
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

July 2015, Vol. 58 072103:1–072103:16

doi: 10.1007/s11432-014-5259-5

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 info.scichina.com link.springer.com

Net-structure-based conditions to decide

compatibility and weak compatibility for a class of

inter-organizational workflow nets

LIU GuanJun1,2* & JIANG ChangJun1,2

1Department of Computer Science, Tongji University, Shanghai 201804, China;
2Key Laboratory of the Ministry of Education for Embedded System and Service Computing, Tongji University,

Shanghai 201804, China

Received June 17, 2014; accepted November 10, 2014; published online January 30, 2015

Abstract Inter-organizational workflow nets (IWF-nets) can well model the interactions among multiple pro-

cesses by sending/receiving messages. Compatibility and weak compatibility are crucial properties for IWF-nets.

The latter guarantees that a system is deadlock-free and livelock-free while the former also guarantees that it

has no dead tasks. Our previous work proved that the (weak) compatibility problem is PSPACE-complete for

safe IWF-nets. This paper defines a class of IWF-nets in which some simple circuits are allowed. Necessary

and sufficient conditions are presented to decide compatibility and weak compatibility for this class, and they

are dependent on the net structures only. Algorithms are developed based on these conditions. In addition, we

show that the traditional net structures like siphon cannot be easily used to decide the (weak) compatibility of

IWF-nets.

Keywords formal method, workflow nets, compatibility, business process model, web services composition

Citation Liu G J, Jiang C J. Net-structure-based conditions to decide compatibility and weak compatibility for a

class of inter-organizational workflow nets. Sci China Inf Sci, 2015, 58: 072103(16), doi: 10.1007/s11432-014-5259-5

1 Introduction

Petri nets are widely used to model concurrent/distributed systems because they can well charac-

terize the processes of these systems and their relationships (e.g., sharing common resources or syn-

chronous/asynchronous communication). For example, in flexible manufacturing systems [1–6], every

product corresponds to one or several manufacturing processes. Every process uses a set of resources

(like machines or robots) in a fixed order. These processes share common resources but not interact with

each other. Another important application of Petri nets is to model and analyze such concurrent systems

as web services, in which multiple parallel processes interact/collaborate via sending/receiving messages.

Inter-organizational workflow nets (IWF-nets) [7–11], as a class of Petri nets, are used to model these

concurrent systems. They can well characterize the system features, especially on synchronous and/or

asynchronous communication. This paper focuses on IWF-nets.

*Corresponding author (email: liuguanjun@tongji.edu.cn)

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:2

Compatibility [12,13] is a crucial property for IWF-nets. It guarantees that the target state can always

be reached, no deadlock or livelock takes place, and each task has a (potential) right to execute. Weak

compatibility [13] looses the requirements of compatibility, i.e., it only requires that a system can always

terminate correctly for any run, but does not require each task to have a potential chance to execute.

This property is permitted in web services composition, i.e., web services come from different owners and

there is no need for some tasks/activities in some web services to take part in the whole run. In fact, the

compatibility (resp. weak compatibility) of IWF-nets is equal to the soundness (resp. weak soundness)

of WF-nets (i.e., workflow nets) [14]. In Section 2, it will be seen that WF-nets and IWF-nets may be

viewed as two equivalent concepts.

Aalst et al. [9,13,15] proved that the (weak) soundness problem is decidable for general WF-nets.

We also proved that the (weak) soundness problem is PSPACE-complete for bounded WF-nets [16].

Fortunately, Aalst et al. [13,17] gave a polynomial-time algorithm to solve the soundness problem for

free-choice WF-nets. The algorithm is based on the rank theory proposed for free-choice nets by Desel

and Esparza [18]. We also proved that weak soundness is equal to soundness for free-choice WF-nets [19].

Free-choice WF-nets can well model some basic structures of business processes such as AND-split and

AND-join [13,17,20]. However, some concurrent systems [7,21–25] like web services composite must

consider the interaction among different components/processes via sending/receiving messages, which

makes the related models more and more complex so that free-choice WF-nets cannot model them. The

general method to decide soundness/compatibility for these complex models is based on the reachability

graph. There has not been too many other novel methods such as structure-based ones (except for

free-choice WF-nets and well-structured ones proposed by Aalst et al. [17]).

Notice that for the bounded WF- and IWF-nets there must also exist the state space explosion prob-

lem. If the number of reachable states is polynomial in the size of WF- or IWF-nets, then the sound-

ness/compatibility problem can be solved in polynomial time. This is impossible since PSPACE 6= P.

Fahland et al. [26] represented soundness as a temporal logic CTL and verified it by LoLA. LoLA [27] is a

Petri net model checker that utilizes the state space to check properties (e.g., reachability) of a given Petri

net. Fahland et al. [26] used LoLA to verify the soundness for lots of industrial business processes and

their results showed that these business processes can be checked in a few milliseconds. The reason why

these models can be checked in a short time is that all of the WF-nets modeling them are free-choice [26].

Therefore, it is important and interesting to look for other methods to decide soundness.

This paper defines a class of IWF-nets called SCIWF-nets. Necessary and sufficient conditions are

proposed to decide compatibility and weak compatibility. These conditions are based on the net structures

only. Furthermore, algorithms are developed on the basis of these conditions. SCIWF-nets can model

many cases of interactions. To the best of our knowledge, we are the first to propose the net-structure-

based conditions to solve the (weak) compatibility problem for a class of IWF-nets. Especially, it is

shown in Section 6 that the traditional net-structure-based methods, such as siphon- or rank-theory-

based ones [18,28–30], are hardly applicable to this problem. Note, we do not exclude the possibility of

existing such methods, but we have not seen others give such a method so far. Therefore, the method

proposed in this paper opens up a new possible way to explore the net-structure-based conditions of

deciding the (weak) compatibility for more complex classes of IWF-nets.

The remainder of this paper is organized as follows. Section 2 introduces some basic terminologies.

Section 3 defines SCIWF-nets. Section 4 proposes structure-based conditions to decide (weak) compat-

ibility. Section 5 develops the related algorithms. Section 6 reviews some related research. Section 7

concludes this paper.

2 Petri nets and IWF-nets

Petri nets and IWF-nets are recalled in this section. For more details, one may refer to [13,31,32]. Denote

N = {0, 1, 2, . . .}. Given m ∈ N and m > 0, denote Nm = {1, 2, . . . ,m}.

Definition 1 (Net). A net is a 3-tuple N = (P , T , F), where P is a finite set of places, T a finite set

of transitions, F ⊆ (P × T) ∪ (T × P) a set of arcs, and P ∩ T = ∅.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:3

A net may be seen as a directed bipartite graph. Generally, a transition is represented by a rectangle

and a place by a circle in a net graph. A path of a net is a nonempty sequence x1x2 · · ·xn of nodes such

that ∀j ∈ Nn−1: (xn, xn+1) ∈ F . A path x1x2 · · ·xn is elementary if for any two nodes xj and xk of the

path: j 6= k ⇒ xj 6= xk. An elementary path x1x2 · · ·xn is a circuit if (xn, x1) ∈ F . A net is acyclic if

it has no circuits. A net is strongly connected if for any two nodes x and y there is a path from x to y.

