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Abstract Ship detection from synthetic aperture radar (SAR) imagery plays a significant role in global

marine surveillance. However, a desirable performance is rarely achieved when detecting small and densely

clustered ship targets, and this problem is difficult to solve. Recently, convolutional neural networks (CNNs)

have shown strong detection power in computer vision and are flexible in complex background conditions,

whereas traditional methods have limited ability. However, CNNs struggle to detect small targets and

densely clustered ones that exist widely in many SAR images. To address this problem while preserving

the good properties for complex background conditions, we develop a coupled CNN for small and densely

clustered SAR ship detection. The proposed method mainly consists of two subnetworks: an exhaustive

ship proposal network (ESPN) for ship-like region generation from multiple layers with multiple receptive

fields, and an accurate ship discrimination network (ASDN) for false alarm elimination by referring to the

context information of each proposal generated by ESPN. The motivation in ESPN is to generate as many

ship proposals as possible, and in ASDN, the goal is to obtain the final results accurately. Experiments are

evaluated on two data sets. One is collected from 60 wide-swath Sentinel-1 images and the other is from

20 GaoFen-3 (GF-3) images. Both data sets contain many ships that are small and densely clustered. The

quantitative comparison results illustrate the clear improvements of the new method in terms of average

precision (AP) and F1 score by 0.4028 and 0.3045 for the Sentinel-1 data set compared with the multi-step

constant false alarm rate (CFAR-MS) method. The values are verified as 0.2033 and 0.1522 for the GF-3

data set. In addition, the new method is demonstrated to be more efficient than CFAR-MS.
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1 Introduction

Ship detection from synthetic aperture radar (SAR) images, which plays a crucial role in global marine

surveillance, has been explored in numerous studies [1, 2]. SAR images are highly suitable for ship

detection because of their all-weather and day-and-night characteristics [3]. However, SAR ship detection

faces numerous challenges. First, ships encounter complex background conditions, such as in inshore,

offshore, and inland river locations, and sometimes they are distracted by oil spills and small islands that

are visually similar to the ship targets [4]. Even worse, ships are small in size and are usually densely

clustered. These problems inevitably lead to false or missing detections.
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In previous studies, ship detection systems usually consist of four steps: land masking, preprocessing,

prescreening, and discrimination [5]. Most ship detection systems require land masking, where the land

areas are omitted from the images being processed. Employing registration [6] and coastline detection

methods [7], land masking is intended to eliminate the adverse effect caused by land. Many preprocessing

methods, such as speckle filtering, aim to improve the facility and accuracy of subsequent stages. The

prescreening step is essential for ship detection systems, which attempts to find candidate regions as

ship proposals. Constant false alarm rate (CFAR) and generalized-likelihood ratio test are the most

widely used prescreening algorithms that serve as the basis of many SAR ship detection methods [8–10].

Finally, the discrimination step aims to eliminate the regions containing false alarms and accept those

containing real targets. Notably, salient information is utilized for SAR ship detection [11,12]. Although

these systems have been widely used and achieved successful detection results, they still have limitations.

First, traditional multi-step systems are time-consuming and not highly intelligent. Second, handcrafted

features have limited representation capabilities for discrimination in complex background conditions.

A convolutional neural network (CNN) is a trainable multi-layer architecture that typically consists

of one or more pairs of convolutional and pooling layers, followed by several consecutive fully connected

layers. Its deep architecture enables extraction of a set of discriminating features at multiple levels [13].

Most of the prevailing detectors are developed based on faster region-based convolutional neural networks

(FRCN) [14], such as R-FCN [15], inside-outside net [16], and deep saliency [17], to satisfy various

requirements. FRCN is composed of a region proposal network (RPN) for predicting candidate regions

and fast R-CNN [18] for classifying object proposals and refining their spatial locations. FRCN is an

intelligent end-to-end data-driven detector that takes an image as input and then outputs the location of

objects. To detect multi-scale objects, many studies have explored the usage of multi-scale information.

Among them, the single-shot detector (SSD) [19] is one of the first attempts to use pyramid feature

hierarchy. In this paper, small convolutional filters are used for several intermediate layers and the

results are predicted based on each layer. Sequentially, the multiscale CNN (MSCNN) [20] is proposed to

predict outputs from several layers, and the feature upsampling by deconvolution technique is explored

to reduce the memory and computational costs. The feature pyramid network [21] developed a top-down

architecture with lateral connections to build high-level semantic feature maps at all scales. Another

work is subcategory-aware CNN [22], which utilizes many different resized images, i.e., image pyramids,

as input, and a feature extrapolating layer is introduced to compute features in multiple scales. The

feature extrapolating layer generates feature maps for scales that are not covered by the input image

pyramid via extrapolation.

To the best of our knowledge, detectors tailored for small and densely clustered ship targets in SAR

images are rare. However, ships are extremely small in size, especially when the spatial resolution or

pixel spacing is not high, and are spatially distributed in different ways, i.e., isolated or densely clustered.

