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Abstract Locally repairable codes (LRCs) were proposed to reduce the repair degree in distributed stor-

age systems. In particular, LRCs with availability are highly desirable for distributed storage systems, since

this kind of codes provide the mechanism of local repair for code symbols and parallel reading of hot data.

In this paper, we propose four types of (n, k, r, t)q LRCs from combinatorial designs. We introduce sev-

eral constructions of LRCs with strict availability and some constructions of distance-optimal LRCs with

information-symbol locality. Most of our constructions in this paper are over F2, i.e., they are suitable for

implementation.
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1 Introduction

Distributed storage systems are widely used for large-scale data warehousing. In distributed storage

systems, data integrity is ensured by employing erasure codes. For example, Reed-Solomon codes are

widely used in distributed storage systems to ensure data integrity [1]. When node failure occurs, a

number of new nodes connect to a subset of the undamaged nodes, and download information required

to reconstruct the damaged nodes. This process is called data-repairing [2]. The bandwidth consumed in

the recovery process is called repair bandwidth. Repair degree is the number of nodes connected during

data-repairing.

Regenerating codes [2,3] and locally repairable codes (LRCs) [4] were proposed to ensure data reliability

and efficient node repair. Regenerating codes reduce the repair bandwidth by improving the repair degree

and downloading fewer data from each node, while LRCs reduce the repair degree. In recent years,

LRCs have attracted the attention of many researchers due to their applications to distributed storage

systems [4–7]. [n, k, d] linear codes with (r, δ)-locality were introduced in [7]. In large-scale distributed

storage systems, parallel reading of hot data is a desirable property. [n, k, d] linear codes with (r, δ)-locality

cannot guarantee parallel reading of hot data. To address the problem, Wang et al. [8] introduced the

notation of (n, k, r, t)q LRCs with (r, t)-availability. In an (n, k, r, t)q LRC with (r, t)-availability, the data

in any given node can be obtained in t+ 1 different ways in parallel.
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Definition 1. A code symbol ci of a codeword c in an [n, k] code C over Fq is said to have (r, t)-

availability, if we can find t disjoint subsets Γ1(i), . . . ,Γt(i) of [n]\i, in which |Γj(i)| 6 r, j ∈ [t], such

that ci can be represented by symbols indexed by Γj(i) [8]. Γ1(i), . . . ,Γt(i) are t recovering sets of ci, r

is the locality of ci, and t is the availability of ci. If all information symbols in an [n, k] code C over Fq

have (r, t)-availability, then the code C is an (n, k, r, t)q locally repairable code with information-symbol

(IS) locality and (r, t)-availability (IS-LRC with (r, t)-availability for short). If all n code symbols in an

[n, k] code C over Fq have (r, t)-availability, then the code C is an (n, k, r, t)q locally repairable code with

all-symbol (AS) locality and (r, t)-availability (AS-LRC with (r, t)-availability for short). Usually when

the context is clear, the parameter q can be omitted.

Wang et al. [8] proposed a construction of square codes. X = {Xi,j}16i,j6r+1 ⊆ Fk
q is a set of (r +1)2

column vectors s.t.


























r+1
∑

i=1

Xi,j = 0, for 1 6 j 6 r + 1,

r+1
∑

j=1

Xi,j = 0, for 1 6 i 6 r + 1.

(1)

For an [n = (r+1)2, k]q code C, if the generator matrix of C consists of the (r+1)2 vectors in X , then C

is a square code. An [n, k]q square code is also an (n, k, r, t = 2)q AS-LRC. Wang et al. [8] also gave an

upper bound on minimum distance d of (n, k, r, t) LRCs:

d 6 n− k −

⌈

t(k − 1) + 1

t(r − 1) + 1

⌉

+ 2. (2)

When n = (r + 1)2, k ∈ [r + 1, 2r − 1] and q >
(

n

k+1

)

, there exist [n, k]q square codes attaining the

bound (2). When n = (r + 1)2, k ∈ [2r, r2] and q >
(

n

k+1

)

, the minimum distance of a square code

always outperforms the bound (3) [8]. Rawat et al. [9] proved that for an (n, k, r, t) LRC in which each

recovering set contains only one parity symbol, the minimum distance d satisfies:

d 6 n− k −

⌈

kt

r

⌉

+ t+ 1. (3)

They also introduced a construction of (n, k, r, t)q IS-LRCs with (r, t)-availability attaining the bound (3)

and a construction of (n, k, r, t)q AS-LRCs with (r, t)-availability attaining the bound (3) from resolvable

balanced incomplete block designs (RBIBDs) when r|k. The construction in [9] provided an extension to

the construction in [8], improved availability of LRCs from 2 to t > 2. Su et al. [10] proposed constructions

of LRCs from resolvable configurations by replacing the membership matrix used in [9].

Notice that compared to codes over Fq (q > 2), codes over F2 are more suitable for implementation.

Hao et al. [11] provided a construction of (n, k, r, t)2 IS-LRCs with (r, t)-availability from low-density

parity-check (LDPC) codes. Balaji et al. [12] introduced the notation of locally repairable codes with

strict availability (SA-LRCs).

Definition 2. An (n, k, r, t)q locally repairable code with strict availability ((n, k, r, t)q SA-LRC for

short) [1, 12] is an (n, k, r, t)q AS-LRC with (r, t)-availability, and in its parity-check matrix H , the

weight of each row is r + 1 and the weight of each column is t.

Balaji et al. [12] also proposed a construction of (n, k, r, t)2 SA-LRCs with code length (r + 1)g, in

which g > 1. Zhang et al. [13] provided an extension to the construction in [12]. The construction in [13]

does not require code length n to be a power of r + 1. Balaji et al. [14] gave a construction of binary

SA-LRCs from transposed incidence matrices of block designs without rigorous proof. The block length

of the code in [14] attains the bound (6).

Apart from the bounds on minimum distance of LRCs, there are also bounds on code rate and block

length of LRCs. Tamo et al. [15] concluded an upper bound on the code rate R of (n, k, r, t) LRCs with

(r, t)-availability:

R 6
1

∏t

j=1(1 +
1
jr
)
. (4)
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Prakash et al. [16] provided an upper bound on the code rate of (n, k, r, t) LRCs with sequential repair

property when t = 2:
k

n
6

r

r + 2
. (5)

Balaji et al. [14] proposed a lower bound on the minimum code length of (n, k, r, t) SA-LRCs:

n > (r + 1)2 −
(r + 1)r

t
. (6)

Equality in (6) holds only when t|r(r + 1). An LRC with minimum distance d attaining bound (2) or

bound (3) is called a distance-optimal LRC. An LRC with code rate R attaining bound (4) or bound (5)

is called a rate-optimal LRC.

1.1 Contributions

This paper proposes four types of LRCs with availability properties. Moreover, most of our codes are

constructed over binary field, which are especially practical for system implementation. Tables A1 and

A2 in Appendix A list all the constructions with specific parameters and their optimality in this work.