N ′ = (P ′, T ′, F ′) is a subnet of N = (P , T , F) if P ′ ⊆ P , T ′ ⊆ T , and F ′ = F ∩ ((T ′ ×P ′) ∪ (P ′ × T ′)).

Sometimes, we say that N contains N ′ if the latter is a subnet of the former.

A transition t is an input transition of a place p and p is an output place of t if (t, p) ∈ F . Input place

and output transition can be defined accordingly. Given a net N = (P , T , F) and a node x ∈ P ∪ T ,
•x = {y ∈ P ∪ T |(y, x) ∈ F} and x• = {y ∈ P ∪ T |(x, y) ∈ F} are the pre-set and post-set of x,

respectively. Two different transitions t1 and t2 are in conflict if •t1∩•t2 6= ∅.

A marking of N = (P , T , F) is a mapping M : P → N. A place p ∈ P is marked at M if M(p) > 0.

Notice, in this paper a marking is denoted as a multi-set of places. For example, the marking M such that

place p1 has one token, place p3 has 6 tokens and other places have no tokens, is written as M = p1+6p3
or M = {p1, 6p3}. Transition t is enabled at M if ∀p ∈ •t: M(p) > 0, which is denoted as M [t〉. Firing an

enabled transition t yields a new marking M ′, which is denoted as M [t〉M ′, such that M ′(p) = M(p)−1 if

p ∈ •t\ t•; M ′(p) = M(p)+1 if p ∈ t•\•t; and M ′(p) = M(p) otherwise. A marking Mk is reachable from

a marking M if there exists a transition sequence σ = t1t2 · · · tk such that M [t1〉M1[t2〉 · · · 〉Mk−1[tk〉Mk.

M [σ〉Mk represents that M reaches Mk after firing sequence σ. The set of all markings reachable from

M in a net N is denoted as R(N , M). A net N with an initial marking M0 is a Petri net or net system

and denoted as (N , M0).

A Petri net (N , M0) = (P , T , F , M0) is bounded if ∃k ∈ N, ∀p ∈ P , ∀M ∈ R(N , M0): M(p) 6 k. A

Petri net is safe if each place has at most one token at each reachable marking. A net N is structurally

bounded if (N , M0) is bounded for any initial marking M0. A transition t is dead at a marking M if

∀M ′ ∈ R(N , M): ¬M ′[t〉. A transition t is live at a marking M if for each M ′ ∈ R(N , M), t is not dead

at M ′. (N , M0) is live if each transition is live at M0. A nonempty set S (resp. Q) of places is a siphon

(resp. trap) if •S ⊆ S• (resp. •Q ⊇ Q•). A net satisfies ST-property if each siphon contains a trap.

Given a net N = (P , T , F), it is a marked graph if ∀p ∈ P : |•p| = |p•| = 1; it is a free-choice net if

∀p1, p2 ∈ P : (p•1 ∩ p•2 6= ∅ ∧ p1 6= p2) ⇒ |p•1| = |p•2| = 1; it is an asymmetric-choice net if ∀p1, p2 ∈ P :

p•1 ∩ p•2 6= ∅ ⇒ (p•1 ⊆ p•2 ∨ p•1 ⊇ p•2).

Definition 2 (WF-net). A net N = (P , T , F) is a WF-net if

1. N has two special places i and o, where i ∈ P is source place if •i = ∅ and o ∈ P is sink place if

o• = ∅; and

2. the trivial extension NE = (P , T ∪{b}, F ∪{(b, i), (o, b)}) of N is strongly connected where b /∈ T .

Definition 3 (Soundness of WF-net). Let N = (P , T , F) be a WF-net, M0 = i, and Md = o. N is

sound if

1. ∀M ∈ R(N , M0): Md ∈ R(N , M);

2. ∀M ∈ R(N , M0): M > Md ⇒ M = Md; and

3. ∀t ∈ T , ∃M ∈ R(N , M0): M [t〉.

This definition was given in the early work of Aalst [12], and later he showed that the second require-

ment is implied by the first one [13]. The first two requirements mean that a system can always terminate

correctly and the third one means that each task has a potential chance to be executed.

Generally, M0 = i and Md = o is called as the initial and target markings of a WF-net, respectively.

Additionally, a safe (resp. bounded) WF-net means that the WF-net is safe (resp. bounded) at its initial

marking. If the third requirement is removed from Definition 3, i.e., not each transition has a potential

chance to enable, then weak soundness is defined.

Definition 4 (Weak soundness of WF-net). Let N = (P , T , F) be a WF-net, M0 = i, and Md = o. N

is weakly sound if

1. ∀M ∈ R(N , M0): Md ∈ R(N , M); and

2. ∀M ∈ R(N , M0): M > Md ⇒ M = Md.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:4

i1 i2

i3

o1 o2

o3

t1,1

t1,2

t1,3

t1,4

t2,1

t2,2

t2,3

t2,4

t3,1 t3,2

t3,3 t3,4

a1,1
a2,1

a3,1 a3,2

c1

c2

c4 c8

c6

c5

c9 c10

•

c3 c7

•

•

(a) (b)

i1 i2

i3

o1 o2

o3

t1,1

t1,2

t1,3

t1,4

t2,1

t2,2

t2,3

t2,4

t3,1 t3,2

t3,3 t3,4

a1,1
a2,1

a3,1 a3,2

c1

c2

c4 c8

c6

c5

c9 c10

c3 c7

•• •

Figure 1 (a) A compatible IWF-net and (b) an incompatible IWF-net.

A class of nets called inter-organizational workflow nets (IWF-nets) [7] are often used to model the

composition of web services, inter-organizational business processes, or some other concurrent systems in

which multiple processes interact via sending/receiving messages. An IWF-net describes the synchronous

and/or asynchronous communication among multiple partners (each partner is modeled by a basic WF-

net) [7,30]. The following definition considers the asynchronous communication only.

Definition 5 (IWF-net). A net N = (N1, . . . , Nm, PC , FC) is an IWF-net if

1. N1 = (P1, T1, F1), · · · , and Nm = (Pm, Tm, Fm) are pairwise disjoint WF-nets where m > 1 and

they are called basic;

2. PC is a finite set of channel places such that PC ∩ Pj = ∅ for each j ∈ Nm;

3. FC ⊆ (PC ×
⋃m

j=1 Tj) ∪ (
⋃m

j=1 Tj × PC) is a set of arcs by which channel places connect with the m

basic WF-nets; and

4. ∀c ∈ PC , ∃j, k ∈ Nm: j 6= k∧•c ⊆ Tj ∧ c• ⊆ Tk∧•c 6= ∅ ∧ c• 6= ∅.