Moreover, ship targets always face complex background conditions, such as inshore or offshore locations, or

distractions caused by sea clutter. By the way, in order to maintain the characteristics of electromagnetic

scattering information in SAR images, image re-sampling in optical community is often not accepted in

SAR community.

To address these problems, we propose a coupled CNN called Coupled-CNN E A for detecting ship

targets in SAR imagery. This method is particularly effective for small-sized ship targets and densely

clustered ones. Inspired by the detection framework of FRCN, the proposed method consists of two

significant parts: an exhaustive ship proposal network (ESPN) to generate ship proposals and an accurate

ship discrimination network (ASDN) for ruling out false alarms. Throughout the entire process, the

following instructions are followed in principle:

• In ESPN, we attempt to propose ship targets exhaustively;

• In ASDN, the false alarms should be discarded as carefully as possible.

Different from RPN in FRCN and other pyramid CNN methods, ESPN extracts feature maps from

several representative convolutional layers, i.e., through the convolutional branch, to fully utilize the

lower layers’ detailed information and the higher layers’ abstract information. We further extend each

branch to several sub-branches by employing multiple convolutional filters with different sizes to extract
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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feature maps that could fully perceive small ship targets and densely clustered ones without losing other

ship targets. For proposal generation, each sub-branch is referred to as a proposal generator. The

convolutional filters in ESPN are relatively small in size.

Finding small and densely clustered targets is a fundamentally difficult problem because only a limited

signal on the object can be exploited. Considering this condition, one must use image information beyond

the object extent, i.e., context region. Moreover, it is visually clear that targets on land are surrounded

only by land. Offshore ships are mostly surrounded by water. For inshore ships, approximately half of

the surrounding area is water and the rest is land. In addition, researchers have found that the ocean

surroundings cannot only help detectors to effectively rule out false alarms on land, but can also help

them recognize inshore ship targets well [23, 24]. With all these factors considered, context information

plays a vital role in SAR image understanding. Therefore, we combine the ship proposals and their

context information together in ASDN to further improve the detection performance. Specifically, the

proposal features and context features learned by ASDN are fused by concatenation.

Our method is tested and evaluated on two challenging data sets. One is collected from 60 wide-

swath Sentinel-1 images with tens of thousands of annotations. The other data set comes from recently

collected GaoFen-3 (GF-3) satellite images, which include 20 images. Both of the data sets are annotated

manually by referring to the corresponding automatic identification system (AIS) information and experts’

inspections. There are many small and densely clustered ship targets and the ships face various complex

background conditions. The quantitative and qualitative comparison results show that our method could

perform better than other existing baselines.

The main contributions of this work are the following.

• Two data sets, i.e., Sentinel-1 and GF-3, which contain many small and densely clustered ship

targets, are collected and annotated. Based on them, an effective and efficient deep CNN-based method

is developed.

• Multiple representative convolutional layers are reused in ESPN, and image features are extracted

by extending each branch into sub-branches via several small convolutional filters with different sizes,

where ship proposals are generated. Employing this technique, ESPN enables one to exhaustively obtain

ship proposals of small and densely clustered ships.

• To eliminate false alarms more accurately in ASDN, we improve the representation capability by

taking full advantage of the ship proposals and their context information. The ship features in ASDN

are simply extracted by concatenating both the ship proposal and context regions after the RoI pooling

operation.

The paper is structured as follows. Section 2 represents a detailed explanation of the proposed method

and provides the computational cost. The experimental results and analysis of two data sets are presented

in Section 3. Finally, conclusion is drawn in Section 4.

2 Methodology

Figure 1 provides an overview of the processing workflow, which displays the composition of the proposed

network. The method consists of an ESPN and an ASDN, both of which share a CNN trunk for feature

learning. Due to the limited GPU memory, the original large-scale SAR images are tiled into image

blocks for training and testing. The detection results of image blocks from the same original imagery are

stitched together. In this section, we describe the shared convolutional layers, the design for ESPN and

ASDN, separately. Finally, the computational cost of the proposed method is analyzed.

2.1 Shared convolutional layers

CNN performs local operation on the input image with linear or nonlinear functions, mainly including

convolutional, pooling, and activation layers. With a set of fixed-size filters, CNN generates feature

maps by employing these filters sliding on local receptive fields after receiving feature maps of the last

layer or the input image block. Weights of the filters are shared between convolutional layers. Pooling
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 1 Overview of proposed method, mainly including an ESPN and an ASDN, both of which share convolutional

layers for feature learning. In ASDN, “RoI” represents the regions of interest and “FC” layer indicates the fully connected

layer.

layers use filters to generalize the brief representation of the convolutional layers to reduce the number

of parameters. They yield the maximum or average values in each local region of input image or feature

map, and provide a form of translation invariance. Rectified linear units (ReLU) [13] is used as an

activation function. The mathematical transformation between each input pixel value x and its output

y can be formulated as

y =

{

x, if x > 0,

0, otherwise.
(1)

Therefore, the derivative for ReLU activation function is deduced as

y′ =

{

1, if x > 0,

0, otherwise.
(2)

ReLU has certain advantages to become a popular choice for deep neural networks [25]. First, it is

simple to use, i.e., the output is 0 when the input pixel value is less than 0, and raw otherwise. Meanwhile,

the derivative is 1 when receiving a positive input, and 0 otherwise. This characteristic could effectively

prevent the occurrence of vanishing gradients. Moreover, ReLU saturates at exactly 0, which is potentially

helpful when using hidden activations as input features for a classifier. Finally, ReLU has been verified

to speed up training cost for the simplest gradient computation, i.e., 0 or 1.

