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Abstract Barak and Lindell showed that there exist constant-round zero-knowledge arguments of knowledge

with strict polynomial-time extractors. This leaves the open problem of whether it is possible to obtain an

analogous result regarding constant-round zero-knowledge proofs of knowledge for NP. This paper focuses on

this problem and gives a positive answer by presenting a construction of constant-round zero-knowledge proofs

of knowledge with strict polynomial-time extractors for NP.

Keywords zero-knowledge proofs, proofs of knowledge, constant-round, strict polynomial-time extractors

Citation Li H D, Feng D G. Constant-round zero-knowledge proofs of knowledge with strict polynomial-time

extractors for NP. Sci China Inf Sci, 2014, 57: 012112(14), doi: 10.1007/s11432-013-5044-x

1 Introduction

Goldwasser et al. [1] first introduced Zero-knowledge proofs. An interactive proof for a language L is

called a zero-knowledge proof system if a non probabilistic polynomial-time verifier obtains information

additional to the validity of the proven statement. More formally, the zero-knowledge property requires

that for any probabilistic polynomial-time verifier there exists an efficient algorithm SimV ∗ (known as

a simulator) which, only accessing the common input, can simulate everything that V ∗ obtains in the

interaction with the prover. The soundness property of ZKP is required to protect an honest verifier

from an all-powerful prover. Zero-knowledge arguments (ZKA) are a relaxation of ZKP, in which the

soundness property is required to hold only with respect to a computationally bounded prover

Proofs of knowledge, defined by Goldwasser et al. [1], are proofs that allow the prover to convince the

verifier of holding a secret witness w about a given common input x. There have been several attempts

to present an adequate formalization for this [2–4]. What does it mean to say an interactive proof system

is a proof of knowledge? Loosely speaking, a knowledge extractor K exists that, when given access to the

prover’s strategy, can output the secret within a reasonable time related to the probability that the prover

convinces the verifier. There are two equivalent definitions: (1) there exists an expected polynomial-time

extractor K that can obtain a witness with probability sufficiently close to the probability that the prover
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convinces the verifier; and (2) an extractor K exists that must always output a witness w within an

expected time inversely proportional to the probability that the prover convinces the verifier. Naturally,

if a proof (or argument) of knowledge system for relation R is a zero-knowledge protocol for the language

LR induced by R, it is known as a zero-knowledge proof (or argument) of knowledge for R. ZKP (or

ZKA) of knowledge have since played a crucial role in the design of cryptographic schemes and protocols.

Goldreich et al. [5] first presented a 5-round black-box zero-knowledge proof system for NP under the

existence of claw-free functions. Subsequently, Rosen constructed an even simpler 7-round black-box

zero-knowledge proof system for HC assuming the existence of two-round perfect-hiding commitment

schemes [6]. Until Barak’s result in [7], all known constant-round zero-knowledge protocols (proofs or

arguments) allow simulators to run in expected polynomial-time (that is, the expectation of running time

is polynomial). On the other hand, Goldreich et al. [8] proved that 3-round black-box ZKP do not exist

for any language outside of bounded-error probabilistic polynomial time (BPP). Recently, Katz proved

that NP-complete languages do not have 4-round black-box ZKP assuming the polynomial hierarchy does

not collapse [9]. This result indicates that the round complexity of the construction in [5] for black-box

simulation is optimal unless coNP ⊆MA.

Regarding proofs of knowledge, constant-round ZKA of knowledge for NP are known to exist [10].

In [11], the authors extends impossibility results from [8] to zero-knowledge proof of knowledge, and prove

that the existence of 3-round black-box ZKP of knowledge for L implies there exists a PPT algorithm

which, taking as input x ∈ L, can output a witness for x ∈ L with overwhelming probability. Some

known constant-round construction of ZKP for NP, such as ones in [5,6], are not proofs of knowledge.

