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Abstract The latest query expansion (QE) methods use the software development features for expanding

queries. However, these methods allow only one feature to be considered at a time. To consider additional

features simultaneously, we propose a QE method based on Github knowledge; this is a new comprehensive

feature that covers both the existing features (i.e., the application program interface (API) information and

crowd knowledge). It is extracted from the “pull requests” of code repositories on Github, which contain

descriptions of a request and its commits, the participants’ comments and the API information of the changed

files. In addition, we implement a black-box framework that integrates multiple QE methods based on the

support vector machine ranking called Github knowledge search repository (GKSR). Our empirical evaluation

shows that the GKSR outperforms the state-of-the-art QE methods CodeHow and QECK by 25%–32% in

terms of precision.
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1 Introduction

The effectiveness of the code search strongly improves by using the query expansion (QE) methods [1,2].

In the last two years, many efforts have been made to build a thesaurus for software-specific words by using

application program interface (API) information or crowd knowledge (CK). For example, CodeHow [3]

considers the API-based feature, it expands a query with the potential APIs from online documentations.

QECK [4] considers the CK-based feature, it expands a query with software-specific expansion words

from the question & answer (Q&A) pairs on the stack overflow website.

Using the latest methods, however, it is possible only to consider one feature at a time. To consider

more features simultaneously, we propose a QE method based on Github knowledge (GK) called Github

knowledge search repository (GKSR). This method covers both the API- and the CK-based features, and

develops a black-box framework based on the support vector machine (SVM) ranking1) that integrates

multiple QE methods, such as the methods based on GK, API and CK.

The GK-based QE method has two steps: creating the GK engine and retrieving the method-level

code snippets.

Creating the GK engine. GK is extracted from the “pull requests” of the code repositories on

Github. First, we collected 26078 high-quality code repositories and evaluated three features (“watch”,

*Corresponding author (email: qh@whu.edu.cn, hgwu@zzuli.edu.cn)
1) https://www.cs.cornell.edu/people/tj/svm light/svm rank.html.
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Figure 1 (Color online) Schematic of GKSR.

“star” and “fork”) of each repository. For each repository, we combined each request and its corresponding

conversation into a request & conversation (R&C) pair called GK. It contains CK (referring to the

descriptions of the request and commits and the participants’ comments) and APIs (referring to the API

information of the changed files). Finally, we indexed 336014 R&C pairs with Lucene 2.9.12) (see “a” in

Figure 1).

Obviously. GK is more useful for software engineering tasks than either APIs or CKs used in previous

studies [3, 4]. This is not only because GK covers both APIs and CK, but it is also because GK records

the entire programming procedure containing programming descriptions, participants’ comments about

how to write or change code, and commits and changed files submitted by participants.

Retrieving method-level code snippets. To improve the possibility of retrieving relevant code

snippets based on GK, we used a two-pass retrieval approach as follows.

(i) First-pass retrieval. On receiving the query q, the GK search engine calculates BM25 similarity

scores [5] between a query and R&C pairs; this identifies the top m of R&C pairs (see “b” in Figure 1).

(ii) Word selection. The words selector identifies useful expansion words with a high term-frequency-

inverse document frequency (TF-IDF), which generates an expanded query Q (see “c” in Figure 1).

(iii) Second-pass retrieval. The code search engine calculates similarity scores between the expanded

query and code snippets in the code corpus, and it recommends the top-k code snippets (see “d” in

Figure 1).

As a framework, we integrate the multiple QE methods.

Integrating QE methods with SVM ranking. To simultaneously consider more features, we

integrate multiple QE methods. By considering the QE methods based on GK, API, CK and other

features as k individual components (f1, f2, f3, . . . , fk), we feed a query to them and obtain k sets of

query results. Then, we compute a weighted sum of k features with the SVM ranking (see “e” in

Figure 1). Based on the sum, we recommend the top-k query results to users in the descending order.

We used two research questions (RQs) to evaluate the GKSR.

RQ1: Is GK effective? We compare GKSRnoSVM (considering only the GK-based QE method and

omitting the SVM ranking) against the API-based CodeHow and the CK-based QECK. Our experimental

results prove that GKSRnoSVM outperforms CodeHow and QECK by 15%–22% for precision on inspecting

the top-1 query results.

RQ2: Is the QE-integrating framework effective? We compared GKSR (which involves integrating

multiple QE methods and using the SVM ranking) against GKSRnoSVM. Our experimental results show

2) http://central.maven.org/maven2/org/apache/lucene/lucene-core/2.9.1/lucene-core-2.9.1.jar.
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that improvement achieved by integrating the QE methods is statistically significant. The top-1 query

results were 9% for precision and 16% for normalized discounted cumulative gain (NDCG).

This paper makes the following contributions.

(1) We propose a QE method based on GK. This is a new feature that covers both APIs and CK.

(2) Based on the SVM ranking, we implemented a black-box framework to integrate multiple QE

methods that are based on GK, API and CK.

(3) Our experiment proves that GKSR outperforms the state-of-the-art QE methods by 25%–32% for

precision.

2 Our technique

GKSR contains three engines: GK engine, code search engine, and QE-integrating engine (see Figure 1).

The first two engines use the GK-based QE method. The last uses the QE methods integration.

2.1 GK engine

In this study, we have four main steps: generating, indexing, searching R&C pairs, and selecting the

expansion words.