After the linear and nonlinear transformations layer by layer, the resolutions of the feature maps are

usually changed and features become more abstract and semantic. For example, if the size of the input

image block is W × H (W and H denote the width and the height of the input image, respectively),

then the output feature map’s resolution becomes W
2 × H

2 , after a 2 × 2 max pooling layer without

padding. Specifically, for a ship target with length of less than 32 pixels, the features may be lost after

five such pooling layers in VGG-16 [26]. Additionally, features for densely clustered ship targets may be

obscured severely. Considering both factors, comprehensively utilizing feature maps from different layers

is valuable.

In our experiment, the VGG-16 configuration [26] is adopted as the shared CNN trunk, as shown

by the “shared convolutional layers” in Figure 1, through which multilevel feature maps with different

resolutions could be extracted. In detail, features from three representative branches, namely, “Conv4 3”

layer, “Conv5 3” layer, and “Conv6 1” layer, are extracted. The size of feature maps from these three

layers are mapped to a resolution of W
8 × H

8 ,
W
16 × H

16 and W
32 × H

32 , respectively. The lower layers’ feature

maps contain more finegrained information. By contrast, features from a deeper layer carry a larger

volume of abstract and semantic information, which is crucial in object detection.
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 2 Ship proposal generation strategy of (a) RPN and (b) ESPN.

2.2 ESPN

ESPN takes a SAR image block as input and exhaustively outputs a set of ship-like regions. Instead of

generating proposals from the topmost convolutional layer with single sized filters in RPN (Figure 2(a)),

ESPN operates sliding window filtering from several intermediate layers with different-sized filters, as

shown in Figure 2(b), to enable the final proposals to perceive as many ship targets as possible, even for

the small and densely clustered targets.

In detail, after the sharing feature learning stage, ESPN predicts all ship-like regions through the three

proposal branches mentioned in Subsection 2.1 and each of them implements the sliding operation with

multiple specified filters to extract local feature representation Xi at each location, where i is the feature

index. In this experiment, we set the sizes of multiple sliding windows for each proposal branch as 3× 3,

5× 5, and 7× 7 in accordance with the ship size in our data set.

Without loss of generality, the anchor boxes assumed as Bi = (bxi , b
y
i , b

w
i , b

h
i ) are predicted according

to the filter size. Here, bxi & b
y
i denote the top-left coordinates of the anchor box regions and bwi &

bhi represent the width and height of the anchor box regions, respectively. Each anchor box has three

different height-to-width ratios (i.e., 2:1, 1:1, and 1:2) to represent ship targets of different shapes, as

shown in Table 1. Notably, a deeper layer and a larger sliding window are both in accordance with a

lager receptive field, which is suitable to detect large and isolated objects. By contrast, a lower layer with

a small sliding window is often effective in detecting small and densely clustered objects. Based on all

these factors, the height of the proposals for “Conv4 3” layer is set as 10, 16, and 22 pixels. Meanwhile,

for the “Conv5 3” layer, the ship proposals’ height is set as 28, 34, and 40 pixels. In addition, for the

“Conv6 1” layer, the value is set as 46, 52, and 58 pixels.

To construct training samples for each detection layer explicitly, the predicted region boxes located

outside the image boundary are discarded and a class label Yi ∈ {0, 1} is assigned to the remaining ones.

In the training phase, we assign a positive label Yi = 1 to the predicted region box Bi, if the intersection-

over-union (IoU) overlap ratio with a ground-truth box B∗
i reaches the highest. However, if a predicted

region box’s IoU ratio is lower than 0.3 for all ground-truth boxes, we assign a negative label Yi = 0 to

it, and others are discarded. The IoU overlap ratio is defined as

IoU =
A(Bi ∩B∗

i )

A(Bi ∪B∗
i )

, (3)

where A(Bi ∩B∗
i ) represents the intersection area of the predicted region box and the ground-truth box,

and A(Bi ∪B∗
i ) denotes their union.