The main contributions of this paper are summarized below.

(1) We provide several constructions of SA-LRCs based on balanced incomplete block designs (BIBDs).

Our first construction of this kind gives (n, k, r, t)q SA-LRCs based on resolvable designs. Given a

(v̂, b̂, r̂, k̂, λ̂)-RBIBD, we can construct (n = v̂, k, r = k̂ − 1, t 6 r + 1)q SA-LRCs. If we choose an

((r + 1)s, r + 1, 1)-RBIBD, in which r + 1 is a prime power, we get ((r + 1)s, k, r, t 6 r + 1)q SA-LRCs

with minimum distance d > t+ 1 and code rate R > 1− t
r+1 + t−1

n
.

Our second construction of this type gives (n, k, r, t)q SA-LRCs, in which r+1 > 2 and (r+1)|n. This

construction does not require n to be a power of r+1, while n = (r+1)g is necessary in the construction

from [12].

Our third construction of this kind gives (n, k, r, t)q SA-LRCs from transposed incidence matrices of

BIBDs with rigorous proof. The block length of this construction attains the bound (6).

(2) We give several constructions of distance-optimal IS-LRCs with (r, t)-availability. In constructions

of this type, r|kt. We propose an (n = k + kt
r
, k, r, t = k−1

r−1 )2 IS-LRC with (r, t)-availability from the

incidence matrix of a (k, r, 1)-BIBD first. Then, we give (n = k + kt
r
, k, r, 1 6 t 6 k−1

r−1 )2 IS-LRCs from

the incidence matrix of a (k, r, 1)-RBIBD.

Our third construction of this kind gives an (n = k + kt
r
, k, r, t)2 IS-LRC based on the transposed

incidence matrix of a (kt
r
, k, r, t, 1)-BIBD. Then, we propose a construction of (n = k + kt

r
, k = rv̂

t
, 1 6

r 6 v̂−1
t−1 , t)2 IS-LRCs from the transposed incidence matrix of a (v̂, t, 1)-RBIBD.

Although it seems that the four constructions have the same block lengths, the constraints on them

are different. The first construction of this type gives a fixed code for fixed k, r. The second construction

of this kind gives a series of codes for fixed k, r. The third construction of this type gives a fixed code

for fixed kt
r
, t. The fourth construction of this kind gives a series of codes for fixed v̂, t. The minimum

distance of all constructions of this kind attains the bound (3), and the code rate of these constructions

attains the bound (5) when t = 2. Codes of this type do not require r|k, while in the constructions in [9],

r|k is necessary.

(3) We give a construction of SA-LRCs from s mutually orthogonal Latin squares (MOLS) of order

r + 1. From s MOLS of order r + 1, we can construct (n = (r + 1)2, k, r, t 6 s + 2)2 SA-LRCs. This

construction will provide SA-LRCs with parameters that are impossible from BIBDs.

(4) We propose a construction of IS-LRCs with (r, t)-availability from MOLS and maximum distance

separable (MDS) codes. Given s MOLS of order r and an (N + t, k = r2)q MDS code, we can construct

(n = N + kt
r
= N + tr, k = r2, r, t 6 s+ 2)q distance-optimal IS-LRCs.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we present some notations and background

knowledge of combinatorial designs. In Section 3, we introduce constructions of (n, k, r, t)q SA-LRCs
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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from BIBDs. Section 4 gives constructions of distance-optimal (n, k, r, t)2 IS-LRCs with (r, t)-availability

from BIBDs. We propose a construction of (n, k, r, t)2 SA-LRCs from MOLS in Section 5. Section 6

gives a construction of distance-optimal (n, k, r, t)q IS-LRCs with (r, t)-availability from MOLS. Section 7

concludes this paper.

2 Preliminaries

In this section we introduce some notations and background knowledge. [i] denotes the set {1, . . . , i},

and [i, j] denotes {i, i+ 1, . . . , j}, where i < j. Fq is a finite field of size q, in which q is a prime power.

The support of a vector x is represented by suppx. Assume that C is an (n, k) code. C|I is the restriction

of C to I, where I is a subset of [n].

2.1 Backgrounds on block designs

v̂, k̂, λ̂ are integers, v̂ > k̂ > 2 and λ̂ > 1. X is a finite set of elements. We call X a set of points. B

is a collection of subsets of X . Elements in B are called blocks. (X,B) is a (v̂, k̂, λ̂)-BIBD if |X | = v̂,

|B| = k̂ for all B ∈ B, and every pair of distinct points from X is contained in exactly λ̂ blocks [17]. In

a (v̂, k̂, λ̂)-BIBD, every point appears exactly r̂ = λ̂(v̂−1)

k̂−1
times, and there are precisely b̂ = v̂r̂

k̂
= λ̂(v̂2−v̂)

k̂2−k̂

blocks. A (v̂, k̂, λ̂)-BIBD is also called a (v̂, b̂, r̂, k̂, λ̂)-BIBD, and {v̂, b̂, r̂, k̂, λ̂} is the set of its parameters.

When v̂ > k̂ > 2, a (v̂, k̂, λ̂)-BIBD is said to be nondegenerate. A necessary condition for the existence

of (v̂, k̂, λ̂)-BIBD is v̂, b̂, r̂, k̂, λ̂ are all integers. For example, there does not exist a (16, 6, 1)-BIBD.

A (v̂, k̂, λ̂)-BIBD is called a symmetric BIBD (SBIBD) if b̂ = v̂. In this case, r̂ = k̂ and λ̂(v̂−1) = k̂2−k̂.

Every pair of distinct blocks in a (v̂, k̂, λ̂)-SBIBD intersects at λ̂ points [17]. Given a positive integer n,

a finite projective plane of order n is an (n2 + n + 1, n + 1, 1)-SBIBD. When q is a prime power, there

exists a finite projective plane of order q. If there exists a projective plane of order n, then n is the sum

of two squares of integers.

A BIBD can also be represented by its incidence matrix. (X,B) is a (v̂, b̂, r̂, k̂, λ̂)-BIBD, in which

|X | = v̂ and |B| = b̂. M is a b̂× v̂ matrix. The rows of M are indexed by the blocks B1, . . . , Bb̂
, in which

Bi ∈ B for all i ∈ [b̂], the columns of M are indexed by the points p1, . . . , pv̂, where pi ∈ X for all i ∈ [v̂].

The entries mij in M are defined as follows:

mij =

{

1, if pj ∈ Bi,

0, otherwise.
(7)

Then M is the incidence matrix of a (v̂, b̂, r̂, k̂, λ̂)-BIBD [18]. The weight of each row in M is k̂ and the

weight of each column in M is r̂. If M is an incidence matrix of a (v̂, b̂, r̂, k̂, λ̂)-SBIBD, then MT is also

an incidence matrix of a (v̂, b̂, r̂, k̂, λ̂)-SBIBD.