2.1.1 Generating R&C pairs

We scanned repositories labeled with the “C#”, “Java” and “Android” tags on Github. To assure the

quality of repository, only the repositories with the composite score of “watch”, “star”, and “fork” greater

than 1 were selected. “Watch” received notifications for new pull requests and for problems related to

a repository; “star” was used to star repositories for keeping track of projects; “fork” was used to make

a copy of a repository. These three features reflect the attention received. People usually search for

repositories that receive more attention. However, “watch”, “star” and “fork” were different from one

another. We normalized their scores in the range [0, 1] by using the min-max normalization method3) [6],

and we calculated the composite score as

composite scorei =
Wi −minW

maxW −minW
+

Si −minS

maxS−minS
+

Fi −minF

maxF−minF
, (1)

where Wi, Si, and Fi represent the watch, the star and the fork scores of the i-th repository, respectively.

The maximums and minimums of the watch, the star and the fork scores in all repositories, are represented

by maxW and minW, maxS and minS, and maxF and minF, respectively.

To generate the R&C pairs, from each repository, we selected the “pull requests”, adopted by the

owner of the source code, along with the “merged pull request” tags labeled on it. Then we combined

each request and its corresponding conversation into an R&C pair. From the request R, we obtained the

description of the pair. From the conversationC, we obtained the participants’ comments and descriptions

of the relevant commits while parsing the names of the changed files as API information.

Figure 2 shows an example of an R&C pair for the pull request “move hdfs stuff out into a new contrib

#34”4). “A” in Figure 2 shows the description of the pair; “B” in Figure 2 shows the conversation of

the pair containing five participants’ comments; “C” in Figure 2 shows the description of two relevant

commits; “D” in Figure 2 shows the API information of 55 changed files. These four parts were com-

bined into the text of the R&C pair, described as “move hdfs stuff contrib; hdfs client shipping issue

shrink contrib require configuration less just working instead advantage core integration; move update

log creation directory factory replace removed mistake; HdfsTestUtil”.

3) https://github.com/AlexDem1126/Min-Max-Normalization/blob/master/minMaxNormalization.java.
4) https://github.com/apache/lucene-solr/pull/34.
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Figure 2 (Color online) Example of an R&C pair.

2.1.2 Indexing and searching R&C pairs

After the above steps, we achieved an R&C pair collection that contained 336014 R&C pairs. Then,

we converted the text of each R&C pair into a bag of words using the text pre-processing methods [7]

(e.g., standard tokenization5), stop-term removal6), identifier splitting7), and stemming8)). We indexed

the pre-processed words as a document using Lucene 2.9.1 (see “a” in Figure 1).

In the first-pass retrieval of the GK-based QE method, we calculated the BM25 similarity scores

between a query and the text of the R&C pairs on the index (see “b” in Figure 1). Based on the scores,

we recommend the top m returned R&C pairs in descending order.

2.1.3 Selection of word

After obtaining relevant R&C pairs, we weighed the scores for the words used in them by using the TF-

IDF weighting function [8], which identifies the high-weighting words as the expansion words. Then, we

added them to the original query, and generated an expanded query (see “c” in Figure 1). We eliminated

the non-discriminating words [8, 9] that appeared in more than 25% of the documents in the collection.

2.2 Code search engine

2.2.1 Creation of code corpus

The files labeled with the “.java” and “.cs” tags were crawled from 625 open-source projects on Github.

For each file, we parsed one or more method-level code snippets, and extracted the code terms with

the Java development tools (JDT)9). In total, we obtained 590321 code snippets. For each snippet, we

5) https://github.com/mpartel/minicompiler/blob/master/src/main/java/minicompiler/Tokenizer.java.
6) https://github.com/deeplearning4j/deeplearning4j/blob/master/deeplearning4j/deeplearning4j-nlp-parent/

deeplearning4j-nlp/src/main/java/org/deeplearning4j/text/stopwords/StopWords.java.
7) https://github.com/jjfiv/galago-git/blob/master/contrib/src/main/java/org/lemurproject/galago/contrib/parse/

SingleFileParser.java.
8) https://github.com/uttesh/exude/blob/master/src/main/java/com/uttesh/exude/stemming/Stemmer.java.
9) https://github.com/eclipse/eclipse.jdt.core.
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Table 1 Example of integrating QE methods

Component Query results

GK-based component c1 c2 c3

API-based component c1 c2 a3

CK-based component b1 c2 a3

converted the code terms into a bag of words, and indexed it as a document containing two fields: the

words and the snippets.

2.2.2 Searching for code snippets

In the second-pass retrieval of the GK-based QE method, we calculated the BM25 similarity scores

between an expanded query and the words of the code snippets on the index. Based on the scores, we

ranked the query results in descending order. If there was only a GK-based QE method, the top-k code

snippets were recommended directly to users. If there were multiple QE methods, each method feeds its

own expanded query into the code search engine that calculates the similarity scores and recommends

the top-k code snippets to the QE-integrating engine (see “d” in Figure 1).

2.3 QE-integrated engine

As a black-box framework, we see the methods based on GK, API, CK and other features as k individual

components without considering how they work internally. Figure 1 shows that we fed the same query q

to these k components. The components based on GK, API and CK output (i) a set of query results with

GK scores by using BM25 [4], (ii) a set of query results with API scores by using the extended Boolean

model (EBM) [3], and (iii) a set of query results with CK scores by using BM25.