With the aid of definitions and parameter settings mentioned, each detection layer’s training samples

are defined as Sm = {(Xi, Yi, Bi)}
N
i=1, where m ∈ {1, 2, . . . ,M} represents the index of the detection

layer. Based on the work of Ren et al. [14], the loss for each sub-branch is a combination of classification
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Table 1 Parameter configurations for three proposal branches in ESPN

Layer name Conv4 3 Conv5 3 Conv6 1

Filter size (pixel) 3× 3 5× 5 7× 7 3× 3 5× 5 7× 7 3× 3 5× 5 7× 7

Anchor height (pixel) 10 16 22 28 34 40 46 52 58

Height-to-width ratio 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1 1:2,1:1,2:1

and bounding box regression, which is defined as follows:

lm(X,Y,B|W ) = LCLS(P (Y |X), y∗) + λ[Y = 1]LBBR(B̂, B∗), (4)

where W stands for the parameters of the network, the balancing parameter λ is set as 0.05, y∗ is the

ground-truth label, the classification loss LCLS(P (Y |X), y∗) = −(1− y∗) logP (Y = 0|X)− y∗ logP (Y =

1|X), P (Y |X) is the probability confidence over two classes, for example, ship-like and non-ship-like

regions, computed by

P (Y |X) =

(

P (Y = 0|X)

P (Y = 1|X)

)

=
1

∑K−1
k=0 exp (θTk X)

(

exp (θT0 X)

exp (θT1 X)

)

, (5)

where K = 2 indicates the total number of classes. θ = [θ0, θ1]
T is the parameter set for (5). Besides,

[Y = 1] is equal to 1 when the regressed bounding box contains a real SAR ship; otherwise, [Y = 1] is

equal to 0. This implies that the background is meaningless for training bounding box regression. B̂

stands for the regressed bounding box, and LBBR denotes the bounding box regression loss given by

LBBR(B̂, B∗) = fL1
(B̂† −B∗†), (6)

where

fL1
(x) =

{

0.5x2, if |x| < 1,

|x| − 0.5, otherwise,
(7)

(·)† represents the coordinate offsets of bounding box (·) with reference to the anchor box [14]. Studies [18,

27] have demonstrated that the smoothed L1 loss is superior to L2 loss for two reasons. First, L1 loss is

less sensitive to outliers than L2 loss. Second, when the regression targets are bounded, training with L2

loss can require careful turning of learning rates to prevent exploding gradients.

In accordance with the preceding definitions, the overall loss function of ESPN is a summation for each

detection layer, given by

LESPN(W ) =

M
∑

m=1

∑

i∈Sm

αmlm(Xi, Yi, Bi|W ), (8)

where the number of detection layers, denoted by M , is equal to 9, which stands for three proposal

branches with three different detection layers and αm denotes the weight for each detection layer’s loss.

The optimal parameters W ∗ = arg minWLESPN (W ) are optimized by stochastic gradient descent

(SGD) [27]. To prevent overfitting, we adopt the pre-trained image-net model [13] to finetune this

network.

As is well-known, the lower layer of the CNN architecture affects gradients more than the deeper layer

does. Thus, we set a slightly lower weight, i.e., αm = 0.9, for the “Conv4 3” proposal branch and a

slightly higher weight, i.e., αm = 1, for the “Conv5 3” proposal branch and the “Conv6 1” proposal

branch. When the training of the ESPN is finished, it takes image blocks as input and then outputs the

location of ship targets through several proposal branches. Thereafter, these results are concatenated to

form the final proposal detections.

2.3 ASDN

ASDN aims to eliminate false alarms generated by ESPN as accurately as possible. It takes an image

block with proposals as input and then outputs the classification result and refined locations.
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 3 Ship proposals and their contextual regions are both bypassed by the RoI pooling layer. The upper row and

the lower row show an example of a ship proposal and its context region, respectively. Both of them are pooled by the RoI

pooling operation. Then, the feature maps are concatenated into one fused feature map to improve their representation

capability.

Given the importance of context information for SAR images [23,24], in this paper, features from each

proposal (red cube in ASDN of Figure 3) and its context information (green cube) are both analyzed.

The optimal context region is determined by using the grid search strategy, i.e., each context region is set

to be 1.5 times larger than the proposal region. Since these predicted ship-like regions and the context

regions have different sizes, we adopt an RoI pooling layer for each proposal and each context region

to generate features of a fixed dimension. Then, these fixed-size feature maps are concatenated into a

single feature cube called fused features. Figure 3 illustrates the details of this process. Thereafter, the

fused features are fed into subsequent fully connected layers and branched into two parts for further

classification and bounding box regression.

The loss lASDN for ASDN is similar to (4), which combines a cross-entropy loss for classification and

a smoothed L1 loss for bounding box regression. In ASDN, the training samples SM+1 are collected in

the same way as Sm. Therefore, the multi-task loss of (8) is extended to

L(W,Wd) = LESPN(W ) + αM+1

∑

i∈SM+1

lASDN(Xi, Yi, Bi|Wd), (9)

where αM+1 denotes the weight of ASDN’s loss, and Wd stands for the added parameter set of fully

connected layers.

The pre-trained ESPN model is adopted to initialize the shared layers of ASDN, in that ESPN and

ASDN share some convolutional layers for feature learning. The parameters are learned jointly by mini-

mizing the final loss function (9), i.e., (W ∗,W ∗
d ) = arg minL(W,Wd), with SGD [28] strategy throughout

the unified network. The additional weights of fully connected layers are randomly initialized by zero-

mean Gaussian distribution with 0.01 standard deviation. The initial learning rate is 0.0005, which

decreases by 0.1 every 5k iterations. The trade-off coefficient λ is equal to 1. The entire training proce-

dure proceeds recursively until the overall loss function is converged. Actually, 35k iterations are required.