Moreover, Barak et al. [12,13] proved that no constant-round zero-knowledge strong proofs or arguments

of knowledge exist for a non-trivial language. By using a special (non-black-box) simulation techniques,

Ref. [14] recently presented a constant-round construction of ZKP of knowledge for NP. Subsequently,

Ref. [15] presented 5-round black-box ZKP of knowledge for NP1).

Before the work of [16], all known constant-round ZKA of knowledge allowed the knowledge extractors

to run in expected polynomial-time. In [16], this was shown to be necessary for a black-box knowledge

extractor, and a constant-round construction of zero-knowledge argument of knowledge with a strict

polynomial-time non-black-box knowledge extractor was presented. However, the recent constant-round

constructions of ZKP of knowledge for NP allow the knowledge extractors to run in expected polynomial-

time [15]. An interesting problem left by this work is whether it is possible to obtain constant-round

ZKP of knowledge with strict polynomial-time extractors. We will focus on this problem and give such

a construction.

1.1 Related works

Barak [7] presented the first construction of constant-round ZKA for NP with a strict polynomial-time

simulator. However, Barak’s construction is non-black-box zero-knowledge, as the simulator for the

construction in [7] uses the description of the code of the verifier’s strategy. Subsequently, Barak et

al. [16] showed that such non-black-box simulation is necessary for obtaining constant-round ZKP or

ZKA for any language outside of BPP. Regarding zero-knowledge protocols of knowledge, Ref. [16] proved

that, under the existence of one-way functions, it is impossible to achieve constant-round zero-knowledge

arguments of knowledge with a strict polynomial-time black-box knowledge extractor for any language

outside of BPP. Thus, non-black-box extraction of knowledge defined in [17] is necessary in order to obtain

constant-round ZKA of knowledge with a strict polynomial-time knowledge extractor. Using such a non-

black-box knowledge extractor, Ref. [16] presented a construction of constant-round ZKA of knowledge

with a PPT knowledge extractor under the assumption of the existence of trapdoor permutations and

collision-resistant hash functions. The recent constant-round constructions of ZKP of knowledge for NP

allow the knowledge extractors to run in expected polynomial-time [15].

1) In 2010, Lindell presents an analogous construction: see http://eprint.iacr.org/2010/656.
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1.2 Our main results

This paper focuses on the constant-round ZKP of knowledge with PPT knowledge extractors for NP. The

main contribution of this paper is to show a construction of constant-round ZKP of knowledge for NP

with polynomial-time extractors for NP.

Main Theorem: Every NP problem has a constant-round ZKP of knowledge system with a strict PPT

non-black-box knowledge extractor if collision-resistant hash functions, claw-free functions and enhanced

trapdoor permutations exist.

Our construction of constant-round ZKP of knowledge relies mainly on special commit-with-extract

schemes. To construct such a commit-with-extract scheme, we use Barak’s non-black-box simulation

techniques. Instead of directly using constant-round zero-knowledge arguments (with a PPT simulator)

to prove that the committed is correctly opened as in [16], the receiver in our construction uses a special

statistical WI argument of knowledge to prove that it executes the protocol honestly or knows the next-

message function of the sender. The other ingredients to construct such a commit-with-extract scheme

include Blum’s non-interactive commitment scheme, a general (2-round) statistically hiding commitment

scheme and an augmented coin-tossing protocol. Roughly speaking, by incorporating the non-black-box

techniques with an augmented coin-tossing protocol, the presented scheme only uses a special statistical

WI argument in the augmented coin-tossing protocol to prove that the committed is correctly opened

or the transcript of the coin-tossing protocol satisfies a specified condition that holds with a negligible

probability in real execution. This special statistical WI argument is based on public-coin universal

arguments [18] and general statistical WI arguments of knowledge for NP as in [19].

2 Preliminaries

Some standard notations is used in this paper.