Then, we combine the k sets of query results into a single set of query results, each with k features. For

each, we traverse k components. If a query result r is returned by the i-th component, its i-th feature

score fi(q, r) is calculated by this component; otherwise, the score is 0.

Next, we rank the query results in the combined set with a learning-to-rank (L2R) method that

computes a ranking score f(q, r) for any (query q, query result r) pair, and obtains the top-n most-

relevant query results (see “e” in Figure 1). In this study, we define the ranking functions as the weighted

sum of k features as follows:

f(q, r) = wTf(q, r) =

K∑

i=1

wi × fi(q, r), (2)

where each feature score fi(q, r) is calculated by the i-th component. The feature weights wi can be

trained on a dataset of acquired ranking constraints by using SVM ranking, which is an L2R method.

Example. Suppose that for a query q, the components based on GK, API and CK output the code

snippets: {Rgk : c1, c2, c3}, {Rapi : c1, c2, a3}, and {Rck : b1, c2, a3}, respectively.

Table 1 shows that c1 is returned by the components based on both GK and the API, c2 is returned by

all the components, and c3 is returned by the components based on GK. The scores of the components

computed as follows:

f(q, c1) = w1 ×GKScore(q, c1) + w2 ×APIScore(q, c1) + w3 × 0,

f(q, c2) = w1 ×GKScore(q, c2) + w2 ×APIScore(q, c2) + w3 × CKScore(q, c2),

f(q, c3) = w1 ×GKScore(q, c3) + w2 × 0 + w3 × 0.

3 Evaluation

To clarify our evaluation process, we have provided a schematic representation of our operations in

Figure 3. In Subsections 3.1.1–3.1.4, we describe the preliminaries of the evaluation, and propose Gen-

Queries, GenQRPair, AutoLabel. and automatic evaluation (AE). We also introduce how to prepare the
 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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Figure 3 (Color online) Flowchart of contents of Section 3.

data in Subsection 3.2.1, especially for generating artificial Q&R pairs in Subsection 3.2.2 by invoking

GenQRPair. In addition, we describe how to train and tune an L2R model based on the training and

the tuning set provided in Subsection 3.3. We illustrate how to implement the tools (e.g., CodeHow and

QECK) for the comparisons in Subsection 3.4. Based on the two RQs, we show the effectiveness of our

method by invoking the AE proposed in Subsection 3.1.4 to test the testing set.

3.1 Preliminary

3.1.1 Strategy for generating queries

To obtain a large number of queries, we propose an artificial strategy for generating queries (GenQueries)

that inputs a method-level code snippet m, and outputs a set of artificial queries {q1, . . . , qk}. We

performed the following steps. (1) We extracted the code terms from m with JDT (see “1” in “I” in

Figure 4). (2) We performed a random sub-selection of the code terms (see “2” in “I” in Figure 4) by

hiding the corner cases where the search engine performed particularly well or badly. Here, we selected

five terms out of all the code terms as an artificial query randomly at a time. (3) We repeated the random

sub-selections three times to cover the different parts of the code snippet for a complete usage. (4) Finally,

we averaged the results of these artificial queries to obtain one representative prediction-quality measure.

3.1.2 Q&R pair generation strategy

To create a large number of benchmark datasets, we propose a generation strategy for artificial Q&R

pairs (GenQRPair) This strategy inputs a query, a search mode and a ranking mode, and outputs a Q&R

pair in the form of (q, {r1, . . . , rj}). Here, Q refers to a query q; R refers to the ranked query results

{r1, . . . , rj} with each result corresponding to a relevance rating.

(1) Perform a query in the search engine (see Figure 4) with a search mode and obtain the initial query

results {r1, . . . , rj}; and (2) Rank the results (see “2” in “II” in Figure 4) with a ranking mode to obtain

the final results {r1, . . . , rj}.

For the first step, there are many search modes, such as “Manual”, “GK”, “API”, “CK” or “GK + API

+ CK”. In Manual: a query is performed manually; In GK: a query is performed using the GK-based

QE method; In GK+API+CK: a query is performed using the QE methods based on GK, API and CK.
 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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Table 2 Labeling the relevance rating

Relevance rating Relevance score Similarity score (%) Tag

4 15 = 24 − 1 > 85 Most relevant

3 7 = 23 − 1 70–85 Relevant

2 3 = 22 − 1 60–70 Irrelevant

1 0 = 20 − 1 < 60 Most irrelevant

For the second step, there are many ranking modes, such as “Manual”, “AutoLabel” or “ModelInfer”.

For Manual: the initial results are ranked manually; For AutoLabel: the initial results are ranked with

the automatic labeling strategy (see Subsection 3.1.3); For ModelInfer: the initial results are ranked with

the inference strategy (see Subsection 3.3).

3.1.3 Automatic labeling strategy

To determine whether or not two pieces of code snippets are relevant, we propose an automatic labeling

strategy (AutoLabel) that inputs two pieces of code snippets mA and mB, and outputs a relevance rating.

This process is performed in the following two steps.

(i) We calculate the similarity score between mA and mB as follows (see “①” in “III” in Figure 4):

similarity(mA,mB) =
|matchingNodes(mA,mB)|

size(mA) + size(mB)
, (3)

where matchingNodes(mA, mB) is the number of matching AST node pairs computed by ChangeDis-

tiller10). The number of AST nodes in mA and mB, are size(mA), size(mB), respectively.

