMOPIO works well in both the decision and objective spaces.

4.2 Experimental setup

Since solving MMOPs is still in the early stages of development, there are no more training and testing

data. Only very few test functions can be found in the current literature. Eleven representative benchmark

test functions are chosen to measure the effectiveness of the proposed MMOPIO and the other five

comparison algorithms. Most of these test functions were proposed in the past three years. The dimension

of the decision space of MMF1–MMF8, SYM-PART-simple, and SYM-PART-rotated is 2. The dimension

of the decision space of Omni-test is set to 3 for a more accessible visualization. The features of the eleven

test functions are described in detail in [19].

The proposed MMOPIO is compared with the other five algorithms, including Omni-Optimizer [18],

MPIO [28], DN-NSGA-II [14], MO-Ring-PSO-SCD [19], and SMPSO-MM [20]. Since the population size

setting affects the performance of an EA in most cases, an experimental study is conducted to explore the

influence of varying the population size. Details are presented in Subsection 4.4. The results show that

most of these six comparison algorithms perform better when the population size of each algorithm is set
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 5 (Color online) PSP values obtained by MMOPIO with different λ values.

to 700. For a fair comparison, we set the population size of each comparison algorithm to 700 and the

maximal number of function evaluations of each comparison algorithm to 60000 according to [20]. The

other parameter settings of these five comparison methods are the same as the parameters recommended

in the original papers.

All experiments on the eleven benchmark test instances are conducted 30 times independently. The

experiments are implemented with MATLAB 2014a on the 64-bit Microsoft Windows 7 operating system

running on a PC with Intel(R) Core(TM) i5-6500 3.20 GHz CPU and 8 GB RAM.

4.3 Comparison of different algorithms

The consolidation parameter performs a smooth transition between the two stages of PIO [28]. Exper-

iments with different λ values are conducted to study their effects on the performance of the proposed

MMOPIO. The results are as follows.

Figure 5 indicates the PSP values obtained by our proposed method with different λ values (from

1 to 9) averaging over 30 runs. The test functions are MMF1, MMF2, MMF4, MMF6, MMF7, and

SYM-PART-simple. MMF1, MMF2, MMF4, and MMF7 are representative MMOPs that do not overlap

in every dimension. MMF6 and SYM-PART-simple have four and nine PSs, respectively, which overlap

in every dimension. It can be observed that the performance of MMOPIO is relatively sensitive to the

value of λ on MMOPs, especially in the case of functions without overlapping. For most of these test

functions, the proposed MMOPIO achieves the best performance when the λ value is set to 7. However,

MMOPIO maintains a relatively robust performance on MMF6 and SYM-PART-simple with different λ

values. The sensitivity analysis of the parameter λ suggests a size of 7 for the consolidation parameter

in the proposed MMOPIO on MMOPs.

To study the performance of the proposed MMOPIO, we compare MMOPIO with five other algorithms,

most of which are multimodal multi-objective optimization methods with good performance. The excep-

tion is MPIO, which is only a novel multi-objective optimization algorithm without any application for

solving multimodal problems.

The PSs and PFs of MM4 obtained by six different algorithms are shown in Figures 6 and 7, respectively.

It is obvious that the PSs obtained by MO-Ring-PSO-SCD, SMPSO-MM, and MMOPIO are better than

those obtained by the other methods. Moreover, the results of Omni-Optimizer and DN-NSGA-II are

worse than those of the three methods mentioned above but better than those of MPIO.

For MO-Ring-PSO-SCD, SMPSO-MM, and MMOPIO, the solutions are distributed more evenly in

the decision space because of the application of the non-dominated-SCD-sort method [19]. The SCD is

calculated after the non-dominated sorting, which involves calculations in both the decision space and

objective space to improve the distribution of the solutions in PSs and PFs simultaneously. On the other

hand, MO-Ring-PSO-SCD adds a ring topology mechanism, whereas SMPSO-MM and MMOPIO select

a self-organizing method to generate offspring with stable niches in the decision space. Otherwise, the
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 6 (Color online) PSs of MM4 obtained by different algorithms. (a) PS of Omni-Optimizer; (b) PS of MPIO;