Figure 1 (a) and (b) are two IWF-nets whose basic WF-nets (see Figure 2 (a)–(c)) are identical but

interactions are distinct. From the fourth item of Definition 5 it is known that each channel place

is used only by two fixed basic WF-nets. In other words, two different basic WF-nets cannot send

messages into the same channel place; similarly, two different basic WF-nets cannot take messages from

the same channel place either. Certainly, two different basic WF-nets may use multiple channel places

to communicate. Notice that Definition 1 uses a 3-tuple to represent a net while Definition 5 uses an

(m + 2)-tuple to represent an IWF-net. If an IWF-net is also represented by a 3-tuple (P , T , F), then

P = P1 ∪ · · · ∪Pm ∪PC , T = T1 ∪ · · · ∪ Tm, and F = F1 ∪ · · · ∪Fm ∪FC . For convenience, an IWF-net is

represented by a (m+ 2)-tuple. Additionally, ∀j ∈ Nm, denote ij and oj as the source and sink places of

Nj , respectively.

Definition 6 (Compatibility of IWF-net). Let N = (N1, . . . , Nm, PC , FC) be an IWF-net, M0 =

i1 + · · ·+ im, and Md = o1 + · · ·+ om. N is compatible if

1. ∀M ∈ R(N , M0): Md ∈ R(N , M);

2. ∀M ∈ R(N , M0): M > Md ⇒ M = Md; and

3. ∀t ∈
⋃m

j=1 Tj, ∃M ∈ R(N , M0): M [t〉.

Definition 7 (Weak compatibility of IWF-net). Let N = (N1, . . . , Nm, PC , FC) be an IWF-net,

M0 = i1 + · · ·+ im, and Md = o1 + · · ·+ om. N is weakly compatible if

1. ∀M ∈ R(N , M0): Md ∈ R(N , M); and

2. ∀M ∈ R(N , M0): M > Md ⇒ M = Md.

For instance, Figure 1(a) is compatible, but (b) is neither compatible nor weakly compatible. Notice

that, if two special places i and o and two special transitions ti and to are added to an IWF-net such that

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:5

• • • • • •

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

i1 i2 o3
i1 i1 i1 i1 o3 o3

t1,1 t1,2 t2,2 t2,1 t3,3 t3,4

a1,1 a2,1

t1,3 t1,4 t2,4 t2,3 t3,1 t3,2

o1 o2 i3 o1 o1 o1 o1 i3 i3 i3 i3 i3

t1,1 t1,1 t1,2 t1,2 t3,3 t3,4

a3,1 a3,2 a1,1 a1,1 a1,1 a1,1 a3,1 a3,1 a3,2 a3,2

t1,3 t1,4 t1,3 t1,4 t3,1 t3,1 t3,2 t3,2

Figure 2 (a)–(c) Three basic FCWF-nets of the SCIWF-nets in Figure 1 (a) and (b); (d)–(g) four T-components of the

FCWF-net in (a); (h)–(l) all caps of the FCWF-net in (c).

•ti = {i}∧ t•i = {i1, . . . , im}∧•to = {o1, . . . , om}∧ t•o = {o}, then the new net is a WF-net by Definition 2.

Especially, the original IWF-net is compatible (resp. weakly compatible) if and only if the new WF-net is

sound (resp. weakly sound). On the other hand, each IWF-net is composed of a group of basic WF-nets.

Therefore, any WF-net is a special IWF-net since this IWF-nets contains only one basic WF-nets and

has no channel place. Thus, the concepts of IWF-nets and WF-nets are equivalent.

For convenience, the trivial extension of an IWF-net is that a transition is added to the IWF-net such

that the outputs of the transition are exactly all source places and the inputs of the transition exactly

all sink places. M0 and Md in Definition 6 are called the initial and target markings of an IWF-net,

respectively. If a WF-net is also a free-choice net, then it is called free-choice WF-net (FCWF-net for

short). Similarly, asymmetric-choice WF-net (ACWF-net for short) can also be defined.

3 SCIWF-nets

Definition 8 (SCIWF-net). N = (N1, . . . , Nm, PC , FC) is a simple circuit IWF-net (SCIWF-net) if

1. N is an IWF-net;

2. ∀j ∈ Nm: Nj is a sound acyclic FCWF-net; and

3. ∀c ∈ PC : |•c| = |c•| = 1.

In an SCIWF-net, each basic WF-net is acyclic but the entire net may permit circuits. This is also the

reason why this class is named simple circuit IWF-nets. In fact, Figure 1 (a) and (b) are two SCIWF-nets.

The two SCIWF-nets have the same basic FCWF-nets as shown in Figure 2 (a)–(c), but their interactions

are different. Each basic WF-net of an SCIWF-net is a free-choice net. FCWF-nets can not only model

many basic structures of workflow such as AND-split, AND-join, OR-split, and OR-join, but also own

a nice property (i.e., their soundness is decided in polynomial time [17]). Additionally, an SCIWF-net

considers the simplest case of using a message channel, i.e., for a fixed channel place, a message is sent into

it by firing a unique transition and the message is taken away from it by firing another unique transition.

Certainly, a transition may use multiple channel places. Section 6 also shows that traditional methods

such as siphon- or rank-theory-based ones are hard to be used for (weak) compatibility of SCIWF-nets.

Therefore, it is valuable to explore efficient decision methods for (weak) compatibility of SCIWF-nets.

We have given a novel one in the next section.

4 Conditions for compatibility and weak compatibility of SCIWF-nets

Some concepts related to the net structures are first defined.

Definition 9 (T-component of FCWF-net). Let N = (P , T , F) be an acyclic FCWF-net. Denote i ∈ P

and o ∈ P as the source and sink places of N , respectively. Then N ′ = (P ′, T ′, F ′) is a T-component of

N if N ′ is a subnet of N such that:

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:6

1. P ′ =•T ′ ∪ T ′•, i.e., ∀t ∈ T ′, its pre-set and post-set in N ′ are the same as its pre-set and post-set

in N , respectively;

2. i ∈ P ′ ∧ o ∈ P ′ ∧ |i• ∩ T ′| = |•o ∩ T ′| = 1; and

3. ∀p ∈ P ′ \ {i, o}: |p• ∩ T ′| = |•p ∩ T ′| = 1.

Figure 2 (d)–(g) show all T-components of the FCWF-net in Figure 2(a). Notice that, due to ∀t ∈ T ′:
•t∪ t• ⊆ P ′ ∧∀p ∈ P ′: |•p| = |p•| = 1, there always exists a path in N ′ from i to x for any node x of N ′.

Therefore, if a transition is added to a T-component such that its input is exactly the sink place and its

output is exactly the source place, then a marked graph is produced. This means that the definition of

T-component coincides with the traditional one in [18]. Therefore, a sound acyclic FCWF-net is covered

by T-components according to the conclusion in [18]. Here, an FCWF-net is covered by T-components

if for each transition there is a T-component containing it. In addition, a complete transition sequence

of a sound acyclic FCWF-net corresponds to a T-component. Here, a transition sequence is complete if

the marking Md = o reached from M0 = i by firing it. Aalst proved that a sound FCWF-net is safe [17].

Therefore, each transition of a T-component occurs only once and each place is marked only once when

the corresponding complete transition sequence is fired. Notice that a T-component may correspond to

multiple complete transition sequences due to the parallel structure.