Finally, non-maximum suppression (NMS) [29] is adopted to reduce the redundancies.

2.4 Computational cost

The detailed structure, number of parameters, and multiply-add computational cost (MAC) are illustrated

in Table 2 based on the assumption that the size of the input image block is 1024 × 768. Given the

computational cost, the number of parameters and the MAC are computed by referring to the detailed

configurations of each layer. Table 3 summarizes the MAC and the number of parameters in the three
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Table 2 Detailed structure, number of parameters, and MAC for each layer when using Coupled-CNN E A method with

1024 × 768 input

Part Name Type Stride Output #Params. MAC

Shared CNN

layers

Conv1 1 3× 3 convolution 1 1024 × 768 × 64 1.9k 1359.0M

Conv1 2 3× 3 convolution 1 1024 × 768 × 64 41.0k 28991.0M

Pool1 2× 2 max pooling 2 512 × 384 × 64

Conv2 1 3× 3 convolution 1 512× 384× 128 81.9k 14495.5M

Conv2 2 3× 3 convolution 1 512× 384× 128 163.8k 28991.0M

Pool2 2× 2 max pooling 2 256× 192× 128

Conv3 1 3× 3 convolution 1 256× 192× 256 327.7k 14495.5M

Conv3 2 3× 3 convolution 1 256× 192× 256 655.4k 28991.0M

Conv3 3 3× 3 convolution 1 256× 192× 256 655.4k 28991.0M

Pool3 2× 2 max pooling 2 128 × 96 × 256

Conv4 1 3× 3 convolution 1 128 × 96 × 512 1310.7k 14495.5M

Conv4 2 3× 3 convolution 1 128 × 96 × 512 2621.4k 28991.0M

Conv4 3 3× 3 convolution 1 128 × 96 × 512 2621.4k 28991.0M

Pool4 2× 2 max pooling 2 64× 48× 512

Conv5 1 3× 3 convolution 1 64× 48× 512 2621.4k 7247.8M

Conv5 2 3× 3 convolution 1 64× 48× 512 2621.4k 7247.8M

Conv5 3 3× 3 convolution 1 64× 48× 512 2621.4k 7247.8M

Pool5 2× 2 max pooling 2 32× 24× 512

Conv6 1 3× 3 convolution 1 32× 24× 512 2621.4k 18119M

ESPN

SPN4 3 3× 3 convolution 1 128× 96× 6 30.7k 339.7M

SPN4 5 5× 5 convolution 1 128× 96× 6 79.9k 943.7M

SPN4 7 7× 7 convolution 1 128× 96× 6 153.6k 1849.7M

SPN5 3 3× 3 convolution 1 64 × 48× 6 30.7k 84.9M

SPN5 5 5× 5 convolution 1 64 × 48× 6 79.9k 235.9M

SPN5 7 7× 7 convolution 1 64 × 48× 6 153.6k 462.4M

SPN6 3 3× 3 convolution 1 32 × 24× 6 30.7k 21.2M

SPN6 5 5× 5 convolution 1 32 × 24× 6 79.9k 59.0M

SPN6 7 7× 7 convolution 1 32 × 24× 6 153.6k 115.6M

ASDN

RoIPooling1 7× 7 RoI pooling 7× 7× 512

RoIPooling2 7× 7 RoI pooling 7× 7× 512

RoI concat 3× 3 convolution 5× 5× 512 5242.9k 118.0M

FC FC 4096 52428.8k 52.4M

FC cls FC 2 8.2k 32.8K

FC bbr FC 8 32.8k 32.8K

Total 75.66M 256.77B

Table 3 Comparison result of the number of parameters and the MAC for each part when using Coupled-CNN E A

method with 1024× 768 input

#Params. MAC

Shared CNN layers ESPN ASDN Total Shared CNN layers ESPN ASDN Total

Coupled-CNN E A 18966.2k 792.6k 57712.7k 75.66M 258653.9M 4112.1M 170.4M 256.77B

parts: shared convolutional layers, ESPN and ASDN. The numbers in bold represent the total number

of parameters and the MAC. The underlined numbers represent the number of parameters for “shared

CNN layers” part and the MAC for this part. Specifically, for one image with size of 1024× 768 as input,

our method takes 256.77 billion MAC and 75.66 million parameters for one iteration. Observing the

comparison results in Table 3, one can easily find that the shared CNN part takes much more burden on

computational cost in terms of MAC. Therefore, we can conclude that the required time for training and

testing mainly depends on the shared CNN part. Then, we can infer that the efficiency of the proposed

method is similar to FRCN because the MAC brought by the special design in our method is far less

than the shared CNN part.
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Table 4 Information of Sentinel-1 imagery used in this study

Satellite Imaging mode Band Polarization Product type
Resolution Pixel spacing Average size per image

(rg×az) (m) (rg×az) (m) (rg×az) (pixel)

Sentinel-1 IW C VH GRD 20× 22 10× 10 25000 × 18000

Table 5 Information of GF-3 imagery used in this study

Satellite Imaging mode Band Polarization
Pixel spacing Average size per image

(rg×az) (m) (rg×az) (pixel)

GF-3 NSC C VH 20× 5 8800× 21000

3 Experiments

3.1 Configuration

3.1.1 Hardware environment

Experiments are implemented based on the deep learning framework Caffe [30] and executed on a work-

station with two Intel 32 Core i7 CPUs with 64 GB RAM and an NVIDIA GTX-1080 GPU with 8 GB

memory. The operating system is Ubuntu 14.04.