In a (v̂, k̂, λ̂)-BIBD (X,B), a parallel class is a subset of disjoint blocks from B s.t. the union of these

disjoint blocks is X . A resolution is a partition of B into several parallel classes. If B has a resolution, then

(X,B) is resolvable [18]. We denote a resolvable (v̂, k̂, λ̂)-BIBD by (v̂, k̂, λ̂)-RBIBD. In a (v̂, k̂, λ̂)-BIBD,

if (X,B) has a parallel class, then k̂|v̂, and the parallel class contains v̂/k̂ blocks. If (X,B) is resolvable,

then B is partitioned into b̂/(v̂/k̂) = r̂ parallel classes. For each prime power q and positive integer n, we

can construct a (qn, q, 1)-RBIBD [17]. If a nondegenerate (v̂, b̂, r̂, k̂, λ̂)-BIBD exists, then b̂ > v̂ + r̂ − 1

and r̂ > k̂+ λ̂ [18]. A finite affine plane of order n is an (n2, n, 1)-RBIBD [18]. When q is a prime power,

there exists a finite affine plane of order q.

2.2 Orthogonal Latin squares

X is a finite set of size n. A Latin square [17] L of order n defined on X is an n × n array, in which

every row (column) of L is a permutation of X . A Latin square L of order n defined on X can also be

called a Latin square of order n with entries from X . Assume that the columns and rows are indexed by

i, j ∈ [n]. We denote the element in L at the intersection of ith row and jth column as L(i, j).
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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Assume that L1 and L2 are Latin squares of order n with entries fromX and Y , in which |X | = |Y | = n.

If for all x ∈ X and y ∈ Y , there exists a unique pair (i, j), where 1 6 i, j 6 n, such that L1(i, j) = x

and L2(i, j) = y, then L1 and L2 are said to be orthogonal. A group of t Latin squares L1, . . . , Lt of

order n are said to be mutually orthogonal, provided that for any pair of distinct Latin squares Li, Lj in

this group, where 1 6 i < j 6 t, Li and Lj are orthogonal. We denote the maximum number of MOLS

of order n by N(n). N(n) 6 n− 1 for all n > 1. And N(n) = n − 1 if and only if there exists an affine

plane of order n. If there exist s MOLS of order n1 and s MOLS of order n2, then there exist s MOLS

of order n1n2 [18].

3 SA-LRCs from BIBD

Our first construction in this section is based on the incidence matrix M of a (v̂, k̂, 1)-RBIBD. We will

show that for each (v̂, k̂, 1)-RBIBD, we can give a construction of (n = v̂, k, r = k̂−1, t 6 r+1)q SA-LRCs.

Theorem 1. For each (v̂, b̂, r̂, k̂, 1)-RBIBD, we can construct (n = v̂, k, r = k̂− 1, t 6 r+1)q SA-LRCs,

in which q > 2 is a prime power. Let d be the minimum distance of our code and R be the code rate of

our code. Then d > t+ 1 and R > 1− t
r+1 + t−1

n
.

Proof. We consider the incidence matrix M of a (v̂, b̂, r̂, k̂, 1)-RBIBD. We know that in an RBIBD, the

blocks can be partitioned into r̂ parallel classes. Therefore, the incidence matrix M of a (v̂, b̂, r̂, k̂, 1)-

RBIBD can also be partitioned into r̂ sub-matrices {M1, . . . ,Mr̂}:

M =









M1

...

Mr̂









. (8)

Each sub-matrixMi denotes a parallel class in the RBIBD. From the definition of RBIBD, we can conclude

that the weight of each row in Mi is k̂, the weight of each column in Mi is 1. We choose t 6 r+1 matrices

M ′
1, . . . ,M

′
t from {M1, . . . ,Mr̂}, then construct a new matrix

H =









M ′
1

...

M ′
t









. (9)

In a (v̂, b̂, r̂, k̂, 1)-RBIBD, r̂ > k̂ + 1. Therefore, we can choose any t 6 k̂ = r + 1 parallel classes from

M . In a (v̂, b̂, r̂, k̂, 1)-RBIBD, every pair of distinct points is contained in exactly λ̂ = 1 blocks, and each

point appears r̂ times in M , once in each Mi. The supports of t rows containing the same coordinate i

in H only intersect at i. Assume that two rows in H containing i intersect in at least two coordinates.

Then, at least two points represented by these coordinates are contained in two blocks. This contradicts

with the fact that every pair of distinct points is contained in exactly λ̂ = 1 blocks.

If we take H as the parity-check matrix of an LRC, then each code symbol has t disjoint recovering

sets of size k̂ − 1. There is one recovering set for this code symbol in each M ′
i from {M ′

1, . . . ,M
′
t}. Note

that the weight of each column in H is t, the weight of each row in H is k̂. We get a parity-check matrix

H of an (n = v̂, k, r = k̂ − 1, t 6 r + 1)q SA-LRC.

Next, we will deduce the minimum distance and code rate of our construction. Let c be a codeword

from our code with minimum distance d. Since each code symbol has (r, t)-availability, any code symbol

from c could be recovered in case of at most t erasures at any position of c. Then, the minimum distance

d of our code is lower bounded by t+ 1.

There are t parallel classes from a (v̂, b̂, r̂, k̂, 1)-RBIBD in our parity-check matrixH , so there are totally

t · v̂

k̂
rows in H . For each choice of two sub-matrices M ′

i , M
′
j composed of two parallel classes in H , there

exists one redundant row. Each parallel class is a partition of v̂ elements into subsets of size k̂. Assume
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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that the values of all the parity-check equations associated with M ′
i are determined, and the values of all

the parity-check equations associated with M ′
j are determined except one parity-check equation in M ′

j.

Since M ′
i and M ′

j give two partitions of the same v̂ elements, the value of the undetermined parity-check

equation can be deduced from the value of other equations from M ′
i , M

′
j, which means this row in H

associated with the undetermined parity-check equation can be represented by the other rows in M ′
i , M

′
j.

If we fix one parallel class in H , then for each remaining parallel class in H , we can get one redundant

row. Therefore, there are at least t− 1 redundant rows in H . The row rank of H is at most t · v̂
k̂
− (t− 1).

R is the code rate:

R = 1−
rank(H)

n
> 1−

t · v̂

k̂
− (t− 1)

v̂
= 1−

t

k̂
+

t− 1

v̂
= 1−

t

r + 1
+

t− 1

n
. (10)

This completes the proof.

For each (v̂, b̂, r̂, k̂, 1)-RBIBD, we can construct (n = v̂, k, r = k̂ − 1, t 6 r + 1)q SA-LRCs. Therefore,

from a finite affine plane of order r+1, we can construct ((r+1)2, k, r, t 6 r+1)q SA-LRCs, and from an

((r + 1)n, r + 1, 1)-RBIBD, we can get ((r + 1)n, k, r, t 6 r+ 1)q SA-LRCs. However, these codes require

that r + 1 is a prime power. We will give a construction of LRCs from the existing RBIBDs. With the

following theorem, we can give a construction of SA-LRCs for arbitrary r.