Definition 10 (Cap of FCWF-net). Let N = (P , T , F) be an acyclic FCWF-net and i be its source

place. Then N ′ = (P ′, T ′, F ′) is a cap of N if N ′ is a subnet of N such that:

1. P ′ =•T ′ ∪ T ′•, i.e., ∀t ∈ T ′, its pre-set and post-set in N ′ are the same as its pre-set and post-set

in N , respectively;

2. ∀p ∈ P ′: |•p| 6 1 ∧ |p•| 6 1 in N ′; and

3. ∀x ∈ T ′ ∪ P ′, there is a path from i to x in N ′.

Figure 2 (h)–(l) show all caps related to the T-component in Figure 2(c). Each T-component is also a

cap that represents some complete transition sequences. The subnet only containing the source place is

also viewed as a cap that reflects the empty transition sequence. In what follows, it is shown that for a

sound acyclic FCWF-net each cap is a prefix of some T-component.

Lemma 1. A sound acyclic FCWF-net is covered by T-components and for each cap there exists a

T-component such that the cap is a subnet of the T-component.

Proof. Let σ be a complete transition sequence, i.e., i[σ〉o. Because the FCWF-net is sound, it is safe

for the initial marking M0 = i (see [17]). Because it is acyclic, each transition in σ occurs once only.

Therefore, the transitions in σ and their pre-set and post-set directly form a T-component. Because the

FCWF-net is sound, for each transition there exists a complete transition sequence containing it, thereby

a T-component containing it. Therefore, the FCWF-net is covered by T-components.

For each cap we get an enabled transition sequence σ such that σ contains all transitions of the cap

and each transition of the cap occurs in σ once and only once. Because the acyclic FCWF-net is sound

and safe, there exists a complete transition sequence σ′ such that σ is a prefix of σ′. Therefore, the cap

is a subnet of the T-component that corresponds to σ′.

In fact, an acyclic FCWF-net is also sound if it is covered by T-components and for each cap there

exists a T-component containing it. More generally, this conclusion is still true for SCIWF-nets (see

Theorem 1). Next, T-component and cap are defined for SCIWF-nets, but Definitions 9 and 10 are not

in haste referred to as their definitions. This is because that under such definitions a “T-component” or

a “cap” may have a circuit that disables the related transition sequence (later, a detailed explanation

will be given). Fortunately, they only need a simple constrain, i.e., no circuit is allowed.

Definition 11 (T-component of SCIWF-net). Let N = (N1, . . . , Nm, PC , FC) be an SCIWF-net. Then

N ′ = (N ′
1, . . . , N

′
m, P ′

C , F
′
C) is a T-component of N if

1. ∀j ∈ Nm, N ′
j = (P ′

j , T
′
j , F

′
j) is a T-component of Nj = (Pj , Tj, Fj) and called basic;

2. P ′
C =

⋃m

j=1(
•T ′

j ∪ T ′•
j) ∩ PC , where

•T ′
j and T ′•

j represent the pre-set and post-set of T ′
j in N ,

respectively;

3. F ′
C =

⋃m

j=1((P
′
C × T ′

j) ∪ (T ′
j × P ′

C)) ∩ FC ;

4. ∀c ∈ P ′
C : |

•c| = |c•| = 1 in N ′; and

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:7

c8

(a) (b)

(c) (d)

o3

t3,3

c1

c2

c3

i3

t3,1

a3,1

•

i1 i2

t1,1

• •

a1,1

t1,4

o2
o1

t2,2

t2,3a2,1

c10

i1 i2

i3

o1 o2

o3

t1,2

t1,3

t2,1

t2,4

t3,2

t3,4

a1,1
a2,1

a3,2

c6

c5

c9

c7

c1

i1 i2

i3

o1 o2

o3

t1,1

t1,4
t2,2

t2,3

t3,1

t3,3

a1,1 a2,1

a3,1

c1

c2

c8

c10

c3

i1 i2

i3

o1

o2

o3

t1,2

t1,3

t2,1

t2,4

t3,2

t3,4

a1,1

a2,1

a3,2c4

c6

c5

c9

c7

Figure 3 (a) and (b) T-components of the SIWF-net in Figure 1(a); (c) and (d) T-components of the SIWF-net in

Figure 1(b).

5. N ′ is acyclic.

Definition 12 (Cap of SCIWF-net). Let N = (N1, . . . , Nm, PC , FC) be an SCIWF-net. Then N ′ =

(N ′
1, . . . , N

′
m, P ′

C , F
′
C) is a cap of N if

1. ∀j ∈ Nm, N ′
j = (P ′

j , T
′
j , F

′
j) is cap of Nj = (Pj , Tj, Fj);

2. P ′
C =

⋃m

j=1(
•T ′

j ∪ T ′•
j) ∩ PC , where

•T ′
j and T ′•

j represent the pre-set and post-set of T ′
j in N ,

respectively;

3. F ′
C =

⋃m

j=1((P
′
C × T ′

j) ∪ (T ′
j × P ′

C)) ∩ FC ;

4. ∀c ∈ P ′
C : |c

•| = 1 ⇒ |•c| = 1 in N ′; and

5. N ′ is acyclic.

The SCIWF-net in Figure 1(a) has only two T-components as shown in Figure 3 (a) and (b). The

SCIWF-net in Figure 1(b) also has only two T-components as shown in Figure 3 (c) and (d). Figure 4(a)

is not a cap of the SCIWF-net in Figure 1(a) since it has a circuit c9t1,2a1,1t1,4c10t2,2a2,1t2,4. Figure 4(b)

is not a cap of the SCIWF-net in Figure 1(a) since the channel place c8 has no input in this subnet.

Figure 4 (c)–(e) show the three caps of the SCIWF-net in Figure 1(b).

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:8

•

• •

•

• •

•

• •

•

• •• •

•

i1 i2

i3

o1 o2

t1,2

t1,4
t2,2 t2,4

a1,1
a2,1

c9 c10

i1 i2

i3

t1,1 t2,1

t3,2

a1,1
a2,1

a3,2

c1

c6

c5

t2,2 a2,1

c9 c10

i1 i2

t1,2
a1,1

i3

t2,1

a2,1a1,1

i1 i2

t1,1

i3c1

c2

c5

t3,1

a3,1

t2,1

i1 i2

i3

o1
o2

t1,1

t1,4

t2,2

t2,3

t3,1

a1,1 a2,1

a3,1

c1

c2

c8

c10

c3

(a) (b)

(c) (d) (e)

Figure 4 (a) and (b) Not caps of the SCIWF-net in Figure 1(a); (c)–(e) three caps of the SCIWF-net in Figure 1(b).

A T-component of an SCIWF-net includes only one T-component of each basic FCWF-net. Addi-

tionally, all channel places connected to those basic T-components are also in the T-component of the

SCIWF-net and must satisfy the closure property (i.e., if the input transition of a channel place is in this

T-component, then its output transition must also be in this T-component, and vice versa). The above

examples show that not every basic T-component is in a T-component of the SCIWF-net. That is to say,

some behaviors of some basic WF-nets are inhibited. For instance, the SCIWF-net in Figure 1(a) has no

T-components containing the basic T-component in Figure 2(d).

