Gut microbiota have blood types as human

Qizheng Wu, Hui Zhong, Yafei Zhai, Yanjiong Jia, Zhinan Yin, Min Chen, Hengwen Yang and Peng George Wang

Citation: Science Bulletin 63, 1311 (2018); doi: 10.1016/j.scib.2018.09.013


View Table of Contents: http://engine.scichina.com/publisher/scp/journal/SB/63/20

Published by the Science China Press

Articles you may be interested in

A new strategy for high-throughput identification of human gut microbiota containing specific monosaccharide
SCIENCE CHINA Life Sciences

Human gut microbiota, nutrition and health
Chinese Science Bulletin 64, 260 (2019);

Metabolomics in gut microbiota: applications and challenges
Science Bulletin 61, 1151 (2016);

Alzheimer's disease and gut microbiota
SCIENCE CHINA Life Sciences 59, 1006 (2016);

Gut-liver axis: gut microbiota in shaping hepatic innate immunity
SCIENCE CHINA Life Sciences 60, 1191 (2017);
News & Views

Gut microbiota have blood types as human

Qizheng Wu a,1, Hui Zhong b,1, Yafei Zhai a, Yanjiong Jia b, Zhinan Yin b, Min Chen a,*, Hengwen Yang b,*, Peng George Wang a,*

a The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
b The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China

ABO blood group system was firstly recognized by Landsteiner in 1900 [1]. Since then, the antigens of the ABO system (A, B and H determinants, respectively) have been shown to encompass complex carbohydrate structures [2]. A and B antigen were synthesized by the sequential action of glycosyltransferases, with A and B glycosyltransferases catalyzing the addition of N-acetylgalactosamine and D-galactose to precursor H antigen, respectively. Group O individuals lack such transferase enzymes and consequently continue to express the basic H structure only [3,4]. It is determined that approximate 2 million ABH glycan antigen sites are presented on each red blood cell [5]. Additionally, the ABH antigens are widely expressed in other human cells and tissues, including the sensory neurons, epithelium, the vascular endothelium and platelets [6].

Human beings harbor extremely dense and diverse microbiota in gastrointestinal tract, comprising 0.15 kg of microbial biomass harboring hundreds of bacterial and archaeal species [7–9]. Gut microbiota as an ignored organ has been verified to adapt to host genetics, i.e., APOA1, Mediterranean Fever, FUT2 and NOD2 in human evolutionary history [10–14]. For example, individuals with functional FUT2 alleles colonized more taxa of bifidobacterial, i.e., B. angulatum, B. catenulatum and Bifidobacterium spp., compared with individuals with non-functional FUT2 alleles [14]. Nevertheless, to date, little is known regarding how ABO blood group as a genetic marker affects enterotypes of gut microbiota after longitudinal human evolution. Previous studies have tried to verify the relationship between them. The analysis of gut microbiota in Finland cohort manifested that microbiota from the individuals harboring the B antigen (sector B and AB) differed from the non-B antigen groups (A and O) and also showed higher diversity of the Eubacterium rectale–Clostridium cocoides (EREC) and Clostridium leptum (CLEPT) – groups in comparison with other blood groups [15]. However, another research based on 1503 individuals cohort suggested that microbiota were not associated with ABO blood group [16]. Such contradictory consequences confused us with the relationship between blood group types and gut microbiota. Herein, we desired to illustrate the relationship between blood group and gut microbiota from three aspects, blood types and composition of gut microbiota, blood types and blood group activity of gut microbiota, blood types and composition of gut microbiota with surface blood group antigens.

Initially, we investigated whether composition of gut microbiota varied with blood types in Chinese cohort. A cohort of 149 healthy volunteers, consisting of 41 A individuals, 47 B individuals, 49 O individuals and 12 AB individuals, participated in this study (Table S1 online). The results of 16S rRNA gene sequencing suggested there was no correlation between blood types and composition of gut microbiota on the basis of α and β diversity (Fig. S1 online). This result was consistent with previous estimates [16].

Next, we sought to explore the relationship between blood types and blood group activity of gut microbiota. Blood group activity of gut microbiota was assessed by staining methods (enzyme-linked immunosorbent assay and flow cytometry) using A and B blood group antibodies in individuals, respectively. Fluorescence value derived from ELISA (enzyme-linked immunosorbent assay) correlated with intensity of blood group antigens. The results of ELISA from 149 subjects suggested gut microbiota from A blood individuals enriched more A blood antigen than B blood antigen in the surface (412.7 ± 44.89 vs 216.2 ± 38.61, P = 0.0014, t = 3.320, df = 80, n = 41), whereas gut microbiota from B blood individuals enriched more B blood antigen than A blood antigen in the surface (440.9 ± 60.12 vs 289.6 ± 23.94, P = 0.0216, t = 2.337, df = 92, n = 47) (Fig. 1a; Table S2 online). Additionally, gut microbiota from O and AB blood individuals presented equivalent A and B blood group antigens in the surface (O: 258.8 ± 29.96 vs 239.2 ± 35.45 (A vs B), P = 0.6748 > 0.05, t = 0.4208, df = 96, n = 49; AB: 123.7 ± 75.04 vs 86.8 ± 66.84 (A vs B), P = 0.7167, t = 0.3676, df = 22, n = 12) (Fig. 1a; Table S2 online). Additionally, flow cytometry was further applied to assessed the blood group reactivity of gut microbiota. E. coli O86:H2 whose O-antigen was similar with blood group B antigen [17], as positive control, was chosen to confirm the feasibility of flow cytometry. The results suggested that E. coli O86:H2 almost exclusively enriched B antigen, whereas it had no A antigen (Fig. 1b). Then the blood group activity of gut microbiota from A, B, O and AB blood individuals respectively was analyzed by flow cytometry, and the typical sample result of each blood-type individual was presented. Gut
microbiota from A and B blood individuals enriched self-blood group antigen (Fig. 1c, d). Additionally, gut microbiota from O blood individual presented no A and B blood group antigens (Fig. 1e), while gut microbiota from AB blood individual presented A and B blood group antigens simultaneously (Fig. 1f). However, divergence emerged between the data of ELISA and flow cytometry about blood group activity of O-individual gut microbiota, which profound works need to illustrate. Together, these data indicated that gut microbiota of human beings enriched more self-blood group antigens, declaring gut microbiota as an organ of human body was identical to other organs expressing self-blood group antigens.