Theorem 2. For any integer r + 1 > 2, we can factorize r + 1 to the product of prime powers, i.e.,

r + 1 =
∏l

i=1 qi. We factorize n to the product of prime powers, i.e., n =
∏l

i=1 q
mi

i . We can construct

(n, k, r, t)q SA-LRCs when t 6 mini∈[l]
q
mi

i
−1

qi−1 and q is a prime power.

Proof. For each factor qi of r + 1, we construct a (qmi

i , qi, 1)-RBIBD Ai. We give a construction of

parity-check matrix H of our (n, k, r, t)q SA-LRC. We choose t parallel classes from each Ai. In this

case, t 6 mini∈[l]
q
mi

i
−1

qi−1 . When mi is large, t could be as large as r + 1. Mi is the incidence matrix of t

chosen parallel classes in Ai. Notice that Mi is a tqmi−1
i × qmi

i matrix. The columns of H are indexed by

x = (x1, . . . , xl) ∈
∏l

i=1 Fq
mi

i

, the rows of H are indexed by (y, z) = ((y1, . . . , yl), z) ∈ (
∏l

i=1 Fq
mi−1

i

)× [t],

in which z ∈ [t] denotes the zth parallel class. The rows of Mi are indexed by (yi, z) ∈ F
q
mi−1

i

× [t], the

columns of Mi are indexed by xi ∈ Fq
mi

i

, where z ∈ [t] denotes the zth parallel class. The entries in Mi

are denoted by mi((yi, z), xi). The entries h(y,z),x in H are defined as follows:

h(y,z),x =

{

1, for all i ∈ [1, l], mi((yi, z), xi) = 1,

0, otherwise.
(11)

The weight of each row in H is
∏l

i=1 qi = r + 1. Since we chose t parallel classes from each Ai,

the weight of each column in H is t. Fix a coordinate x. We will show that the t recovering sets of

x are disjoint. Assume that x′ appears in two recovering sets of x. Then, the four entries h(y,z),x,

h(y,z),x′, h(y′,z′),x, h(y′,z′),x′ in H are all 1. Note that from our construction of H , h(y,z),x = 1 only when

∀i ∈ [1, l], mi((yi, z), xi) = 1. Assume that x and x′ are different at the ith coordinate. Then, the four

entries mi((yi, z), xi), mi((yi, z), x
′
i), mi((y

′
i, z

′), xi), mi((y
′
i, z

′), x′
i) in Mi are all 1. This contradicts with

the fact that Mi is composed of t parallel classes from Ai. So for each coordinate x, the t recovering sets

are disjoint.

The minimum distance d of our construction comes from the availability t, d > t + 1. There are t

parallel classes in our parity-check matrix H . For each choice of two sub-matricesHi, Hj composed of two

parallel classes from H , we can get one redundant row. Each parallel class is a partition of n elements

into subsets of size r + 1. If the values of all the parity-check equations associated with Hi, Hj are

determined except one parity-check equation, then the value of the undetermined parity-check equation

can be deduced from the other equations related to Hi, Hj , which means this row in H associated with

the undetermined parity-check equation can be represented by the other rows in Hi, Hj . If we fix one

parallel class in H , then for each remaining parallel class in H , we can get one redundant row. Therefore,

there are at least t− 1 redundant rows in H . The row rank of H is at most t ·
∏l

i=1 q
mi−1
i − (t− 1). R

 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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is the code rate:

R = 1−
rank(H)

n
> 1−

t ·
∏l

i=1 q
mi−1
i − (t− 1)

n
= 1−

t ·
∏l

i=1 q
mi−1
i

∏l

i=1 q
mi

i

+
t− 1

n
= 1−

t

r + 1
+

t− 1

n
. (12)

This completes the proof.

Remark 1. The codes in [13] are contained in our construction. Notice that the square code in [8]

is a subcode of our code when t > 2 and n = (r + 1)2. In this case, the minimum distance of our

construction attains the bound (2) when n = (r + 1)2, t = 2, k ∈ [r + 1, 2r − 1] and q >
(

n

k+1

)

[13]. The

minimum distance of our construction outperforms the bound (3) when n = (r + 1)2, t = 2, k ∈ [2r, r2]

and q >
(

n

k+1

)

. For the general case when n = (r+1)2, q >
(

n

k+e+1

)

and t ∈ [2, r], the minimum distance

of our construction is at least n − k − e when k ∈ [r + 1 − e, 2r − 1 − e], in which e = (r + 1)(t − 2),

and when n = (r + 1)2, q >
(

n

k+e+1

)

, t ∈ [2, r] and k ∈ [2r − e, r2 − e], the minimum distance of our

construction is at least n− k − e− ⌈ 2(k+e)
r

⌉+ 3 [13].

Theorem 3. For each (v̂, b̂, r̂, k̂, 1)-BIBD, we can construct an (n = b̂, k, r = r̂ − 1, t = k̂)q SA-LRC, in

which q > 2 is a prime power. Let d be the minimum distance of our code and R be the code rate of our

code. Then d > t+ 1 and R > 1− t
r+1 . Moreover, code length n of this construction attains the bound

(6).

Proof. Assume that M is the incidence matrix of a (v̂, b̂, r̂, k̂, 1)-BIBD (X,B). We give a construction

based on MT. In H = MT, the rows are indexed by points, and the columns are indexed by blocks.

The row weight of each row in H is r̂, the column weight of each column in H is k̂. Since every pair of

distinct points appears in one block, the supports of rows in H containing the same coordinate i intersect

only at i. If the supports of rows in H containing the same coordinate i intersect more than once, then

there exist two points in X , such that these two points appear in two blocks. This contradicts with the

properties of (v̂, b̂, r̂, k̂, 1)-BIBD.

If we take H as the parity-check matrix of an LRC, then each code symbol has t = k̂ disjoint recovering

sets of size r = r̂−1. Therefore, given a (v̂, b̂, r̂, k̂, 1)-BIBD, we can construct an (n = b̂, k, r = r̂−1, t = k̂)q
SA-LRC, denoted by C. The minimum distance d > t + 1 comes from the availability t. R is the code

rate:

R = 1−
rank(H)

n
> 1−

v̂

b̂
= 1−

k̂

r̂
= 1−

t

r + 1
. (13)

This construction contains the code constructed in [14]. Minimum block length of (n, k, r, t) SA-LRCs is

(r + 1)2 − (r+1)r
t

. In this construction, n = b̂ and

(r + 1)2 −
(r + 1)r

t
= r̂2 −

r̂(r̂ − 1)

k̂
=

k̂r̂2 − r̂(r̂ − 1)

k̂
=

r̂

k̂
· (k̂r̂ − r̂ + 1) (14)

=
r̂

k̂
·

(

k̂
v̂ − 1

k̂ − 1
−

v̂ − 1

k̂ − 1
+ 1

)

=
r̂v̂

k̂
= b̂. (15)

So the block length of C attains the bound (6). This completes the proof.