If a transition is added to a T-component of an SCIWF-net such that its inputs are all sink places and

its outputs are all source places, then the new net is a marked graph. This marked graph is strongly

connected and each circuit contains a source place. Therefore, this marked graph is live and safe at the

initial marking M0 = i1 + · · · + im (see [32]). Therefore, a T-component of an SCIWF-net corresponds

to some complete transition sequences, and any complete transition sequence (i.e., it results in the

target marking Md) corresponds to a T-component. However, an incompatible SCIWF-net includes

some incomplete transitions sequences (i.e., they do not lead to Md). Therefore, caps are used to reflect

all enabled transition sequences. Notice that each T-component of an SCIWF-net is also a cap of the

SCIWF-net and each cap of an SCIWF-net contains only one cap of each basic FCWF-net.

Intuitively, all transitions of a circuit of an SCIWF-net cannot simultaneously participate in any run

because each basic FCWF-net is acyclic and safe, which guarantees that any interaction among these

FCWF-nets is not repeated. Formally, for each cap if a transition is added to it such that the input

(resp. output) set of the transition is exactly those places having no outputs (resp. inputs) in the

cap, then a marked graph is produced. If the cap has a circuit, then the circuit is not marked at

the initial marking. Therefore, the related marked graph is not live [18,31,32]. This implies that no

enabled transition sequence corresponds to the cap. Therefore, a cap/T-component must be acyclic (see

Definitions 11 and 12). However, this does not mean that a compatible SCIWF-net cannot have a circuit.

In fact, a compatible SCIWF-net may have circuits (Figure 1(a) shows such an example).

Next, it is proven that all caps of an SCIWF-net represent all possible runs.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:9

Lemma 2. Let N = (N1, . . . , Nm, PC , FC) be an SCIWF-net.

1. For each enabled transition sequence σ in (N , i1 + · · ·+ im) (i.e., (i1 + · · ·+ im)[σ〉), there is a cap

N ′ = (N ′
1, . . . , N

′
m, P ′

C , F
′
C) of N such that the cap is a subnet produced by the transitions in σ as well

as their pre- and post-sets.

2. For each cap N ′ = (N ′
1, . . . , N

′
m, P ′

C , F
′
C) of N , there exists an enabled transition sequence σ in (N ,

i1 + · · ·+ im) such that each transition in σ occurs once and only once in σ and the transitions in σ are

just those in N ′
j .

Proof. 1. Since σ is an enabled transition sequence in (N , i1 + · · · + im), σ ↾ Nj is also an enabled

transition sequence in (Nj , ij) for each j ∈ Nm, where σ ↾ Nj is the projection of σ over the transitions

of Nj. By the proof of Lemma 1, we know that there is a cap N ′
j of Nj corresponding to σ ↾ Nj . Because

each transition t in σ is fired, each channel place, which is an input of t, must be an output of some

transition t′ where t′ is fired earlier than t in σ. Hence, the transitions of σ and their pre- and post-sets

form a subnet of N and this subnet satisfies Definition 12.

2. Because the cap N ′ = (N ′
1, . . . , N

′
m, P ′

C , F
′
C) is acyclic and each place that has no input (i.e., the

source places) is marked, there are enabled transitions in (N ′, i1 + · · · + im). We select one of these

enabled transitions to fire and then delete this fired transition as well as its input places. Then, the new

Petri net is also acyclic and each place that has no inputs is also marked. By doing the above operations

until the net has no transitions, we can get a transition sequence that satisfies the conditions of the

lemma.

Definition 13 (Cover). An SCIWF-net is covered by T-components if for each transition there is a

T-component containing it.

Theorem 1. An SCIWF-net N = (N1, N2, . . . , Nm, PC , FC) is compatible if and only if

1. it is covered by T-components; and

2. for each cap there exists a T-component such that the cap is a subnet of the T-component.

Proof. (⇒) Let σ be a complete transition sequence, i.e., (i1 + · · · + im)[σ〉(o1 + · · · + om). Then,

∀j ∈ Nm, σ ↾ Nj is a complete transition sequence of (Nj , ij), where σ ↾ Nj is the projection of σ over

the transitions of Nj . By Lemma 1, we know that σ ↾ Nj corresponds a T-component of Nj . Additionally,

all channel places have no tokens after firing σ because N is sound. Therefore, a channel place as an

output of σ must be an input of σ, and vice versa. Therefore, all transitions of σ and their pre-set and

post-set form a T-component of N by Definition 11. Because N is sound, for each transition there is a

complete transition sequence containing it, thereby a T-component containing it. Therefore, N is covered

by T-components.

By the second conclusion in Lemma 2, we know that for each cap N ′ = (N ′
1, . . . , N

′
m, P ′

C , F
′
C) of N ,

there exists an enabled transition sequence σ in (N , i1 + · · · + im) such that the transitions in σ are

exactly those in N ′
j. Because N is sound, there is a complete transition sequence σ′ such that σ is a

prefix of σ′. By the first conclusion in Lemma 2, we can construct a cap N ′′ for σ′. Obviously, N ′ is a

subnet of N ′′ and N ′′ is a T-component.

(⇐) (by contradiction) We assume that N is unsound. Then, by Definition 6, we know that one of the

following three cases must take place: Case (1) ∃t ∈ T , ∀M ∈ R(N , i1 + · · · + im): ¬M [t〉; or Case (2)

there is a marking M ∈ R(N , i1 + · · · + im) that marks not only all sink places but also some channel

places; or Case (3) there exists a marking M ∈ R(N , i1+ · · ·+ im) at which not all sink places are marked

but all transitions are dead.

Case (1) does not hold: Because N is covered by T-components, for each transition there is a T-

component containing it. By Lemma 2 we know that for each T-component there is an enabled transition

sequence that contains all transitions of the T-component. Therefore, ∀t ∈ T , ∃M ∈ R(N , i1 + · · ·+ im):

M [t〉.

Case (2) does not hold either: Let enabled transition sequence σ lead to a marking that marks all sink

places as well as some channel places. By the first conclusion in Lemma 2 we know that there is a cap N ′

corresponding to σ. Because each sink place is marked after firing σ, N ′ contains one T-component of

each basic FCWF-net and these marked channel places have no outputs in N ′. By the given condition we

know that for N ′ there must exist a T-component of N such that N ′ is a subnet of the T-component. To

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:10

i1 i2 i1 i2
i1 i2

t1 t2 t3 t4

o1 o2

c

o1 o2

ct2 t3 t1 t4

o1 o2

i1 i2

t2 t4

o1 o2

c

(a) (b) (c) (d)

Figure 5 (a) An incompatible SCIWF-net; (b) and (c) two T-components; (d) a cap that is not a T-component.

i1 i2

t2 t4

t3 t5

o1 o2

c1

c2

a1 a2

t1

t6

i1 i2
i1 i2

o1

t1

i1 i2

o2

t6

i1 i2

t6t1

o1 o2

i1 i2

t2 t4

t3 t5

o1 o2

c1

c2

a1 a2

(a) (b) (c) (d) (e) (f)

Figure 6 (a) A weakly compatible but incompatible SCIWF-net; (b)–(e) caps; (f) a subnet that is not a cap.

produce such a T-component N ′′, we must add some T-components of some basic FCWF-nets into N ′ in

order to make those marked channel places to have output, which makes the required “T-component” N ′′

containing multiple basic T-components that are from the same basic FCWF-net. This does not satisfy

the requirements of the definition of T-component, i.e., a T-component of an SCIWF-net contains one

and only one basic T-component of each basic FCWF-net (see Definition 11).