3.1.2 Data set description

In this paper, the first experimental data set is collected from 60 wide-swath Sentinel-1 images, the main

information of which is listed in Table 4. We conduct the experiments by adopting the interferometric

wide-swath (IW) mode ground-range detected (GRD) Sentinel-1 imagery with C band. The resolution

is 20 m in range direction and 22 m in azimuth direction. The pixel spacing is 10 m both in range

and azimuth directions. The wide-swath Sentinel-1 image size used in our experiments is approximately

25000 × 18000 in pixel. These images are manually annotated by expert inspections on the Sentinel-1

application platform (SNAP) [31] partially with the help of AIS. In this case, among the 60 images, 52

are randomly selected for training and the remaining 8 are used for testing.

The second data set is the most recently collected GF-3 image. GF-3 is the first commercial C-band

full polarimetric SAR satellite in China. It was launched in August 2016. It has multiple strip and scan

imaging modes [32]. In this paper, we annotated 20 narrow-scan (NSC) mode images manually with the

help of the corresponding AIS information and expert inspections. Among all the annotated images, 16

are used for training and the remaining 4 are used for testing. The average size of the images in this data

set is approximately 8800 × 21000 in pixel. The pixel spacing is 20 m and 5 m along the azimuth and

ground-range directions, respectively. The main meta data of GF-3 is shown in Table 5. Many small and

densely clustered ship targets are in this data set.

Considering the limited GPU memory and processing speed, each SAR image is tiled into several

adjacent image blocks whose size is approximately 1024× 768 pixels for both training and testing. When

training and testing the Sentinel-1 data set, we set an overlap of 50 pixels for each adjacent divided image

blocks, which is larger than the average ship length (25 pixels for the Sentinel-1 data set). For the GF-3

data set, the overlap of adjacent image blocks is also set as 50 pixels because the average ship length in

this data set is 23 pixels, which is slightly less than the average ship length in the Sentinel-1 data set.

Figure 4 shows a sample image that has been divided into 3 × 3 blocks. The white rectangles represent

the divided blocks without overlap, and the red rectangles represent divided blocks where 50 pixels are

longer and wider than the white rectangles at the same upper-left corners (indicated by blue solid dots).

Thereafter, each image block is processed individually. According to the order of the division, the adja-

cent image blocks’ detection results are stitched together by adding the coordinates of the corresponding

upper-left corner. For overlapping of the adjacent image blocks, we adopt the NMS strategy to eliminate

the redundant bounding boxes.
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 4 Illustration of image cropping strategy. The white grids are blocks without overlap. The red rectangles represent

divided blocks with 50 pixel overlap. In both cases, blocks without ship targets are discarded and the remaining ones are

used for training and testing.

3.1.3 Evaluation metrics

We adopted four widely used criteria to quantitatively evaluate the performance of detection, namely,

precision, recall, average precision (AP), and F1 score. The precision measures the fraction of detections

that are true positives, given by [33]

precision =
#TruePositive

#TruePositive + #FalsePositive
. (10)

Here, #(·) represents the number of (·). The recall measures the fraction of positives over the number of

ground-truths.

recall =
#TruePositive

#TruePositive + #FalseNegative
. (11)

The AP value and F1 score are obtained by combining the precision and recall metrics. This approach

results in two single measurements to comprehensively evaluate the quality of a detection method. The

AP metric is measured by the integral of the precision over the interval from recall = 0 to recall = 1, i.e.,

the area under the precision-recall curve (PRC) [34]. The F1 score is given by

F1 = 2 ·
precision · recall

precision + recall
. (12)

3.1.4 Baseline methods

To verify the performance of the special design in ESPN and ASDN, separately, our method is evaluated by

employing three configurations, namely, “Coupled-CNN E”, “Coupled-CNN A”, and “Coupled-CNN E

A”, where “E” and “A” indicate the improvements in ESPN and ASDN, respectively. CFAR-based

multi-stage (CFAR-MS) detector developed by the authors in [35] is implemented by SNAP. FRCN is

selected as another baseline to demonstrate the superiority of the proposed techniques.

3.2 Results and discussions

3.2.1 Sentinel-1 data set

The proposal quality is evaluated in Figure 5(a), which is plotted to describe the recall of different methods

under different IoU for all the testing images. This figure shows that the recall for each method drops

when IoU increases. Compared with CNN-based methods, CFAR-MS achieves the lowest recall under a
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 5 Performance curves over eight Sentinel-1 images. (a) Recall vs. IoU curve for each method; (b) precision vs.

recall curve for each method.