Remark 2. Notice that although there are some constraints on the second construction, it provides

some parameters that are impossible from the first construction. For example, we want to construct

(36, k, 5, t 6 3)q SA-LRCs. Since there is no (36, 6, 1)-BIBD [18], we cannot construct (36, k, 5, t 6 3)q SA-

LRCs from the first construction. Meanwhile, from the second construction, we can get (36, k, 5, t 6 3)q
SA-LRCs. Given an RBIBD, we can give several codes from the other two constructions in this section.

For instance, given a (9, 3, 1)-RBIBD, we can get (9, k, 2, t 6 3)q SA-LRCs from the first construction

and a (12, k, 3, 3)q SA-LRC from the third construction.

Example 1. HT
1 is the incident matrix of a (4, 2, 1)-RBIBD. H1 is a parity-check matrix of a (6, 3, 2, 2)q

SA-LRC. Assume that M is the incidence matrix of a (9, 3, 1)-RBIBD. H2 comes from M by deleting

the last 3 rows in M . H2 is a parity-check matrix of a (9, k, 2, 3)q SA-LRC C. However, H2 is not full

rank. c = {c0, . . . , c8} denotes a codeword in C. Each row in H2 is related to a parity-check equation.
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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For example, the second row in H2 denotes the equation c2 + c6 + c8 = 0. If we fix the first three rows

(the first parallel class) in H2, then from the rest parallel classes, we can get 2 redundant rows in H2.

In another word, for each pair of parallel classes in H2, there exists a redundant row, which can be

represented by all the other rows in these two parallel classes. H3 comes from H2 by deleting the forth

and seventh rows. We denote the vector representing the ith row in H2 as Ri. R4 = (
∑3

i=1 Ri)−R5−R6,

R7 = (
∑3

i=1 Ri)−R8 −R9. Note that H3 is also a parity-check matrix of C.

H1 =













1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1













, H2 =







































1 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 1 0

0 0 0 1 1 0 0 0 1

1 0 1 0 1 0 0 0 0

0 1 0 0 0 0 1 0 1

0 0 0 1 0 1 0 1 0

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1







































, H3 =





























1 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 1 0

0 0 0 1 1 0 0 0 1

0 1 0 0 0 0 1 0 1

0 0 0 1 0 1 0 1 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1





























. (16)

4 Distance-optimal LRCs with information-symbol locality from BIBD

First, we introduce the notation of the membership matrix [9, 10]. A membership matrix R is an m× k

matrix over F2, in which m is the number of different local groups Γj(i)∪{i}. R denotes the information

symbols in these distinct local groups. The entries rij in R are defined as follows:

rij =

{

1, the j-th symbol participates in the i-th local group,

0, otherwise.
(17)

In [9], the author provided a construction of distance-optimal (n, k, r, t)q LRCs with information-

symbol locality from RBIBD. This code was constructed from a membership matrix R and an (N + t, k)q
MDS code. However, the construction in [9] requires r|k. In this section, we will give a construction of

(n, k, r, t)2 IS-LRCs with (r, t)-availability whether r|k or r ∤ k. The construction in [9] requires that R

is a kt
r
× k matrix, each row in R has weight r, each column in R has weight t, and the supports of rows

in R gives t partitions of k.

In our construction, we only require that R is an incidence matrix of a (k, kt
r
, t, r, 1)-BIBD, in which

r|kt. R is our kt
r
× k membership matrix, in which the weight of each row is r and the weight of each

column is t. Our construction is based on a generator matrix G:

G =
(

Ik×k |R
T
)

. (18)

We will show that the LRC with G as its generator matrix is an IS-LRC with (r, t)-availability, its

distance attains the bound (3), its code rate attains the bound (5) when t = 2.

Theorem 4. The code with generator matrix G is an (n = k+ kt
r
, k, r, t)2 IS-LRC with (r, t)-availability,

and its minimum distance attains the bound (3). The code rate of our code is k
n
= r

r+t
. When t = 2, the

code rate of our construction attains the bound (5).

Proof. Since R is an incidence matrix of a (k, kt
r
, t, r, 1)-BIBD, any two rows in R intersect at most

once. Since the weight of each row in R is r and the weight of each column in R is t, each information

symbol in our code is protected by t disjoint recovering sets of size r. Therefore, our code with generator

matrix G is an (n, k, r, t)2 IS-LRC with (r, t)-availability.

Next, we will show that the minimum distance of our code attains the bound (3). Consider the

parity-check matrix H of our code:

H =
(

−R
∣

∣ I kt

r
× kt

r

)

=
(

R
∣

∣ I kt

r
× kt

r

)

. (19)
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This is because our code is constructed over F2.

Let c be a codeword from our code with minimum distance d. Let ci be the ith non-zero code symbol

in c. First, assume that ci is in the last kt
r

coordinates of c. In this case, there exists a nonzero cj in

the first k coordinates of c. Since R is an incidence matrix of a (k, kt
r
, t, r, 1)-BIBD, cj participates in

t parity-check equations. For each of these t equations, there will be another non-zero ch. Notice that

these t equations are disjoint in H . Thus, there are at least t+ 1 non-zero coordinates in c.

Then, we assume that ci is in the first k coordinates of c. Similarly, ci participates in t parity-check

equations. For each of these t equations, there will be another non-zero cj . Note that these t equations

are disjoint in H . Thus, there are at least t + 1 non-zero coordinates in c. Therefore, the minimum

distance d of our code is lower bounded by t+ 1.

Next we will show that our construction is distance-optimal. We know that in an LRC, when each

recovering set contains only one parity symbol:

d 6 n− k −

⌈

kt

r

⌉

+ t+ 1. (20)

In our code, each recovering set contains only one parity symbol. So the minimum distance d of our

construction satisfies:

d 6 n− k −

⌈

kt

r

⌉

+ t+ 1 = k +
kt

r
− k −

⌈

kt

r

⌉

+ t+ 1 = t+ 1. (21)

In this case, our construction is distance-optimal. The code rate of our construction is k

k+ kt

r

= r
r+t

. Since

IS-LRC with (r, t)-availability is a special case of LRC with sequential repair property, the bound (5) can

be applied to our code. When t = 2, the code rate of our code attains the bound (5), so our construction

is rate-optimal when t = 2. This completes the proof.