Case (3) holds neither: Let σ be an enabled transition sequence leading to a marking at which some

sink places are not marked but all transitions have been dead. Similar to the analysis of Case (2), we

know that for the cap related to σ, there are no T-components containing it. If there is a T-component

containing the cap, then there must exist an enable transition sequence σ′ such that σ′ corresponds to

the T-component and σ is a prefix of σ′. This contradicts that all transitions are dead after firing σ.

Figure 1(a) is compatible. It is covered by T-components (see Figure 3 (a) and (b)) and each cap is

a subnet of some T-component. Figure 1(b) is incompatible. Although it is covered by T-components

(see Figure 3 (c) and (d)), the caps in Figure 4 (c)–(e) are not in any T-component. This example

corresponds to Case (3) in the proof of Theorem 1. Figure 5(a) is incompatible either. Although it is

covered by T-components (see Figure 5 (b) and (c)), there is a cap (see Figure 5(d)) that is not contained

by any T-component. This example corresponds to Case (2) in the proof of Theorem 1. Figure 6(a) is

incompatible since it is not covered by T-components. Although each of its caps (see Figure 6 (b)–(e))

is a subnet of its T-component (see Figure 6(e)), transitions t2–t5 do not belong to any T-component.

This example corresponds to Case (1) in the proof of Theorem 1. Note that the net in Figure 6(f) is not

a T-component of the SCIWF-net in Figure 6(a) because it has a circuit.

Definition 14 (Maximal cap of SCIWF-net). A cap of an SCIWF-net is maximal if there are no other

caps properly containing it.

Figure 4 (c)–(e) are three maximal caps of Figure 1(b). Figure 5 (b)–(d) are three maximal caps of

Figure 5(a). Notice that each T-component is a maximal cap.

Corollary 1. An SCIWF-net is compatible if and only if

1. it is covered by T-components; and

2. each maximal cap is a T-component.

Proof. (⇒) By Theorem 1 we know that a compatible SCIWF-net is covered by T-components. If a

maximal cap is not a T-component, then there are no T-components containing the maximal cap by the

definition of maximal (see Definition 14), thereby making the SCIWF-net incompatible by Theorem 1.

Therefore, each maximal cap is a T-component.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:11

Algorithm 1 Deciding weak compatibility for SCIWF-nets

procedure main () {

N is a given SCIWF-net;

M0 is the initial marking of N ;

IsT-component (N , M0);

}

procedure IsT-component (N , N ′) {

X := {p ∈ N ′|p• = ∅ in N ′};

Y := {t ∈ N |X[t〉};

if X 6= Md ∧ Y 6= ∅ then

for each t ∈ Y do

N ′′ := N ′ ∪ {t} ∪ t• ∪ (t × t•) ∪ (•t× t);

IsT-component (N , N ′′);

end for

else

if X 6= Md ∧ Y = ∅ then

output (N ′);

exit (0);

end if

end if

}

(⇐) For each cap, there is a maximal cap containing it. Therefore, for each cap there exists a T-

component containing it. Therefore, the SCIWF-net is compatible by Theorem 1.

In fact, the case that for each cap there is a T-component containing it implies that the system can

always terminate correctly, and the case that for each transition there is a T-component containing it

means that each transition has a potential chance to enable. Therefore, a decision condition for weak

compatibility is easily derived.

Theorem 2. An SCIWF-net is weakly compatible if and only if for each cap there exists a T-component

such that the cap is a subnet of the T-component.

Corollary 2. An SCIWF-net is weakly compatible if and only if each maximal cap is a T-component.

Figure 6(a) is weakly compatible. It has exactly one T-component as shown in Figure 6(e), and each

of its caps (see Figure 6 (b)–(e)) is a subnet of the T-component.

5 Algorithms for compatibility and weak compatibility of SCIWF-nets

5.1 Algorithm for weak compatibility

An algorithm is first given to decide weak compatibility (see Algorithm 1). Let N = (N1, . . . , Nm, PC ,

FC) be an SCIWF-net, M0 = {i1, . . . , im} be the set of all source places, Md = {o1, . . . , om} be the set

of all sink places, and N ′ be a cap of N . Notice, M0 may be seen as the most basic cap.

Note that in procedure IsT-component, X means a reachable marking by firing all transitions in N ′

and Y records all transitions of N that are enabled at X .

X 6= Md ∧ Y = ∅ represents that after firing all transitions in N ′ the system reaches a marking such

that it is not the target marking and no transition is enabled at it. Therefore, X 6= Md ∧ Y = ∅ means

that the current cap is maximal but not a T-component, i.e., the SCIWF-net is not weakly compatible.

In this case, therefore, the program outputs this counter-example and terminates early.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:12

Algorithm 2 Deciding compatibility for SCIWF-nets

F lag := 1;

Trans := ∅;

procedure main () {

N is a given SCIWF-net;

M0 is the initial marking of N ;

IsT-component-E (N , M0);

if F lag = 1 then

if Trans = T then

output (“N is compatible”);

else

output (“N has a dead transition”);

end if

end if

}

procedure IsT-component-E (N , N ′) {

X := {p ∈ N ′|p• = ∅ in N ′};

Y := {t ∈ N |X[t〉};

if X 6= Md ∧ Y 6= ∅ then

for each t ∈ Y do

Trans := Trans ∪ {t};

N ′′ := N ′ ∪ {t} ∪ t• ∪ (t × t•) ∪ (•t× t);

IsT-component-E (N , N ′′);

end for

else

if X 6= Md ∧ Y = ∅ then

F lag := 0;

output (N ′);

exit (0);

end if

end if

}

X 6= Md ∧ Y 6= ∅ means that N ′ is still not maximal. Hence, for each bigger cap (i.e., N ′′ :=

N ′ ∪ {t} ∪ t• ∪ (t× t•) ∪ (•t× t)) this procedure is recursively called to do the same decision. Note that

N ′ ∪ {t} ∪ t• ∪ (t× t•)∪ (•t× t) means that the enabled transition t as well as all places and arcs related

to it in N are added to N ′.

X = Md means that the current procedure will end correctly and return the previous layer correctly.

Notice that if two transitions t1 and t2 in Y can be concurrently fired at X , then the procedure IsT-

component (N , N ′′) will be called twice where N ′′ is the net generated by adding t1 and t2 as well as

the related places and arcs to N ′. To avoid those repeated calls, Y should be reduced, i.e., for those

transitions that can be concurrently fired at X , only one is left in Y . This operation can be completed

in polynomial time and is omitted here for the simplification of this algorithm.