(ii) Based on the similarity score, we label the relevance rating by using a four-level Likert scale (see

“②” in “II” in Figure 4).

Table 2 [10] shows the guidelines for labeling the solution. For example, if the similarity score of a

query result is 0.9, its relevance rating is 4, which is labeled as the “most relevant” tag.

3.1.4 Evaluation method

Given a Q&R pair, in the form of (q, {r1, . . . , rj}), we propose an AE strategy that inputs a Q&R

pair, a search mode and a ranking model, and it outputs the values of two metrics. In this strat-

10) https://bitbucket.org/sealuzh/tools-changedistiller/overview.

 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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egy we perform following two steps: (1) We input a query in the Q&R pair, the search mode, and

the ranking model into GenQRPair and obtain a Q&R’ pair in the form of (q, r′1, . . . , r
′
j); and (2) we

treat the Q&R pair as the “gold standard” and the Q&R’ pair as the “final result”, which calculates the

values of the two metrics (see “IV” in Figure 4).

These two metrics are precision (P ) [5] and (NDCG)11). P@K is the retrieval precision of the top-k

query results in the ranked list, this is calculated as follows:

P@K =
# of relevant docs in top-k

k
. (4)

NDCG measures the ranking capability of the search algorithm. The algorithm is more relevant when

there are more relevant results in higher positions in the hit list. NDCG is calculated as follows:

NDCG@K =
DCG@K

IDCG@K
, (5)

DCG@K = R1 +

k∑

i+2

Ri

log2 i
, (6)

where NDCG@K is DCG@K normalized by IDCG@K. IDCG@K is the ideal DCG@K. We sorted the

results using relevance scores. R1 is the relevance score of the 1st result. Ri is the relevance score of the

i-th result.

3.2 Data preparation

3.2.1 Code corpus

Following the steps given in Subsection 2.2.1, we indexed 590321 method-level code snippets from the

625 open-source projects on Github. The 625 projects 6 deeplearning4j libraries12), 8 popular libraries

from [7], 295 popular Android open-source Java projects13), 173 Google samples labeled with the “Java”

tag14), and 143 Java API examples15).

3.2.2 Benchmark datasets

In this subsection, we describe how to collect artificial Q&R pairs as benchmark datasets.

Collecting artificial Q&R pairs. In the code corpus, all code snippets were sorted in a chronological

order. Given the 1% most recent code snippets, we input each code snippet m into GenQueries, which

generated artificial queries {q1, . . . , qk}. Then we input each artificial query, the search mode of “GK +

API + CK”, and the ranking mode of “AutoLabel” into GenQueries, which generated a Q&R pair in

the form of (q, {r1, . . . , rj}). In this process, the QE methods based on GK, API and CK are considered

three separate components that accept the same query q, and we calculate the GK score f1, the API

score f2, and the CK score f3, for each query result rj (see Subsection 2.3). This result rj is then labeled

as AutoLabel.

To describe the above process formally, we see the query q and each query results rj as a q&r pair,

and represent it with a five-triple data (rank, qid, f1, f2, f3). Here qid refers to the query q; rank refers

to the relevance rating of the query result rj ; f1, f2 and f3 refer to the scores that embody the features

based on the GK, API and CK of the query result, respectively.

Table 3, for example, shows the query “take multiple screenshots in Android” with two corresponding

query results. The first result is ranked in the second position. From f1 (0.673), f2 (0.725), and f3 (0),

we can see this result is returned by the two components based on GK and API. Similarly, the second

result is ranked in the first position and is returned by the two components based on GK and CK.

11) https://github.com/msesmart/InformationRetrieval/blob/master/Evaluation%20of%20Language%20Models/mp2/

src/edu/illinois/cs/eval/Evaluate.java.
12) https://github.com/deeplearning4j.
13) https://github.com/Trinea/android-open-project/blob/master/English%20Version/README.md.
14) https://github.com/googlesamples?language=java.
15) http://www.java2s.com/Code/JavaAPI/CatalogJavaAPI.htm.

 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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Table 3 Data format of the q&r pair. # Query 1, take multiple screenshots in Android

rank qid f1 f2 f3

2 1 0.673 0.725 0

1 1 0.849 0 0.784

Table 4 Benchmark dataset

Tuning set Training set Testing set

8850 artificial Q&R pairs 4425 artificial Q&R pairs 4425 artificial Q&R pairs; 54 real Q&R pairs

After generating 17700 artificial Q&R pairs, we split them into a tuning set (2/4 older pairs), a training

set (1/4 oldest pairs), and an artificial testing set (1/4 newest pairs).

It is possible that such artificial Q&R pairs might not be convincing for some researchers. They might

have the following three concerns. The first concern is that artificial queries generated from the source

code would not reflect the real word world situation. To bring artificial queries close to the real queries,

we the performed a random sub-selection, the number of such sub-selections, and averaged the results of

the testing set to obtain one representative prediction-quality measure (see Subsection 3.1.1). Besides,

a large number of artificial queries could result in valid statistical results which could reflect the real-

world situations to some extent. Despite a few corner cases, the few corner cases make up only a small

percentage of cases, which do not have any impact on the measured results.