Remark 3. We can also choose t parallel classes from a (k, r, 1)-RBIBD, and then construct a mem-

bership matrix R containing t parallel classes from this RBIBD. In this case, R is also a kt
r
× k matrix,

in which r|kt. However, in this case, we can choose any 1 6 t 6
k−1
r−1 . We get a construction of

(n = k + kt
r
, k, r, 1 6 t 6 k−1

r−1 )2 IS-LRCs with (r, t)-availability from a (k, r, 1)-RBIBD.

Remark 4. Assume that M is the incidence matrix of a BIBD. We can also choose R = MT. Similar

to the above proof, given a (kt
r
, k, r, t, 1)-BIBD, in which r|kt, we can give a construction of (n = k +

kt
r
, k, r, t)2 IS-LRC with (r, t)-availability. In this case, R is also a parity-check matrix of an (n′ =

k, k′, r′ = r − 1, t′ = t)2 SA-LRC.

(r′ + 1)2 −
(r′ + 1)r′

t′
= r2 −

r(r − 1)

t
=

r2t− r(r − 1)

t
=

r

t
(rt − r + 1) (22)

=
r

t

(

t
kt
r
− 1

t− 1
−

kt
r
− 1

t− 1
+ 1

)

= k = n′. (23)

The block length of the (n′ = k, k′, r′ = r − 1, t′ = t)2 SA-LRC attains the bound (6). Then, for a pair

of fixed r and t, our (k+ kt
r
, k, r, t)2 IS-LRC with (r, t)-availability has the minimum possible k. In other

words, this construction could give larger t for a given pair k and r compared to other constructions.

Remark 5. Given an incidence matrix M of a (v̂, t, 1)-RBIBD, we can also choose r parallel classes

from MT to form R. Then, we get a construction of (n = k + kt
r

= k + v̂, k = r v̂
t
, 1 6 r 6

v̂−1
t−1 , t)2

IS-LRCs with (r, t)-availability, in which r|kt.

Remark 6. Notice that when the chosen BIBD is symmetric, the first and third constructions are the

same. For example, if we choose a (q2 + q + 1, q + 1, 1)-SBIBD, in which q is a prime power, we can get

a (2k, k = q2 + q + 1, r = q + 1, t = r)2 IS-LRC with (r, t)-availability. If in the second construction of

this kind we choose a (q2, q, 1)-RBIBD, we can get (q2 + sq, q2, q, s 6 q)2 IS-LRCs with (q, s)-availability.

These constructions contain codes proposed in [11]. Note that all the constructions in this section are

distance-optimal. When t = 2, all the codes constructed in this section are rate-optimal. If we choose
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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a (k, r, 1)-BIBD in which r ∤ k in our first construction of this type, we can get an IS-LRC with (r, t)-

availability when r ∤ k, while in the constructions in [9], r|k is necessary. Moreover, all the codes

constructed in this section are over binary field, which are especially practical for system implementation

compared with the codes in [9].

Remark 7. An m × n matrix M is a (τ, ρ)-regular matrix with girth > 4 (no cycle of length 6 4),

if the weight of each column in M is τ , the weight of each row in M is ρ and the supports of any two

rows of M intersect at most once. Notice that any parity-check matrix of (n′, k′, r′, t′) SA-LRC is a

(t′, r′ + 1)-regular matrix with girth > 4. Similar to the proof process in Theorem 4, we can also prove

that any (τ, ρ)-regular m×n matrix M with girth > 4 can substitute the membership matrix R to obtain

a distance-optimal (n′ = k′ + k′t′

r′
, k′ = n, r′ = ρ, t′ = τ) LRC with information-symbol locality and

d = t′ + 1.

For a given BIBD, we could give several constructions of distance-optimal LRCs with information-

symbol locality and some constructions of SA-LRCs. Therefore, our constructions have a large range of

parameters. Thus, depending on the circumstances, we could choose different BIBDs in our constructions

to meet the different requirements of the parameters. Notice that most of the codes constructed in

this paper (all codes in Sections 3–5) are over binary field, which are especially practical for system

implementation. We give several examples to illustrate that the parameters of codes obtained in this

paper are better than other codes.

For a given pair of r and t, our constructions in this section have relatively smaller k. For example,

the block length of the code proposed by Wang, Zhang and Liu (WZL code for short) in [19] is
(

r′+t′

t′

)

for a pair of given r′ and t′. We denote the distance-optimal LRC with information-symbol locality from

WZL code as WZL-ISLRC. The dimension k of WZL-ISLRC is
(

r′+t′

t′

)

=
(

r+t−1
t

)

. At the same time, in

our first construction in this section, k = t(r−1)+1. Especially, in our third construction in this section,

k = r2 − r(r−1)
t

, which is the minimum possible k for a pair of given r, t. Compared to WZL-ISLRC, our

code has smaller dimension k for a pair of given r and t. In other words, our construction should have

larger t for a given pair k and r, which means the codes constructed in this section have higher reliability

and better availability compared to WZL-ISLRC. Moreover, compared to WZL-ISLRC, our codes in this

section are more suitable for small-scale distributed storage systems and hot data warehousing.

Our constructions in this section are more flexible compared to some distance-optimal LRCs with

information-locality from SA-LRCs with short block lengths. For example, the block length of (n′ =

22m − 1, k′ = 22m − 3m, r′ = 2m − 1, t′ = 2m) SA-LRC from Euclidean geometries in [20] is shorter than

the block length of the WZL code for a given pair r′ and t′. The block lengths of the (n′ = Q2 +Q+ 1,

k′ = Q2 + Q − 3s, r′ = Q, t′ = Q + 1) SA-LRC and (n′ = Q2 + Q, k′ = Q2 + Q − 3s, r′ = Q, t′ = Q)

SA-LRC in [14] attain the bound (6), in which Q = 2s, s > 2. If we substitute R with the parity-check

matrices of the above SA-LRCs, then in the LRCs with information-symbol locality, r − 1 = t or r = t.

At the same time, in our second construction in this section, t could be any integer less than or equal

to k−1
r−1 , and in the forth construction in this section, r could be any integer less than or equal to v̂−1

t−1 .

Our constructions could give more choices of parameters compared to the above codes, which means our

codes in this section are more flexible and more widely applicable.

For a given pair r and t, the block lengths of our constructions in Section 3 could be shorter than the

WZL code in [19], which means that our codes in Section 3 are more suitable for small-scale distributed

storage systems and hot data warehousing. The (n′ = 22m − 1, k′ = 22m − 3m, r′ = 2m − 1, t′ = 2m)

SA-LRC from Euclidean geometries in [20], the (n′ = Q2 +Q+ 1, k′ = Q2 +Q− 3s, r′ = Q, t′ = Q+ 1)

SA-LRC and (n′ = Q2+Q, k′ = Q2+Q− 3s, r′ = Q, t′ = Q) SA-LRC in [14] have shorter block lengths

compared to the WZL code in [19]. Notice that in these SA-LRCs r = t or r + 1 = t. Our codes in

Sections 3 and 5 could give more choices of parameters compared to the above codes, which means our

codes in Sections 3 and 5 are more flexible and more widely applicable.