(c) PS of DN-NSGA-II; (d) PS of MO-Ring-PSO-SCD; (e) PS of SMPSO-MM; (f) PS of MMOPIO.
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Figure 7 (Color online) PFs of MM4 obtained by different algorithms. (a) PF of Omni-Optimizer; (b) PF of MPIO;

(c) PF of DN-NSGA-II; (d) PF of MO-Ring-PSO-SCD; (e) PF of SMPSO-MM; (f) PF of MMOPIO.

remaining algorithms (Omni-Optimizer and MPIO) only calculate a normal crowding distance in the

objective space or do not have more effective niching methods, so they cannot obtain better PSs even if

the corresponding PF is good.

As described by Yue et al. [19], the PSP indicator can reflect the performance of an algorithm dealing

with MMOPs. The obtained solutions would have a better convergence capacity when the PSP value

increases, meaning that the algorithm with a larger PSP value has a higher degree of similarity between

the obtained PS and the true PS.

According to Figure 8, eleven multimodal multi-objective benchmarks problems are tested by Omni-

Optimizer, MPIO, DN-NSGA-II, MO-Ring-PSO-SCD, SMPSO-MM, and MMOPIO. The results show

that the mean PSP values obtained by MMOPIO are highest for most of these eleven test functions,

especially for the three complex benchmarks (SYM-PART-simple, SYM-PART-rotated, and Omni-test),

meaning that the solutions obtained by MMOPIO are closer to the true PSs and have much better

convergence. SMPSO-MM ranks second, followed by MO-Ring-PSO-SCD. The performances of Omni-

Optimizer and DN-NSGA-II are similar for most of these eleven test functions. The worst performance

is exhibited by MPIO. When it comes to MMF5 and MMF6, SMPSO-MM has a much larger mean

PSP value than any other comparision algorithms. Moreover, the mean PSP values of SMPSO-MM are
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 8 (Color online) PSP value box-plots of 11 test functions under six different algorithms. In each plot, the

horizontal axis numbers indicate different algorithms: 1=Omni-Optimizer, 2=MPIO, 3=DN-NSGA-II, 4=MO-Ring-PSO-

SCD, 5=SMPSO-MM, and 6=MMOPIO. (a) MMF1; (b) MMF2; (c) MMF3; (d) MMF4; (e) MMF5; (f) MMF6; (g) MMF7;

(h) MMF8; (i) SYM-PART-simple; (j) SYM-PART-rotated; (k) Omni-test.

similar to those of MMOPIO on MMF1, MMF4, MMF7, and MMF8. Note that MMF1, MMF4, MMF5,

MMF7, and MMF8 are functions without overlaps in every dimension, except MMF6, meaning that these

functions are relatively simple MMOPs. As can be verified from the results, the performance of MMOPIO

increases with the complexity of the test function.

The means and standard deviations of the PSP and IGDf indicator values achieved by the six compar-

ison algorithms for each test function are shown in Tables 1 and 2, respectively. On each test function, 30

independent runs are conducted. The underlined PSP and IGDf values indicate excellent performance.

‘⊛’, ‘⊖’ and ‘⊚’ mean that the other algorithms perform better, worse, or similarly, respectively, as

compared with the proposed MMOPIO according to Wilcoxon’s rank sum test.

As shown in Table 1, the methods of Omni-Optimizer, MPIO, DN-NSGA-II, MO-Ring-PSO-SCD,

SMPSO-MM, and MMOPIO achieve the 0, 0, 0, 0, 4, and 7 best mean PSP values respectively, indicating

that the proposed MMOPIO performs better than the five compared state-of-the-art multi-objective

algorithms in solving MMOPs in the decision space except for SMPSO-MM, which ranks first on MMF1,

MMF4, MMF5, and MMF6.

The IGDf values denote the degree of proximity of the obtained PF to the true PF; smaller PSP values

are desirable. As indicated in Table 2, MMOPIO obtains six best mean IGDf values and shows that

the achieved PFs of these six different test instances by this method are much closer to the true PFs.

Omni-Optimizer obtained the four best mean IGDf values, which indicate that this algorithm performed

worse than MMOPIO in the objective space but much better than the other compared algorithms.