Table 6 Performance comparison of different methods for the Sentinel-1 data seta)

Methods
Ground

truth

True

positive

False

positive
Recall Precision

Average

precision
F1 score

Average time (s)

per image

CFAR-MS 6814 2710 751 0.3977 0.7830 0.3123 0.5275 2550

FRCN 6814 4544 845 0.6669 0.8432 0.5812 0.7447 105

Coupled-CNN E 6814 4843 560 0.7107 0.8964 0.6519 0.7928 113

Coupled-CNN A 6814 4656 823 0.6833 0.8498 0.6069 0.7575 108

Coupled-CNN E A 6814 5260 570 0.7719 0.9022 0.7151 0.8320 115

a) The bold numbers denote the optimal values in each column. The underlined numbers denote the suboptimal

values in each column.

constant IoU, and it declines most sharply when IoU increases. This condition illustrates its relatively

low recall and poor localization performance. Determining a suitable IoU in the beginning is important

because a higher IoU means a more rigorous prerequisite and a lower IoU means a loose prerequisite. In

Figure 5(a), the turning point of CFAR-MS emerges when the IoU is equal to 0.3. By contrast, in the

interval IoU ∈ [0, 0.3], the recall remains stable for all the CNN-based methods. Therefore, in the testing

phase, the predicted region is considered to be a true positive if the IoU is larger than 0.3. Otherwise,

without any loss of generality, the predicted region is assumed to be a false positive. By analyzing the

comparison results of two groups, namely, Coupled-CNN E A & Coupled-CNN A and Coupled-CNN E

& FRCN, the recall is improved when IoU is equal to 0.3.

Based on this finding, the PRC over the 8 testing images is plotted in Figure 5(b). The area below the

PRC is the AP value. It shows clear improvements on the AP results from this figure. From this figure,

one can also observe that Coupled-CNN E A achieves the best precision and recall because the PRC for

this method is the highest and longest. Similarly, the precision is improved while preserving the recall by

comparing the results in Figure 5(b) via the comparative groups Coupled-CNN E A & Coupled-CNN E

and Coupled-CNN A & FRCN.

Table 6 lists the numerical detection results and average testing time per image for each method

under the condition IoU = 0.3. In terms of precision, recall, AP, and F1 score, the performance of

Coupled-CNN E A is superior to the other four methods mentioned. Based on the observations, the

following analysis is obtained. (1) The CNN-based methods achieve better performance than CFAR-MS,

thereby demonstrating the advantage of the ship detector with deep learning techniques. (2) The new

method surpasses FRCN by a noticeable margin due to the specific design in ESPN and ASDN. (3) The

computational time needed in the new method is almost identical to that in FRCN. Nevertheless, the

CNN-based methods operate considerably 22 times faster than CFAR-MS.

Furthermore, to analyze why the proposed Coupled-CNN E A method could achieve such a desirable

performance, the corresponding visualization is necessary. Figure 6 presents the detection results in off-

shore areas of Sentinel-1 images. The green box indicates the correctly detected targets, the red one

indicates false alarms, and the blue one represents the ground-truth. In this figure, the upper row (Fig-
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 6 Ship detection results in offshore area of Sentinel-1 images. (a-1)–(a-4) exhibit the visualization results by using

the proposed Coupled-CNN E A method. (b-1)–(b-4) show the detection results of the CFAR-MS method. The green boxes

indicate the correctly detected targets, the red ones indicate false alarms, and the blue ones represent the ground-truth.

ure 6(a-1)–(a-4)) shows the visualization results by using the proposed Coupled-CNN E A method, while

the lower row (Figure 6(b-1)–(b-4)) exhibits the detection results of the CFAR-MS method. According to

the visualized examples, the performance of CFAR-MS is nearly the same as that of Coupled-CNN E A

in areas where the ships are not very small or densely packed. Specifically, few false alarms of extremely

small objects emerged in the visualization result of CFAR-MS.

Figure 7 exhibits a comparative visual effect of the proposed detector and CFAR-MS detector. The

selected image contains many small and densely clustered ship targets, and ships in this image face many

different conditions, including inshore targets, offshore targets, and targets in inland rivers and other

locations. One can easily observe that the missing detections are significantly decreased in Figure 7(a),

and the false alarms are slightly less in Figure 7(a) than in Figure 7(b). The visualization performance

illustrates a clear improvement of the proposed detector. Therefore, we can conclude the experimental

results through the following points:

• In areas filled with small and densely clustered ships, the proposed method can lower the missing

detections to a great extent, which is crucial for SAR ship detection;

• For offshore targets, the proposed method can achieve slightly less false alarms and missing detections

than CFAR-MS;

• Nearly no false alarms are on land for the proposed detector even without any prior information.