Example 2. Although it seems that the four constructions in this section have the same block lengths,

the constraints on them are different. The first construction gives a fixed code for given k, r. The

second construction gives a series of codes for fixed k, r. The third construction gives a fixed code for
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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given kt
r
, t. The fourth construction gives a series of codes for fixed v̂, t. For example, given a (4, 2, 1)-

BIBD, the first construction gives a (10, 4, 2, 3)2 IS-LRC with (2, 3)-availability, the second construction

gives (4 + 2t, 4, 2, 1 6 t 6 3)2 IS-LRCs with (2, t)-availability, the third construction gives a (10, 6, 3, 2)2
IS-LRC with (3, 2)-availability, the forth construction gives (4 + 2r, 2r, 1 6 r 6 3, 2)2 IS-LRCs with

(r, 2)-availability. G1 is the generator matrix of a (10, 4, 2, 3)2 IS-LRC with (2, 3)-availability. G2 is

the generator matrix of an (8, 4, 2, 2)2 IS-LRC with (2, 2)-availability. G3 is the generator matrix of a

(10, 6, 3, 2)2 IS-LRC with (3, 2)-availability. G4 is the generator matrix of an (8, 4, 2, 2)2 IS-LRC with

(2, 2)-availability.

G1 =













1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1













, G2 =













1 0 0 0 1 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

0 0 0 1 0 0 1 1













, (24)

G3 =

























1 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 0 1 1

























, G4 =













1 0 0 0 1 0 1 0

0 1 0 0 1 0 0 1

0 0 1 0 0 1 1 0

0 0 0 1 0 1 0 1













. (25)

5 SA-LRCs from MOLS

In this section, we provide a construction of SA-LRCs from MOLS. Our code is based on s MOLS of

order (r+1). Ω = {1, . . . , (r+1)2} is a set of (r+1)2 elements (points). If we arrange the elements of Ω

in an (r+1)×(r+1) array A, then s MOLS {L1, . . . , Ls} of order r+1 give s+2 partitions of Ω into r+1

blocks of size r+1, i.e., s+2 parallel classes. These parallel classes are partition of rows P row, partition

of columns P col, and partitions of numbers from Li (i ∈ [s]), i.e., the entries numbered 1, . . . , r+1 in Li,

denoted as PLi . Every pair of distinct blocks from different parallel classes in {P row, P col, PL1 , . . . , PLs}

intersects exactly once [21].

Each block from P row and each block from P col intersect at one point. Next, we consider a pair of

distinct blocks from PLa and PLb , in which a, b ∈ [s]. Since these two blocks are from a pair of orthogonal

Latin squares, they intersect once. Assume that these two blocks are from number i and j. If these two

blocks intersect at least twice, then the (i, j) pair appears at least twice. This contradicts with the fact

that these two Latin squares are orthogonal. Next, we consider a block from P row and a block from P i.

Since Li is a Latin square, these two blocks intersect at one point. Assume that these two blocks intersect

more than once. Then, there will be at least two same elements in Li in the same row. This contradicts

with the fact that Li is a Latin square. Therefore, a block from P row and a block from any PLi intersect

exactly once. Similarly, a block from P col and a block from any PLi intersect exactly once.

We construct a matrix H from these s+ 2 parallel classes. H is a t(r + 1)× (r + 1)2 matrix, in which

1 6 t 6 s + 2. We choose t parallel classes P ′
1, . . . , P

′
t from {P row, P col, PL1 , . . . , PLs}. B1, . . . , Bt(r+1)

denotes the blocks in these t parallel classes. The columns of H are indexed by the (r + 1)2 points, the

rows of H are indexed by the blocks. The entries hij in H are defined as follows:

hij =

{

1, point j is contained in Bi,

0, otherwise.
(26)

We will prove that H is the parity-check matrix of an (n = (r + 1)2, k, r, t 6 s+ 2)2 SA-LRC.

Theorem 5. H is the parity-check matrix of an (n = (r+ 1)2, k, r, t 6 s+2)2 SA-LRC. The minimum

distance of this code is at least t+ 1 and the code rate of this code is at least 1− t
r+1 + t−1

n
.
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Proof. From the above construction, we can conclude that the weight of each row in H is r + 1, the

weight of each column in H is t. Therefore, each code symbol has t recovering sets of size r. Since each

pair of blocks from different parallel classes intersects at one point, these t recovering sets are disjoint.

Therefore, the code with the parity-check matrix H is an (n = (r + 1)2, k, r, t 6 s + 2)2 SA-LRC. The

minimum distance d > t+ 1 comes from the availability t.

For each choice of two sub-matrices Hi, Hj composed of two parallel classes from H , we can get one

redundant row. Each parallel class is a partition of n elements into subsets of size r+1. If the values of all

the parity-check equations associated with Hi, Hj are determined except one parity-check equation, then

the value of the undetermined parity-check equation can be deduced from the other equations related

to Hi, Hj , which means this row in H associated with the undetermined parity-check equation can be

represented by the other rows in Hi, Hj . If we fix one parallel class in H , then for each remaining parallel

class we can get one redundant row. Therefore, the rank of H is at most t(r + 1) − (t − 1). R denotes

the code rate:

R = 1−
rank(H)

n
>

n− (t(r + 1)− (t− 1))

n
= 1−

t(r + 1)

(r + 1)2
+

t− 1

n
= 1−

t

r + 1
+

t− 1

n
. (27)

This completes the proof.

Remark 8. This construction could give some SA-LRCs with parameters that are impossible from

BIBDs. For instance, there is no finite affine plane of order 6 [18]. Therefore, there is no (36, 6, 1)-BIBD.

However, we can construct a (36, k, 5, 1 6 t 6 3)2 SA-LRC from a Latin square of order 6. Notice

that we can replace the membership matrix R in Section 4 by H . Then, we can get a distance-optimal

(n = k+ kt
r
, k = r2, r, t 6 s+2)2 IS-LRC with (r, t)-availability from s MOLS of order r, and when t = 2

this construction is also rate-optimal.

Example 3. HL is a parity-check matrix of a (9, k, 2, 3)2 SA-LRC from a Latin square of order 3.

We denote the vector representing the ith row from HL as Ri. R4 = (
∑3

i=1 Ri) − R5 − R6 and R7 =

(
∑3

i=1 Ri)−R8 −R9. Therefore, rank(HL) 6 9− 2 = 7.