The second concern is that it is not reasonable to rank the artificial query results with AutoLabel

because the relevance score between a query and the query results would be calculated only with the

code-term similarity between the query results and the original code snippet that generates a query (see

Subsection 3.1.3). However, we consider this ranking reasonable because the underlying idea is that if a

piece of code snippet cannot be found with the artificial queries generated by itself, it would also not be

easily found with other queries.

The third concern is that it is not enough to consider only artificial Q&R pairs. Real evaluation sup-

ports real-world queries, but it is very time, consuming; real evaluation also limits the number of queries,

narrows the types of queries and involves human subjects. Artificial evaluation could overcome these

challenges, but it might suggest a higher prediction quality than what would be achieved in practice be-

cause queries from the source code tend to be overfitting. Thus, we collect real Q&R pairs to complement

the artificial pairs.

Real Q&R pairs. Besides generating artificial queries from the released source code, we directly

employed 54 real queries. We collected 34 real queries from [3] and 20 real queries from [4], which were

ideal for CodeHow and QECK, respectively. These queries were not necessarily ideal for us. However,

we still considered this a fair comparison because we need to repeat what other researchers have done.

Then we generated a real-world testing set containing 54 real Q&R pairs using GenQRPair in which

the search mode and the ranking mode were “Manual”. For this process, we recruited four proficient C#

and Java programmers to perform real queries, and label the query results on a four-Likert scale.

In summary, Table 4 shows the benchmark dataset. We tuned the hyper-parameters of the L2R model

on the tuning set, and trained the weight vector used in the ranking function on the training set. Then,

we tested and reported the ranking performance on the artificial and the real testing set, respectively.

3.3 Model training and tuning

To train the L2R model, we broke each Q&R pair in the training set into small q&r pairs. With these

data we learned the weight parameters of the ranking function in Eq. (2) by using the SVM ranking

package [11,12]. To tune the hyper-parameters of the L2R model, we repeatedly trained using the training

set and tuned on the tuning set as follows.

(1) Initially, we trained the L2R model on the training set with identical weights setting.

(2) We employed AE (see Subsection 3.1.4) that inputted each Q&R pair in the tuning set, the

search mode of “GK+API+CK”, and the ranking mode of “ModelInfer”, and outputted the values of
 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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two metrics. Here, the ranking mode of “ModelInfer” was an inference strategy that implied that the

relevance rating was inferred based on the trained L2R model instead of the code token similarity between

the original snippet and the query (as explained in Subsection 3.1.3). They are two different ranking

models; therefore, the original Q&R pair is different from its corresponding Q&R’ pair.

(3) We repeated the two steps given above until the values of the metrics were retained well.

3.4 Setup

3.4.1 GKSR

Before implementing GKSR, we had to create a collection of R&C pairs. Based on the name of each

method-level code snippet in the code corpus, we indexed the 336014 R&C pairs by using Lucene 2.9.1.

GKSR had two characteristics unlike the existing QE methods: the GK-based feature and the QE-

integrating framework. Thus we implemented two versions of GKSR, one without SVM ranking (referred

to as GKSRnoSVM) and the other with SVM ranking.

We implemented the GKSRnoSVM that used only the GK-based component to consider the impact of

the GK-based feature on the code search. Following the steps given in Subsection 2.1.2, on receiving a

query, GKSRnoSVM retrieved the top-5 R&C pairs as the initial results from which it identified the top-9

expansion words with high TF-IDF weight. Then, it expanded an original query with these identified

words, and calculated the GK scores between an expanded query and code snippets in the code corpus

with BM25. Finally, it used the GK scores to directly rank the candidate code snippets. Note that

because only one feature was present, we did not need to train and tune the L2R model with SVM

ranking.

To consider the impact of the three features (i.e., GK, API and CK) on the code search, we implemented

the GKSR that used the components based on GK, API and CK. After training and tuning the L2R

model (see Subsection 3.3), GKSR calculated the GK, API and CK scores, and fed these scores to the

L2R model (see Subsection 2.3). After calculating a weighted sum of the three features, it ranked the

candidate code snippets based on the weighted sum scores.

3.4.2 CodeHow

Before re-programming CodeHow, we needed to create a collection of API descriptions. Based on the

name of each method-level code snippet in the code corpus, we extracted and indexed the API names and

descriptions (i.e., fully qualified name (FQN) summary and remarks) from the online documentatio16)

(i.e., “MSDN”, “workbench user guide”, “Java development user guide”, “PDE guide”, “platform plug-in

developer guide” and “JDT plug-in developer guide”).

CodeHow identified the top-5 relevant APIs that matched a query. We implemented CodeHow in the

following steps. (1) We computed the similarity score between the API name and the query. Also, we

computed the similarity score between the description and the query. (2) We combined the two scores.

(3) We returned the top-5 relevant APIs. Then CodeHow added the identified APIs to an original query

and generated the Boolean query expressions. Finally, CodeHow ranked the query results in the code

corpus using the EBM [13].

3.4.3 QECK

Before re-programming QECK, we had to create a collection of Q&A pairs. Based on the name of each

method-level code snippet in the code corpus, we collected the questions with the “Android, Java” tags

and the accepted answer with the “AcceptedAnswer” tag from the stack exchange data dump17). This

generated Q&A pairs which were indexed as documents consisting of words and SO scores. The words

were the text of the question and the answers. The SO score is a weighted mean value between the

individual scores of the question and the answers voted by the crowd.