3.2.2 GF-3 data set

Figure 8(a) plots the recall versus IoU curve on the GF-3 data set, which illustrates the proposal quality

with the proposed Coupled-CNN E Amethod and other four baseline methods. This figure could indicate,

for certain IoU between detected boxes and ground-truth regions, how many true positive samples can be

fetched. Then, the PRC over the four testing images is shown in Figure 8(b). This figure shows that the

proposed Coupled-CNN E A method surpasses other baseline methods in terms of precision and recall.

Furthermore, the AP value is improved because the area under the PRC is enlarged.

The quantitative detection results are shown in Table 7. The numerical values of recall and precision

for the proposed method and the baseline methods are listed to illustrate obvious improvements of

the proposed method over other baselines. With the recall and precision available, the comprehensive

evaluation metrics of the AP value and F1 score are computed, both confirming the clear improvements

of the proposed method on the collected and annotated GF-3 data set. The efficiency of the proposed
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 7 Ship detection results with (a) Coupled-CNN E A and (b) CFAR-MS for an image block cropped from the

wide-swath Sentinel-1 SAR imagery over the Strait of Malacca, Singapore. In both subfigures, two areas (highlighted by

the yellow boxes) are enlarged to exhibit a clear visual effect. The green box indicates the correctly detected targets, the

red indicates false alarms, and the blue represents the ground-truth.

Figure 8 Performance curves over four GF-3 images. (a) Recall vs. IoU curve for each method; (b) precision vs. recall

curve for each method.

Table 7 Performance comparison of different methods on GF-3 data seta)

Methods
Ground

truth

True

positive

False

positive
Recall Precision

Average

precision
F1 score

Average time (s)

per image

CFAR-MS 1757 981 316 0.5582 0.7562 0.4832 0.6423 1630

FRCN 1757 1179 373 0.6710 0.7597 0.5772 0.7126 85

Coupled-CNN E 1757 1210 364 0.7433 0.7906 0.6784 0.7662 86

Coupled-CNN A 1757 1306 346 0.6887 0.7687 0.5997 0.7265 89

Coupled-CNN E A 1757 1324 252 0.7536 0.8401 0.6865 0.7945 90

a) The bold numbers denote the optimal values in each column. The underlined numbers denote the suboptimal

values in each column.

method is reflected by the average testing time per image in the last column of Table 7, i.e., 18 times

faster than CFAR-MS.

Figure 9 shows the detection results on an image with many small and densely clustered ship examples of

the proposed Coupled-CNN E A method and the CFAR-MS method. The size of the image is 2000×2000

in pixel. The detection results indicate that although most of the ships in this image are small and densely

clustered, a desirable performance can be achieved. However, CFAR-MS missed many of them and false

alarms remain a challenging problem for CFAR-MS.

By contrast, Figure 10 presents the detection results in offshore areas. The upper row (Figure 10(a-1)–

(a-4)) visualizes the detection results of the proposed Coupled-CNN E A method. The detection results

of the CFAR-MS method are shown in the lower row (Figure 10(b-1)–(b-4)). The detection performance

of CFAR-MS is nearly the same as that of the proposed method in offshore areas, except for a few
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6
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Figure 9 Ship detection results with (a) Coupled-CNN E A and (b) CFAR-MS for an image block cropped from the

GF-3 SAR imagery. In both subfigures, two areas (highlighted by the yellow boxes) are enlarged for a clear visual effect.

The green boxes indicate the correctly detected targets, the red ones indicate false alarms, and the blue ones represents the

ground-truth.

Figure 10 Ship detection results in offshore areas of GF-3 image. (a-1)–(a-4) exhibit the visualization results by using the

proposed Coupled-CNN E A method. (b-1)–(b-4) shows the detection result of the CFAR-MS method. The green boxes

indicate the correctly detected targets, the red ones indicate false alarms, and the blue ones represent the ground-truth.

extremely small ship targets (visualized by red boxes in Figure 10 as false alarms).

4 Conclusion

A coupled CNN-based detector that could detect small and densely clustered SAR ship targets is devel-

oped in this study. The special design in ESPN, i.e., sliding windows operate on multiple layers with

multiple filter sizes and generate proposals from each sub-branch, enables one to propose ship candidates

exhaustively. In ASDN, the joint use of information on the ship-like regions generated from ESPN and

their context information further improves the detection performance. Experiments and analyses on

the challenging Sentinel-1 data set and the GF-3 data set indicate that, among the CFAR-MS, FRCN,

Coupled-CNN E, Coupled-CNN A and the new Coupled-CNN E A method, the AP value and F1 score

of the new method are higher by 0.4151 and 0.3126 for the Sentinel-1 data set compared with the CFAR-

MS method. The values are verified to be 0.2033 and 0.1522 higher than CFAR-MS for the GF-3 data set.
 https://engine.scichina.com/doi/10.1007/s11432-017-9405-6



Zhao J P, et al. Sci China Inf Sci April 2019 Vol. 62 042301:15

Both the quantitative and qualitative experimental results demonstrate the superiority and practicality

of the new method. Our work is expected to focus on sensor-adaptive SAR ship detectors that may

enable the natural use of transfer learning. In this case, models trained on one data set can achieve a

desirable performance on another data set, which will reduce the limitations of the data-driven detector.
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