Tables 1 and 2 show that the proposed MMOPIO could obtain higher PSP values but relatively low

IGDf values at the same time for solving MMOPs. The proposed MMOPIO is superior in both the PSP

and IGDf values, indicating that it can achieve a better balance in both the decision and objective spaces.
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Table 1 PSP values achieved by different algorithms

Mean (Std dev) Omni-Optimizer MPIO DN-NSGA-II MO-Ring-PSO-SCD SMPSO-MM MMOPIO

MMF1 36.93(5.51) ⊖ 1.51(0.69) ⊖ 33.61(5.07) ⊖ 56.67(2.38) ⊖ 76.63(3.21) ⊛ 70.69(2.9)

MMF2 56.17(25.93) ⊖ 1.89(1.02) ⊖ 49.68(18.52) ⊖ 74.99(13.72) ⊖ 107.9(12.4) ⊖ 170.35(32.95)

MMF3 64.36(22.41) ⊖ 2.98(1.72) ⊖ 52.06(19.85) ⊖ 99.17(14.21) ⊖ 136.43(12.83)⊖ 225.01(33.17)

MMF4 38.22(8.78) ⊖ 1.31(0.61) ⊖ 37.43(8.64) ⊖ 99.55(3.83) ⊖ 133.03(4.8) ⊛ 122.14(9.62)

MMF5 13.15(1.34) ⊖ 0.97(0.37) ⊖ 13.18(1.32) ⊖ 28.15(1.21) ⊚ 37.53(1.58) ⊛ 28.33(2.22)

MMF6 15.74(1.43) ⊖ 1.11(0.54) ⊖ 15.55(1.29) ⊖ 32.09(1.21) ⊛ 41.4(1.38) ⊛ 33.97(2.05)

MMF7 82.64(16.29) ⊖ 0.7(0.54) ⊖ 77.74(14.29) ⊖ 96.69(3.74) ⊖ 135.99(4.65) ⊚ 137.54(5.93)

MMF8 14.16(5.19) ⊖ 0.32(0.19) ⊖ 15.86(5.4) ⊖ 39.58(1.39) ⊖ 51(3.06) ⊖ 54.67(7.93)

SYM-PART-simple 1.85(5.01) ⊖ 0.08(0.05) ⊖ 0.81(1.34) ⊖ 16.41(1.18) ⊖ 20.51(1.74) ⊖ 51.4(4.02)

SYM-PART-rotated 2.64(4.22) ⊖ 0.07(0.04) ⊖ 4.49(5.49) ⊖ 13.76(0.91) ⊖ 13.26(1.06) ⊖ 32.04(3.31)

Omni-test 0.87(0.13) ⊖ 0.25(0.15) ⊖ 1.01(0.18) ⊖ 5.9(1.26) ⊖ 6.29(1.31) ⊖ 12.41(2.74)

⊛/ ⊖ /⊚ 0/11/0 0/11/0 0/11/0 1/9/1 4/6/1

Table 2 IDGf values achieved by different algorithms

Mean (Std dev) Omni-Optimizer MPIO DN-NSGA-II MO-Ring-PSO-SCD SMPSO-MM MMOPIO

MMF1 8.15E-04 ⊖ 2.18E-01 ⊖ 1.02E-03 ⊖ 1.18E-03 ⊖ 7.82E-04 ⊚ 7.64E-04

(5.62E-05) (1.16E-01) (7.37E-05) (6.40E-05) (3.89E-05) (3.99E-05)

MMF2 1.20E-03 ⊛ 4.93E-01 ⊖ 1.55E-03 ⊛ 7.02E-03 ⊖ 4.91E-03 ⊖ 2.19E-03

(1.11E-03) (2.68E-01) (6.74E-04) (8.19E-04) (4.77E-04) (2.83E-04)

MMF3 8.21E-04 ⊛ 4.54E-01 ⊖ 1.74E-03 ⊛ 5.32E-03 ⊖ 3.94E-03 ⊖ 1.84E-03

(1.63E-04) (3.21E-01) (1.79E-03) (5.86E-04) (3.01E-04) (1.78E-04)