HL =







































1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0







































. (28)

6 Optimal LRCs with information-symbol locality from MOLS

In this section, we provide a construction of distance-optimal (n, k, r, t)q LRCs with information-symbol

locality from MOLS. Ω = {1, . . . , r2} is a set of r2 points. We arrange the elements of Ω in an r × r

array B. {L1, . . . , Ls} is a set of s MOLS of order r. Then {L1, . . . , Ls} give s+ 2 partitions of Ω into

r blocks of size r, i.e., s + 2 parallel classes. These parallel classes are partition of rows P row, partition

of columns P col, and partitions of numbers from Li (i ∈ [s]), i.e., the entries numbered 1, . . . , r in Li,

denoted as PLi . Every pair of distinct blocks from different parallel classes in {P row, P col, PL1 , . . . , PLs}

intersects exactly once. Then, we construct a membership matrix R from these s+ 2 parallel classes. R

is a kt
r
× k = tr × r2 matrix, where 1 6 t 6 s + 2 and k = r2. We choose t parallel classes P ′

1, . . . , P
′
t

from {P row, P col, PL1 , . . . , PLs}. B1, . . . , Btr denotes the blocks in the t parallel classes. The columns of
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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R are indexed by the r2 points, the rows of R are indexed by the blocks. The entries rij in R are defined

as follows:

rij =

{

1, point j is contained in Bi,

0, otherwise.
(29)

Then, we get a membership matrix R. The weight of each row in R is r, the weight of each column in

R is t. Our construction is based on a generator matrix Ĝ of an (N + t, k = r2)q MDS code Ĉ and the

membership matrix R.

Ĝ =
(

Ik×k

∣

∣ p1 . . . pN−k

∣

∣ pN−k+1 . . . pN−k+t

)

. (30)

The rows of R give t partitions of k = r2 points into blocks of size r. The first N columns in the generator

matrix G of our construction are the same as Ĝ. We partition the last t columns in Ĝ according to the

parallel classes P ′
1, . . . , P

′
t . Each parallel class is associated with k

r
= r columns in G. These columns are

local parities for information symbols. Then, we get a k× (N + kt
r
) matrix G. Next we will show that G

is the generator matrix of an (n = N + kt
r
= N + tr, k = r2, r, t 6 s+ 2)q IS-LRC with (r, t)-availability.

Theorem 6. G is the generator matrix of an (n = N + kt
r
= N + tr, k = r2, r, t 6 s+ 2)q LRC C with

information-symbol locality and (r, t)-availability. The minimum distance of C attains the bound (3).

Proof. Notice that in R, any two rows intersect at most once, and the weight of each row in R is r,

the weight of each column in R is t. Therefore, each information symbol in C is protected by t disjoint

recovering sets of size r. So our code C with generator matrix G is an (n, k, r, t)q IS-LRC with (r, t)-

availability. In our code, any local repair group contains only one parity symbol. We will show that our

code can correct any n − k − ⌈kt
r
⌉ + t = N − k + t erasures. In this case, the minimum distance of C

attains the bound (3).

We order the elements of codeword in C from 1 to n. I denotes the coordinates of the information

symbols. Pgbl denotes the coordinates of the global parities, i.e., the indices of {p1, . . . , pN−k}. P i

denotes the coordinates of the local parities constructed from pN−k+i. P l = ∪t
i=1P

i denotes the indices

of local parities in G.

First, assume that there are at most N − k erasures in the set of code symbols indexed by I ∪ Pgbl.

Note that C|I∪Pgbl is an (N, k)q MDS code. Then, these N − k erasures can be repaired. The remaining

erasures can be recovered from C|I .

Next, assume that among these N − k+ t erasures, N − k+ x erasures are in the coordinates indexed

by I ∪Pgbl, in which 0 < x 6 t. Then, there are t−x erasures in the coordinates indexed by P l. Assume

that the worst case happens, these t−x erasures appear in t−x local parity groups in P l. We denote the

undamaged parallel classes by {P ′1, . . . ,P ′x}. We can combine the local parities indexed by {P ′1, . . . ,P ′x}

together to get x parities in the code Ĉ with generator matrix Ĝ. Now we get N − (N − k + x) + x = k

symbols in a codeword from Ĉ. Notice that Ĉ is an (N + t, k)q MDS code. Then all the N −k+ t erasures

can be recovered. Minimum distance of our code is N − k+ t+1, attains the bound (3). This completes

the proof.

Remark 9. Assume that M is an incidence matrix of a (7, 3, 1)-SBIBD. In this construction, we can

also choose R = M . Then, we get an (N + 7, 7, 3, 3)q IS-LRC with (3, 3)-availability. The minimum

distance of the code is N + 4, which means that this code is distance-optimal. We get an (n, k, r, t)q
IS-LRC with (r, t)-availability when r ∤ k. The first construction in [9] gives (N + kt

r
, k, r, 1 6 t 6 k−1

r−1 )q
IS-LRCs from a (k, r, 1)-RBIBD and an (N + t, k)q MDS code. Notice that there is no (36, 6, 1)-BIBD.

Therefore, we cannot get an (n, 36, 6, t)q IS-LRC from the first construction in [9]. Meanwhile, given

a Latin square of order 6, we can give (N + 6t, 36, 6, t 6 3)q IS-LRCs with (r, t)-availability from the

construction in this section.

Example 4. We choose a Latin square of order 2 and an [8, 4, 5]11 Reed-Solomon code with generator

matrix Ĝ. The matrix R comes from a Latin square of order 2. Then, we partition the last 3 columns of

Ĝ according to the rows of R to form the generator matrix G of an (11, 4, 2, 3)11 LRC with information-
 https://engine.scichina.com/doi/10.1007/s11432-019-2649-5
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symbol locality and (2, 3)-availability.

Ĝ =













1 0 0 0 10 7 1 2

0 1 0 0 4 4 3 4

0 0 1 0 5 2 10 4

0 0 0 1 4 10 9 2













, R =

























1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0

























, G =













1 0 0 0 10 7 0 1 0 2 0

0 1 0 0 4 4 0 0 3 0 4

0 0 1 0 5 0 2 10 0 0 4

0 0 0 1 4 0 10 0 9 2 0













. (31)

7 Conclusion

In this paper, we proposed several constructions of LRCs. In Section 3, we provided three constructions of

(n, k, r, t)q SA-LRCs from BIBDs. Then, we proposed four constructions of distance-optimal (n, k, r, t)2
IS-LRCs with (r, t)-availability from BIBDs in Section 4. When the parameters of block designs are chosen

properly, our codes do not require r|k, while in the first code in [9], r|k is necessary. When t = 2, the

codes in Section 4 are rate-optimal. We proposed a construction of (n, k, r, t)2 SA-LRCs from MOLS and

a construction of distance-optimal (n, k, r, t)q IS-LRCs with (r, t)-availability from MOLS in Sections 5

and 6. From these two constructions, we can obtain some LRCs with parameters that are impossible

from block designs.

In the future, we would work on the unsolved problems in this paper: (1) improving the code rate

and minimum distance in our construction of SA-LRC; (2) improving the code rate of LRCs with (r, t)-

availability and information-symbol locality in this paper; (3) constructing a rate-optimal LRC with

(r, t)-availability and all-symbol locality.
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