16) http://www.eclipse.org/documentation/.
17) http://archive.org/download/stackexchange.
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Table 5 Performance comparisons of three methods

Real testing set Artificial testing set
Metrics Methods

Top-1 Top-5 Top-1 Top-5

GKSRnoSVM 0.757+0.003,0.002 0.743+0.002,0.002 0.771+0.005,0.003 0.756+0.003,0.001

Precision QECK 0.659 0.603 0.666 0.620

CodeHow 0.623 0.572 0.632 0.589

GKSRnoSVM 0.6914+0.004,0.002 0.6795+0.003,0.002 0.7123+0.006,0.005 0.6917+0.002,0.002

NDCG QECK 0.5663 0.5092 0.5785 0.5302

CodeHow 0.5196 0.4611 0.5398 0.4821

The “+” symbol specifies results having two p-values less than 0.05. The first p-value was calculated by the pairwise

comparison for GKSRnoSVM and QECK; the second p-value was calculated by comparing GKSRnoSVM and CodeHow.

We used the following steps to implement QECK that identified the top-5 relevant Q&A pairs that

matched a query. (1) We computed an SO score and a Lucene score that showed the similarity between

the Q&A pair words and the query. (2) We combined these two scores. (3) We returned the top-5

relevant Q&A pairs that matched the query. From these pairs, we extracted the top-9 software-specific

words with high TF-IDF weight. (4) Finally, we expanded the original query with the identified words

and ranked the query results in the code corpus with BM25.

3.5 Results and analysis

Following the steps given in Subsection 3.4, we implemented GKSRnoSVM, GKSR, CodeHow and QECK,

and performed conducting experiments to answer (our two RQs). To confidently conclude that our

approach was really effective, we conducted a statistical test to compare the mean values of the two

metrics in the experiments. Specifically, we conducted the two-sided Wilcoxon’s signed rank test between

the two results. When comparing each pair of results, the primary null hypothesis was that there was no

statistical difference in the performance between the two results. Here, we employed the 95% confidence

level (i.e., the p-values less than 0.05 were considered significant).

RQ1: Is GK effective? Answers to this research question helped us evaluate whether or not the

GK-based feature was useful for the code search. We compared the GK-based GKSRnoSVM against the

API-based CodeHow and the CK-based QECK on the real and the artificial testing set.

For the real and the artificial testing set, we employed AE (see Subsection 3.1.4) that accepted each

Q&R pair in two testing sets: (i) the search mode of “GK” for GKSRnoSVM, “API” for CodeHow, “CK”

for QECK, and (ii) the ranking mode of “AutoLabel” as input. Then, AE outputted the values of the

two metrics.

Table 5, displays all the p-values less than 0.05. Therefore we rejected the null hypothesis, and accepted

the alternative hypothesis that there was a statistically significant difference in the mean values of the

two metrics. For the real testing set, the performance of GKSRnoSVM was better than the performance

of CodeHow and QECK. In terms of precision, GKSRnoSVM was better than CodeHow by 22% P@1, and

by 30% P@5.

GKSRnoSVM was better than QECK by 15% P@1 and 23% P@5. In terms of NDCG, GKSRnoSVM was

better than CodeHow by 33% NDCG@1 and by 47% NDCG@5; GKSRnoSVM was better than QECK

by 22% NDCG@1 and by 33% NDCG@5. For the artificial testing set, the performance of GKSRnoSVM

was also better than that of CodeHow and QECK. These results are reasonable. As explained in Sub-

section 3.2.2 the pairs in the artificial testing set outnumbered those in the real testing set by 80 : 1.

Such a large results ratio could reflect the real-world situations.

These results serve as an empirical validation of the utility of GK for the code recommendation. For

example, given the query “take multiple screenshots in Android”, Table 6 lists the process of matching

the queries with CodeHow, QECK and GKSRnoSVM.

In Table 6, the API refers to the API descriptions from the online API documentations. CK refers to

the software-specific comments. For CodeHow, only one query term “multiple” occurs 1 time on the API
 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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Table 6 Matching queries with CodeHow, QECK, and GKSRnoSVM

Query terms (number of times that occur)

APIs Crowd knowledge

CodeHow multiple (1)

QECK screenshot (76), Android (49)

GKSRnoSVM multiple (6) screenshot (18), Android (4)

Table 7 Performance of the baseline GKSR vs. the performance of the GKSRnoSVM

Real testing set Artificial testing set
Metrics Methods

Top-1 Top-5 Top-1 Top-5

GKSR 0.822+0.006 0.804+0.004 0.832+0.005 0.803+0.003

Precision
GKSRnoSVM 0.757 0.743 0.771 0.756

GKSR 0.8013+0.005 0.7733+0.004 0.8189+0.003 0.7795+0.003

NDCG
GKSRnoSVM 0.6914 0.6795 0.7123 0.6917

The “+” symbol specifies results with p-values less than 0.05 among the pairwise comparison for each QE method.

documentation “package” javax.sound.sampled18). For QECK, 2 query terms “Android” and “screenshot”

occurred 49 and 76 times, respectively, on the Q&A pair “how to programmatically take a screenshot

in Android?”19) on stack overflow. For GKSRnoSVM, three query terms “multiple”, “Android” and

“screenshot” occurred 6, 18 and 4 times, respectively, on the “pull requests called run screenshot tests in

multiple devices #113 of the code repositories screenshot-tests-for-android”20) on Github. GKSRnoSVM

performed best for this query because it matched three query terms whereas CodeHow and QECK

matched 1 and 2 query terms, respectively. This is reasonable because GK is a combination of API and

CK. In the part “conversation” of Github requests, owners and contributors of code snippets not only

discussed how to write code, but also how to submit commits to change the code.