Ultimately, these observations prompted us to identify gut microbiota with A or B blood group antigen in the surface. Therefore, we purified and characterized gut microbiota expressing blood group antigens by the combination of immunomagnetic beads and 16S rRNA sequencing (Fig. S2 online). E. coli O86:H2 as positive control was incubated respectively with immunomagnetic beads binding A or B blood antibody, confirming the specificity of immunomagnetic beads. Notably, the results of transmission electron microscope suggested that immunomagnetic beads with B blood antibody exclusively bound to E. coli O86:H2 (Fig. S3b online), whereas immunomagnetic beads with A blood antibody were unable to bind to it (Fig. S3a online). Then the credible immunomagnetic beads with blood group antibody were utilized to separate gut microbiota with A blood antigen (GMA) from 10 A blood individuals and gut microbiota with B blood group antigen (GMB) from 10 B blood individuals, respectively (Table S3 online).

After separation, analysis of 16S rRNA gene sequencing suggested gut microbiota with A or B blood group antigen showed a parallel but typically distinct pattern of microbial taxa. The predominant subsets of GMA resembled that of GMB, Firmicutes (26.61% vs 52.43%, GMA vs GMB), Proteobacteria (40.86% vs 19.69%, GMA vs GMB), Bacteroidetes (28.57, vs 24.04%, GMA vs GMB) (Fig. 1g). However, analysis of β diversity suggested that a few subsets of GMA was dramatically different from that of GMB (Fig. S4 online), in which eight phyla were different significantly between GMA and GMB, including AD3, Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, OD1, Planctomycetes, Proteobacteria (P < 0.05) (Table S4). Proteobacteria (40.86%) and Firmicute (52.43%) were the most abundant taxa in GMA and GMB, respectively (Fig. 1g). Additionally, AD3, Chlamydiae, Chloroflexi, Crenarchaeota, Elusimicrobia, GAL15, OD1, Planctomycetes, Spirochaetes and WPS-2 were unique

Fig. 1. The amount of A or B blood group antigen in gut microbial surface from four blood-type individuals (a). The detection of blood group antigens of E.coli O86:H2 (b), A-individual gut microbiota (c), B-individual gut microbiota (d), O-individual gut microbiota (e) and AB-individual gut microbiota (f) by flow cytometry. The composition of gut microbiota with A blood group (GMA) antigen and B blood group antigen (GMB) at phylum level (g).
to GMA, whereas those were not found in GMB (Table S4 online). Notably, gut microbiota with self-blood antigen was different significantly between A and B blood individuals.

In short, owing to long-term coevolution, blood types as a genetic factor significantly affected the gut microbiota in Chinese cohort. Gut microbiota as an organ is mostly enriched with the same blood group antigen as the host's blood type. These microbial blood group antigens may not have the exact same structures as the human ABO blood group antigen, but they have the same immunological properties. Gut microbiota with self-blood antigen exhibits different pattern of classification, which will help to understand disease susceptibility among different blood-type populations. Furthermore, previous works focused on the relationship between host genetics and composition of gut microbiota, whereas our work highlights the interplay between host genetics and glycan phenotype of gut microbiota. Finally, we hope that our work enables new applications in the field of personalized nutrition and medicine.

Conflict of interest

The authors declare that they have no competing interests.

Acknowledgments

We thank Ying Pan from Peking University and Ruitian Cai from Jinan University for their technical assistance. The authors also wish to acknowledge the volunteers participating in this experiment. This work was financially supported by the State Key Laboratory of Microbial Technology Projects Fund and the National Natural Science Foundation of China (31770997), the Science and Technology Program of Guangdong Province (2016A020103901) to Dr. Zhinan Yin and Dr. Hengwen Yang, and the Program of Introducing Talents of Discipline to Universities (B16021).

Appendix A. Supplementary data

All raw data of 16S rRNA amplicon reads from 149 individuals and 10 A or 10 B blood individuals considered are publicly available on NCBI SRA datasets (SRA accession: SRP155477, SRP155336). Supplementary data to this article can be found online at https://doi.org/10.1016/j.scib.2018.09.013.

References


Min Chen is a professor at the State Key Laboratory of Microbial Technology, Shandong University. She received Ph.D. degree from China Agricultural University in 2003. Her main interests lie in microbial polysaccharides, polysaccharide vaccine, glycoprotein engineering, enzymatic synthesis of tumor-associated polysaccharides.

Min Chen is a professor at the State Key Laboratory of Microbial Technology, Shandong University. She received Ph.D. degree from China Agricultural University in 2003. Her main interests lie in microbial polysaccharides, polysaccharide vaccine, glycoprotein engineering, enzymatic synthesis of tumor-associated polysaccharides.