When IsT-component is called in the main procedure, N ′ should initially be M0 (i.e., it is the most

basic cap). Therefore, (N , M0) is weakly compatible if and only if IsT-component (N , M0) terminates

correctly (i.e., no counter-example is outputted); (N , M0) is not weakly compatible if and only if IsT-

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:13

component (N , M0) outputs a counter-example.

When IsT-component (N , M0) is executed, the worst case is that all maximal caps are T-components,

i.e., each maximal cap is tested. The number of T-components grows exponentially for the following

very special example: an SCIWF-net is composed of m basic FCWF-nets, each basic FCWF-net has k

T-components, and there are no channel places. The SCIWF-net has km T-components. In practice,

however, the number of maximal caps of an SCIWF-net does not increase like the above example. If the

number n of maximal caps grows polynomially but not exponentially, then the number of recursive calls

is polynomial, i.e., O(|T | × n). Next, an algorithm is proposed to decide compatibility.

5.2 Algorithm for compatibility

When IsT-component (N , M0) is called in the main procedure, it can travel all caps of the SCIWF-net

N (if each maximal cap is a T-component) or output a maximal cap (if there is a maximal cap that is not

a T-component). However, how to decide if it is covered by T-components? In fact, we only need to add

to the procedure two global variables Flag and Trans that are initially assigned 1 and ∅, respectively.

When the current cap is checked to be maximal but not a T-component, Flag is assigned 0, this maximal

cap is output, and the recursive procedure terminates early. When the current cap is not maximal, we

will choose an enabled transition to produce a bigger cap. Before recursively calling this procedure for

this bigger cap, we add this related transition to Trans (this means that there is a cap containing the

transition). In the main procedure, after executing this recursive procedure, we will decide if the Flag

is 1 or not. If Flag equals 1 (this means that each maximal cap is a T-component), then we continue

to decide whether Trans records all transitions. If Trans exactly records all transitions, then we should

output a message “N is compatible”, otherwise, output “N has a dead transition” (i.e., incompatible).

Algorithm 2 describes the related pseudo-code of deciding the compatibility for SCIWF-nets.

The decision conditions for (weak) compatibility of SCIWF-nets are only related to the net structures.

Based on these conditions, the above recursive algorithms are developed.

6 Related work

Besides FCWF-nets, Aalst also proved that the soundness problem is solvable in polynomial time for

well-structured WF-nets [17]. A WF-net is well-structured if and only if for any two nodes x and y of

its trivial extension such that one of the nodes is a place and the other is a transition, there is always

α(C1) ∩ α(C2) = {x, y} ⇒ C1 = C2, where C1 and C2 are any two elementary paths from x to y and

α(C) is the set of the nodes in C [17]. However, IWF-nets do not satisfy well-structured-ness because

an IWF-net may have two different elementary paths that destroy the well-structured-ness (e.g., paths

i3t3,2c6t2,4 and i3t3,1c2t1,4c10t2,2a2,1t2,4 in Figure 1(a), or paths i1t1,2a1,1t1,4 and i1t1,1c1t3,1c2t1,4 in

Figure 1(a)).

Aalst utilized the results on extended non-self-controlling nets (ENSeC nets) in [33] to solve the sound-

ness problem for well-structured WF-nets. He proved that the trivial extension of a well-structured

WF-nets is elementary ENSeC and structurally bounded [17]. A net N is elementary ENSeC [33] if and

only if for every couple (t1, t2) of transitions in conflict, there is no elementary path in N\•t1 leading

from t1 to t2. However, the trivial extensions of the IWF-nets in Figures 1(a), 1(b), 5(a), and 6(a) are not

elementary ENSeC. Next, it can be seen that the condition of deciding liveness for structurally bounded

elementary ENSeC nets does not work for IWF-nets. Barkaoui et al. [33] proved that a structurally

bounded elementary ENSeC net is structurally live if and only if each siphon is a trap. In fact, even for

some compatible SCIWF-nets, there possibly exist some siphons that are not traps. Figure 1(a) shows

such an example. The SCIWF-net is compatible and its trivial extension is structurally bounded, but

the siphon {i1, i2, o3, a1,1, a2,1, c3, c7, c9, c10} of its trivial extension is not a trap.

Desel and Esparza [18] proposed the rank theory to decide the well-formedness for free-choice nets.

Notice, a net is well-formed if and only if it is live and bounded at some marking [18]. Obviously,

soundness is closely related to well-formedness because Aalst proved that a WF-net is sound if and only

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:14

WF-nets = IWF-nets

SCIWF-nets SIWF-nets FCWF-nets

ACWF-nets

Figure 7 The relation of modeling power of SCIWF-, SIWF-, FCWF-, ACWF-, and WF-nets.

if its trivial extension is live and bounded at the initial marking [17]. Aalst also utilized the rank theory

to solve the soundness problem for FCWF-nets [17]. Desel and Esparza extended the rank theory to

general Petri nets and gave a sufficient condition to decide well-formedness, i.e., if a net fulfills (1) it is

weakly connected, (2) it has a positive T-invariant, (3) it has a positive S-invariant, and (4) its rank plus

1 equals the number of its clusters, then the net is well-formed (see Theorem 10.16 in [18]). However, it

is difficult to apply the rank theory to the compatibility of IWF-nets because the rank of an IWF-net

is generally greater than or equal to the number of its clusters. For instance, the trivial extensions of

IWF-nets in Figures 1(a), 1(b), and 6(a) all satisfy the first three conditions of the rank theory but do

not satisfy the equation of rank and cluster.

SCIWF-nets are asymmetric-choice. For asymmetric-choice nets there are some methods to decide

their liveness. For example, Best [28] proved that a marked asymmetric-choice net is live if and only if

it is place-live (i.e., ∀p ∈ P , ∀M ∈ R(N , M0), ∃M ′ ∈ R(N , M): M ′(p) > 0), and Chu and Xie [34]

proved that a marked asymmetric-choice net is live if and only if each siphon is marked at any reachable

marking. These conditions need to factor in all reachable markings. Jiao et al. [35] further proved

that an asymmetric-choice net such that ST-property (ST-AC-net) is well-formed if and only if it is

structurally bounded, and a well-formed ST-AC-net is live and bounded for an initial marking if and

only if each siphon is marked at the initial marking. If this conclusion is hoped to use for IWF-nets, the

trivial extensions of these nets must satisfy ST-property. However, ST-property usually does not hold for

them, even for compatible ones. For example, the SCIWF-net in Figure 1(a) is compatible but its trivial

extension has a siphon {i1, i2, o3, a1,1, a2,1, c3, c7, c9, c10} that does not contain any trap.

These traditional structure-based methods are effective for the related net classes. However, the above

analysis shows that it is not easy to apply them to SCIWF-nets.