RQ2: Is QE-integrating framework effective? Answers to this research question will shed light on

whether or not the integration of multiple QE methods is useful for code search. Thus, we compared

the GKSRnoSVM (considering only the GK-based QE method and omitting SVM ranking) against the

GKSR (integrating the QE methods based on GK, API and CK and using the SVM ranking) in the same

retrieval scenario.

After learning the parameter vector of each ranking system (see Subsection 3.3), for the real and the

artificial testing set, respectively, we employed AE (see Subsection 3.1.4) that inputted each Q&R pair in

the testing set, the search mode of “GK” for GKSRnoSVM, “GK+API+CK” for GKSR, and the ranking

mode of “AutoLabel” for GKSRnoSVM, “ModelInfer” for GKSR, and it outputted the values of the two

metrics.

Table 7 shows all the p-values less than 0.05. It illustrates that there is a statistically significant

difference in the mean values of the two metrics. For the real testing set, as compared with GKSRnoSVM,

GKSR achieved 9% and 8% improvement in terms of P@1 and P@5, arespectively, and achieved 16%

improvement in terms of NDCG@1. For the artificial testing set, GKSR also performed better than

GKSRnoSVM. These results indicate that the integration of multiple QE methods could improve the

ranking performance of a state-of-the-art approach to the code search.

Overall, Tables 5 and 7 show that GKSR outperformed CodeHow and QECK by 25%–32% in terms

of precision and 42%–54% in terms of NDCG when the first query results were inspected.

18) http://docs.oracle.com/javase/7/docs/api/java/awt/Robot.html.
19) https://stackoverflow.com/questions/2661536/how-to-programmatically-take-a-screenshot-in-android.
20) https://github.com/facebook/screenshot-tests-for-android/pull/113.
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4 Discussions

4.1 Incorrect return results

Although GKSR is effective, it is still difficult to determine some code snippets. One example is the

query “record audio sound”. On the online API documentation called “package javax.sound.sampled”21).

“Audio” and “sound” occurred 34 times and 4 times, respectively. However, these two words occurred

only 8 times and 2 times, respectively, on the “pull requests” called “make sure recording is done in mono.

#36” of the code repositories called “SoundRecorder”22) on Github. For this query, CodeHow performed

more effectively because the query terms occurred more number of times. GKSR failed because we parsed

only the name of the changed files as API information instead of extracting the code terms (e.g., FQN,

declaration, instantiation, and the signatures of methods invoked and filed accessed) from the method

body. In our future studies, we propose to extract code terms as API information from the changed files.

4.2 Threats to validity

Threats to validity of algorithms: the GKSR, CodeHow and QECK algorithms encountered validity

problems. These algorithms are unable to understand the semantic meanings of a query and the source

code. For example, the results of the query “convert UTC time to local time” are actually about “convert

local time to UTC time”. This was because these algorithms could not distinguish the semantic meanings

of different orders of words.

Threats to the validity of parameters. The parameters of CodeHow and QECK were adjusted based

on [3, 4], respectively. For QECK, we set the number of the Q&R pairs and the number of expansion

terms to 5 and 9, respectively. For CodeHow, we set the number of the matched APIs to 5. For GKSR,

we set the number of initial R&C pairs and the number of expansion terms to 5 and 9, respectively.

However, these parameters of QECK, CodeHow and GKSR were set empirically. In the future, we will

experiment more with different parameters to achieve the best performance.

Threats to the impact of factors. We adjusted the training set’s size, the ratio between the training

and the testing sets and the hyper-parameters of SVM. Factors were routinely adjusted to the optimal

state. For example, to find the optimal ratio between the training and the testing sets, we encapsulated

the process of training and tuning the L2R model into a DOS function that accepted the ratio as input.

Then we executed multiple such functions with the ratios 1 : 1, 1 : 2, 2 : 1, 1 : 3 and 3 : 1, by choosing the

optimal ratio. However, this optimal factor always varied with various external environments. Therefore,

we focused on how to adjust the factors instead of showing the so-called optimal values of the factors.

5 Related work

5.1 Free-form query search

Early code search is a coarse-grained searching that inputs a free-form query, and outputs query results

(see “a” in Figure 5). Later, researchers improved it by starting from the output and the input.

After the coarse-grained searching, some researchers added the fine-grained re-ranking for the outputted

query results (see “b” in Figure 5). For example, Refs. [14, 15] ranked the code examples and the code

snippets, respectively.

Before the coarse-grained searching, Ref. [16] adopted pseudo-relevance feedback which reformulated

the inputted query with the expansion terms from an external expansion source (see “c” in Figure 5).

CodeHow [3] extracted APIs as expansion terms from online API documentations. QECK [4] extracted

CK as expansion terms from Q&A on stack overflow.

GKSR is very different in the following two ways.

21) http://docs.oracle.com/javase/7/docs/api/javax/sound/sampled/package-summary.html.
22) https://github.com/dkim0419/SoundRecorder/pull/36.
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Figure 5 (Color online) Development process of the code search.