MMF4 7.79E-04 ⊖ 6.75E-01 ⊖ 8.93E-04 ⊖ 1.06E-03 ⊖ 6.96E-04 ⊖ 6.77E-04

(6.52E-05) (4.37E-01) (6.87E-05) (7.30E-05) (3.49E-05) (3.79E-05)

MMF5 7.70E-04 ⊖ 1.16E-01 ⊖ 9.29E-04 ⊖ 1.14E-03 ⊖ 7.62E-04 ⊖ 7.25E-04

(2.97E-05) (4.36E-02) (4.19E-05) (4.10E-05) (2.18E-05) (2.88E-05)

MMF6 7.69E-04 ⊖ 2.39E-01 ⊖ 9.37E-04 ⊖ 1.08E-03 ⊖ 7.05E-04 ⊖ 6.94E-04

(3.14E-05) (2.40E-01) (5.86E-05) (3.75E-05) (2.50E-05) (2.83E-05)

MMF7 8.55E-04 ⊖ 1.59E+00 ⊖ 1.14E-03 ⊖ 1.06E-03 ⊖ 6.71E-04 ⊚ 6.58E-04

(3.21E-05) (2.38E-01) (6.32E-05) (4.76E-05) (2.11E-05) (2.39E-05)

MMF8 8.37E-04 ⊖ 5.20E-01 ⊖ 1.03E-03 ⊖ 1.64E-03 ⊖ 1.20E-03 ⊖ 7.79E-04

(3.20E-05) (4.50E-01) (6.65E-05) (8.41E-05) (5.83E-05) (4.49E-05)

SYM-PART-simple 3.45E-03 ⊚ 9.23E-01 ⊖ 3.61E-03 ⊚ 1.34E-02 ⊖ 1.07E-02 ⊖ 3.49E-03

(4.07E-04) (3.45E-01) (4.59E-04) (1.52E-03) (1.59E-03) (4.76E-04)

SYM-PART-rotated 3.72E-03 ⊛ 1.02E+00 ⊖ 4.32E-03 ⊚ 1.64E-02 ⊖ 1.65E-02 ⊖ 4.78E-03

(4.78E-04) (3.63E-01) (6.70E-04) (2.17E-03) (2.21E-03) (8.12E-04)

Omni-test 9.98E-01 ⊖ 2.89E+00 ⊖ 9.97E-01 ⊖ 9.76E-01 ⊛ 9.77E-01 ⊛ 9.96E-01

(2.13E-04) (6.13E-01) (3.03E-04) (3.03E-03) (2.50E-03) (3.58E-04)

⊛/ ⊖ /⊚ 3/7/1 0/11/0 2/7/2 1/10/0 1/8/2

4.4 Effects of population sizes

Population size carries great importance for most of the optimization algorithms. Although a larger

population size can improve the performance of an algorithm in most cases, the high computational

cost should be considered. To study the effects of different population sizes on the performances of the

six algorithms, experiments with different population sizes are conducted. Figure 9 shows the achieved

PSP values of different algorithms with different population sizes. In each subfigure, the horizontal axis

represents the respective population sizes of 100, 300, 500, 700, and 900 of the comparison methods. The

vertical axis denotes the average PSP values of the experiments, which were repeated 30 times with the

six algorithms.

Figures 9(a)–(f) present the PSP values on MMF1, MMF3, MMF7, MMF8, SYM-PART-simple, and

Omni-test. These values are obtained by different algorithms with varying population size. These six

test functions have multimodal multi-objective properties. The numbers of PSs of different test functions
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 9 (Color online) Achieved PSP values of different algorithms with different population sizes. (a) PSP values on

MMF1; (b) PSP values on MMF3; (c) PSP values on MMF7; (d) PSP values on MMF8; (e) PSP values on SYM-PART-

simple; (f) PSP values on Omni-test.

are different. MMF1, MMF3, and MMF7 have 2 PSs each. Moreover, the numbers of PSs of MM8,

SYM-PART-simple, and Omni-test are 4, 9, and 27, respectively. Note that the PS number represents

the degree of complexity of a function to a certain extent. The larger the PS number, the more complex

is the test function.