7 Conclusion

This paper gives necessary and sufficient conditions to decide compatibility and weak compatibility for

SCIWF-nets, and they depend on the net structures only. In [36] we defined Simple IWF-nets (SIWF-

nets) that are a subclass of SCIWF-nets but do not allow circuits, and explored the condition of deciding

their compatibility. Since SCIWF-nets only allow some simple cases of circuits, their modeling power

is weaker compared to IWF-nets. The relation between SCIWF- and the famous FCWF-nets is that

their intersection is not empty but they do not contain each other. Figure 7 shows the relationships

among SCIWF-, SIWF-, FCWF-, ACWF-, and WF-nets. Aalst et al. also realized that the modeling

power of FCWF-nets is limited and tried to explore the soundness for ACWF-nets [37]. However, they

could not propose a universal net-structure-based condition [37]. This paper also shows that traditional

net-structure-based concepts are hardly used for SCIWF- and IWF-nets. Therefore, the results of this

paper add to the current knowledge in this area. Future works need to focus on some bigger classes of

IWF-nets in which each basic WF-net may permit circuits.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:15

Acknowledgements

This work was supported in part by Alexander von Humboldt Foundation and National Natural Science Foun-

dation of China (Grant Nos. 61202016, 91218301). Authors would like to thank the reviewers whose comments

improved the qualities of this paper.

References

1 Ezpeleta J, Colom J M, Martinez J. A Petri net based deadlock prevention policy for flexible manufacturing systems.

IEEE Trans Robot Automat, 1995, 11: 173–184

2 Li Z W, Zhou M C. Elementary siphons of Petri nets and their application to deadlock prevention in flexible manu-

facturing systems. IEEE Trans Syst Man Cybern: Part A, 2004, 34: 38–51

3 Wang S G, Wang C, Zhou M C. Controllability conditions of resultant siphons in a class of Petri nets. IEEE Trans

Syst Man Cybern: Part A, 2012, 42: 1206–1215

4 Wu N Q, Zhou M C. Deadlock resolution in automated manufacturing systems with robots. IEEE Trans Automat Sci

Eng, 2007, 4: 474–480

5 Xue L, Hao Y. Autonomy-subnet based structural synthesis and liveness guarantying policy of Petri net model of

flexible manufacturing system. Sci China-Ser F: Info Sci, 2004, 47: 273–286

6 Xing K Y, Zhou M C, Wang F, et al. Resource-transition circuits and siphons for deadlock control of automated

manufacturing systems. IEEE Trans Syst Man Cybern: Part A, 2011, 41: 74–84

7 Aalst W M P. Interorganizational workflows: an approach based on message sequence charts and Petri nets. Syst Anal

Model Simul, 1999, 34: 335–367

8 Aalst W M P, Mooij A J, Stahl C, et al. Service interaction: patterns, formalization, and analysis. Lect Notes Comput

Sci, 2009, 5569: 42–88

9 van Hee K, Sidorova N, Voorhoeve M. Generalized soundness of workflow nets is decidable. Lect Notes Comput Sci,

2004, 3099: 197–216

10 Kim T H, Chang C K, Mitra S. Design of service-oriented systems using SODA. IEEE Trans Serv Comput, 2010, 3:

236–249

11 Kindler E. The ePNK: an extensible Petri net tool for PNML. Lect Notes Comput Sci, 2011, 6709: 318–327

12 Aalst W M P. The application of Petri nets to workflow management. J Circuit Syst Comp, 1998, 8: 21–66

13 Aalst W M P, van Hee K M, ter Hofstede A H M, et al. Soundness of workflow nets: classification, decidability, and

analysis. Form Asp of Comput, 2011, 23: 333–363

14 Liu G J, Jiang C J, Zhou M C, et al. Interactive Petri nets. IEEE Trans Syst Man Cybern: Syst, 2013, 43: 291–302

15 Tiplea F L, Marinescu D C. Structural soundness of workflow nets is decidable. Inform Process Lett, 2005, 96: 54–58

16 Liu G J, Sun J, Liu Y, et al. Complexity of the soundness problem of workflow nets. Fundam Inform, 2014, 131:

81–101

17 Aalst W M P. Workflow verification: Fingding control-flow errors using Petri-net-based techniques. Lect Notes Comput

Sci, 2000, 1806: 161–183

18 Desel J, Esparza J. Free Choice Petri Nets. Cambridge: Cambridge University Press, 1995

19 Liu G J. Some complexity results for the soundness problem of workflow nets. IEEE Trans Serv Comput, 2014, 7:

322–328

20 Weidlich M, Mendling J, Weske M. Efficient consistency measurement based on behavioral profiles of process models.

IEEE Trans Softw Eng, 2011, 37: 410–429

21 Stahl C, Wolf K. Deciding service composition and substitutability using extended operating guidelines. Data Knowl

Eng, 2009, 68: 819–833

22 Tan W, Fan Y S, Zhou M C. A Petri net-based method for compatibility analysis and composition of Web services in

business process execution language. IEEE Trans Autom Sci Eng, 2009, 6: 94–106

23 Che X, Maag S. Testing protocols in Internet of Things by a formal passive technique. Sci China Inf Sci, 2014, 57:

032101

24 Gierds C, Mooij A J, Wolf K. Reducing adapter synthesis to controller synthesis. IEEE Trans Serv Comput, 2012, 5:

72–85

25 Martens A. On compatibility of web services. Petri Net Newslett, 2003, 65: 12–20

26 Fahland D, Favre C, Koehler J, et al. Analysis on demand: instantaneous soundness checking of industrial business

process models. Data Knowl Eng, 2011, 70: 448–466

27 Wolf K. Generating Petri net state space. Lect Notes Comput Sci, 2007, 4546: 29–42

28 Best E. Structure theory of Petri nets: the free choice hiatus. Lect Notes Comput Sci, 1987, 254: 168–205

29 Wang S G, Wang C, Zhou M C, et al. A method to compute strict minimal siphons in S3PR based on loop resource

subsets. IEEE Trans Syst Man Cybern: Part A, 2012, 42: 226–237

30 Baldan P, Corradini A, Ehrig H, et al. Compositional semantics for open Petri nets based on deterministic processes.

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

Liu G J, et al. Sci China Inf Sci July 2015 Vol. 58 072103:16

Math Struct Comput Sci, 2005, 15: 1–35

31 Murata T. Petri nets: properties, analysis and applications. Proc IEEE, 1989, 77: 541–580

32 Reisig W. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Berlin/Heidelberg:

Springer-Verlag, 2013

33 Barkaoui K, Couvreur J M, Dutheillet C. On liveness in extended non self-controlling nets. Lect Notes Comput Sci,

1995, 935: 25–44

34 Chu F, Xie X L. Deadlock analysis of Petri nets using siphons and mathematical programming. IEEE Trans Robot

Automat, 1997, 13: 793–840

35 Jiao L, Cheung T Y, Lu W M. On liveness and boundedness of asymmetric-choice nets. Theor Comput Sci, 2004, 311:

165–197

36 Liu G J, Chen L J. Sufficient and necessary condition to decide compatibility for a class of interorganizational workflow

nets. Math Probl Eng, 2014, 2014: 392945

37 Aalst W M P, Kindler E, Desel J. Beyond asymmetric choice: a note on some extensitons. Petri Net Newslett, 1998,

55: 3–13

 https://engine.scichina.com/doi/10.1007/s11432-014-5259-5