(1) The expansion source is different. CodeHow collects API information from MSDN. QECK collects

CK (Q&A pairs) from stack overflow. Unlike them, GKSR collects GK from “pull requests” of code

repositories on Github. GK covers both the API information and CK. In the “conversation” part of the

Github request, the API information of all the changed files is the same as that of CodeHow. Also the

descriptions of the request and all the commits, and the participants’ comments are the same as CK of

QECK.

(2) The expansion mode is different. CodeHow considers only API information and QECK considers

only CK. Unlike them, GKSR integrates GK, API and CK.

To guarantee the quality of the expansion terms, Ref. [17] re-ranks and refines the expansion terms

(see “d” in Figure 5). Instead of using a single external expansion source for selecting the expansion

term, Ref. [16] proposed a QE method with multiple external expansion sources (see “(e)” in Figure 5).

Superficially, it looks as though, we also expanded a query using the expansion terms from multiple

external expansion sources, however, this is not the case. A comparison of (e) with (f) in Figure 5 shows

that our method is different in the following five ways.

(1) We employed Github, stack overflow, and online documentations whereas [16] employed TREC

data, Google and Derwent world patents index as the external expansion sources. (2) We did not rank

multiple sets of expansion terms whereas [16, 17] did this (see a dotted box in red (e) in Figure 5).

(3) We produced multiple expansion queries [Q1, . . . , Qn] and obtained multiple sets of query results

whereas [16,17] produced an expansion query Q and obtained a single set of query results. (4) We ranked

multiple sets of query results (see dotted box in red (f) Figure 5) whereas [16,17] did not rank the unique
 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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set of query results. (5) We performed a code search whereas they performed a patent retrieval.

As shown in (f) Figure 5, GKSR is different as a black-box framework. It integrates multiple existing

QE methods instead of multiple external expansion sources. By considering each QE method as an

individual component, we fed a query and obtained a set of query results without considering which

external expansion sources the method chose and whether it ranked the expansion terms or the query

results.

5.2 Learning to rank the method

Generally, L2R methods consist of the training and the prediction. The training function inputs a training

set of terms, and outputs an L2R model. The prediction function latter inputs a term and a model, and

outputs the probability score of the term. All terms in the candidate set are ranked by probability

scores [17].

In the training function, the training set is converted into a set of triples (q, r, Vt) [14]. Here q represents

a query; r (called the term labeling) denotes the relevance between a query q and a candidate term t ; and

Vt (called term features) refers to a feature vector that contains the feature scores of the candidate term

t. Formally, Vt = [f1, . . . , fi, . . . , fn] where fi denotes the score of the i-th feature, and n denotes the

total number of features. These triples are inputted into an L2R method (e.g., regression, RankBoost,

RankSVM and LambdaMART), which obtains an L2R model. Recently such L2R methods have been

applied to many free-form query search methods.

In terms of application objects, Refs. [14–17] ranked the code examples, the code snippets, expansion

terms and multiple sets of expansion terms, respectively. However, in our study, we ranked multiple sets

of code snippets.

In terms of term features (Vt), Ref. [14] leveraged 12 features based on the similarity, popularity,

code metrics and contexts; Ref. [15] leveraged 9 features based on the text, topic and structure; Ref. [17]

leverages 49 features based on the co-occurrence information of the query and an expansion term; Ref. [16]

leveraged 18 features from a combination of 2 ranking methods, 3 weight evaluation methods and 3

external expansion sources. By contrast, we leveraged at least three features from the Github, CodeHow

and QECK components. Note that all the existing term features referred to the statistical information

about the term in a document collection. Such information lacks the skill to distinguish the semantic

meanings of different orders of terms. For example, it cannot distinguish “A, B” from “B, A” based on

the traditional occurrence frequencies of the terms, because the occurrence frequencies of terms (“A, B”

and “B, A”) are identical. In the future, we need to create a specific feature vector that represents the

semantic similarity hidden deeply in a query and the source code.

In terms of the term labeling (r), the relevance of each term is labeled manually in [14–17]. Al-

though [11] develops a method that uses clickthrough data for automatic labeling, it is difficult for most

researchers to obtain valid clickthrough data without the help of major corporations. Fortunately, we

have developed a method (AutoLabel) to label the relevance of each term automatically. As described

in Subsection 3.2.2, the relevance score between a query and the query results was calculated only with

the code-term similarity between the original code snippet m and the query results. We believe that if a

piece of code snippet cannot be found with the artificial queries generated by itself, it will not be easily

found with other queries either easily.

In terms of the L2R methods, Refs. [14–16] adopted RankBoost, multinomial logistic regression algo-

rithm and LambdaMART, respectively; Ref. [17] adopted regression, RankBoost, RankSVM and Lamb-

daMART. By contrast, our study uses SVM ranking. Note that all the existing L2R methods are machine

learning algorithms. In our future research, we will adopt a deep learning algorithm to achieve a higher

search quality.

6 Conclusion

To the best of our knowledge, we are the first to apply GK to QE methods. Our GKSR is the first
 https://engine.scichina.com/doi/10.1007/s11432-017-9465-9
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QE-integrating framework with SVM ranking. The experimental results verify the effectiveness of the

QE methods with GKSR achieving 25%–32% improvement in terms of P@1 as compared with the state-

of-the-art QE methods.
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