Figure 9(a), (c), and (d) shows that the performance of the proposed MMOPIO is much better than

those of the other comparison algorithms, except for SMPSO-MM, on MMF1, MMF7, and MMF8 with

different population sizes. MMOPIO and SMPSO-MM have similar exploratory behaviors on MMF1

and MMF7 for both algorithms to use SOM for achieving better solutions. The superior performances

of MMOPIO and SMPSO-MM demonstrate that SOM is effective in tackling MMOPs. As shown in

these three subfigures, the performances of MMOPIO and SMPSO-MM maintain a relatively stable

trend with different population sizes. However, the other four comparison algorithms, except for MPIO,

perform much better when their population sizes increase. The experimental results demonstrate that

the population size setting is sensitive for MO-Ring-PSO-SCD, DN-NSGA-II, and Omni-Optimizer on

relatively simple MMOPs. However, MMOPIO and SMPSO-MM can achieve a proper balance with

varying population sizes when the number of PSs of the test function is low.
 https://engine.scichina.com/doi/10.1007/s11432-018-9754-6
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Figure 9(b) and (e) shows that MMOPIO performs better than the other five algorithms on MMF3 and

SYM-PART-simple. The most considerable PSP value is achieved with the population size set to 300.

The performance of MMOPIO slowly weakens as the population size increases. This phenomenon may

occur because the maximal number of function evaluations is equal to the product of the population size

and the number of iterations, which will decrease when the population size increases. In this condition,

MMOPIO may not possess the ability of convergence. Figure 9(f) shows that the PSP value of MMOPIO

first increases with the population size, and then decreases when the population size arrives at 700 for

Omni-test. MMOPIO performs much better than the other comparied algorithms after the population

size has been set to more than 500. Note that MMF3, SYM-PART-simple, and Omni-test are different

because they are complicated functions that overlap in the decision space. As shown in Figure 9(b),

(e), and (f), the largest PSP value of MO-Ring-PSO-SCD is achieved when the population size increases

to 300, after which it will achieve a balance. The PSP values of DN-NSGA-II and Omni-Optimizer

increase slightly when the population sizes increase. MPIO achieves the lowest PSP values with varying

population sizes on these three complex test functions. SMPSO-MM achieves a balanced performance on

MMF3 and Omni-test. The largest value of PSP on SYM-PART-simple is achieved when the population

size is 100, and then, the value decreases slowly when the population size increases.

As shown in Figure 9(a)–(f), the six comparison algorithms can be ranked according to their per-

formance: MMOPIO, SMPSO-MM, MO-Ring-PSO-SCD, DN-NSGA-II, Omni-Optimizer, and MPIO.

Comparing the performance of MPIO with MMOPIO on these six different test functions, we can con-

clude that the SOM strategy proposed in this paper can significantly improve the ability of MPIO in

solving MMOPs. The experimental results show that most of these six comparison algorithms achieve

the largest PSP values on different test functions when the population size is 700 or 900. Taking com-

putational cost into consideration, we set the population size to 700 in the proposed MMOPIO to solve

MMOPs.

5 Conclusion

For solving MMOPs, we propose a novel multimodal multi-objective pigeon-inspired optimization algo-

rithm. A newly invented but effective PIO, together with the SOM strategy, was conducted to address

the MMOPs, which was the first time for PIO to be adopted for solving MMOPs.

In MMOPIO, the framework of a basic PIO is simplified by introducing a consolidation parameter.

SOM and the SCD calculation mechanism mainly realize the manipulations to improve the solution

distribution. The elite learning strategy, together with the mutation operation, is conducive to balancing

the convergence and diversity.

The experimental results demonstrated that the proposed MMOPIO outperforms the other five com-

parison algorithms and shows promising versatility for different MMOPs, especially for the test function

MMF7 with irregular PSs and three complicated test instances, which were SYM-PART-simple, SYM-

PART-rotated, and Omni-test (n=3).

In the future, it would be worthwhile to explore the potentialities of the improved MMOPIO in solving

more complex MMOPs, such as MMOPs with multiple local PSs and with irregular PFs, and even real-

world problems. Moreover, further investigation into applying more effective manipulation strategies on

solution distribution in other meta-heuristic algorithms is desirable.
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