If A is a PPT machine or algorithm, A(x, y, r) is the output of A upon input x, auxiliary input y and

random input r. For a finite set S, we mean by y ∈R S that y is uniformly selected from S. For two

probability ensembles {Xσ}σ∈I and {Yσ}σ∈I , we denote by {Xσ} c
= {Yσ} (for simplicity, Xσ

c
= Yσ) that

the ensembles {Xσ}σ∈I and {Yσ}σ∈I are computationally indistinguishable

A non-negative function μ(·) : N → R is called negligible if for every positive polynomial p, there

exists Np > 0 such that for all n > Np, μ(n) < 1/p(n). Throughout this paper, μ(·) and poly(·) will

respectively denote an unspecified negligible function and an unspecified polynomial.

2.1 Zero-knowledge

We recall the definitions of zero-knowledge. These formal definitions are taken from [3].

Let P and V be a pair of interactive Turing machines, 〈P, V 〉(x) be a random variable representing

the local output of Turing machine V interacting with machine P on common input x, when the random

input to each machine is uniformly and independently chosen. Customarily, machine P is called the

prover and machine V the verifier. By 〈P, V 〉(x) = 1 (〈P, V 〉(x) = 0), we mean that V accepts (rejects)

the proofs given by P .

Definition 1. A pair of interactive Turing machines 〈P, V 〉 is called an interactive proof system for a

language L if V is polynomial-time and the following two conditions hold:

1) Completeness: there exists a negligible function c such that for every x ∈ L, Pr[〈P, V 〉(x) = 1] >

1− c(|x|).
2) Soundness: there exists a negligible function s such that for every x /∈ L and every interactive

machine B, Pr[〈B, V 〉(x) = 1] < s(|x|).
c(·) is called the completeness error, and s(·) the soundness error. If the soundness condition is required

to hold only with respect to a PPT prover, 〈P, V 〉 is called an interactive arguments system for L.

An interactive proof is said to be auxiliary-input zero-knowledge if the interaction between the prover

(with some auxiliary input y) and verifier (with any auxiliary input z) reveals nothing beyond the validity
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of the assertion to be proved to the verifier. This is formalized by requiring that for any polynomial-

time verifier V ∗ with any auxiliary input z there exists a polynomial-time algorithm SV ∗ (a.k.a the

simulator) such that the view of V ∗ can be simulated by SV ∗(x, z). The idea behind this definition is

that whatever V ∗ might have learned from interacting with P , it could have actually been obtained by

itself. For convenience, we denote by ViewV 〈P (y), V (z)〉(x) a random variable describing the view of V ,

including the content of the random tape of V ∗ and the messages that V receives from P . Similarly,

ViewP 〈P (y), V (z)〉(x) is a random variable describing the view of P .

Definition 2 (Zero-Knowledge with respect to auxiliary input). Let 〈P, V 〉 be an interactive proof system

for a language L. Denote by PL(x) the set of string y satisfying the completeness condition with respect to

x ∈ L. 〈P, V 〉 is called an auxiliary-input zero-knowledge proof system if for every PPT machine V ∗, there
exists a PPT algorithm SV ∗ such that, for arbitrary yx ∈ PL(x), {ViewV ∗〈P (yx), V

∗(z)〉(x)}x∈L,z∈{0,1}∗

and {SV ∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable.

• Black-box zero-knowledge versus non-black-box zero-knowledge. In general, the simulator

SV ∗ in the above definition is dependent on the strategy of verifier V ∗. A zero-knowledge proof system

is termed black-box if the simulator SV ∗ only uses the algorithm V ∗ in a “black-box” manner. That

is, there exists a “universal” simulator S such that for every x ∈ L and every PPT verifier V ∗, the

oracle algorithm SV ∗(x,z)(x) can simulate ViewV ∗〈P (yx), V
∗(z)〉(x). A zero-knowledge proof system is

termed a non-black-box if the simulator SV ∗ not only uses the algorithm V ∗ as a black-box subroutine,

but also uses the description of the algorithm V ∗, denoted by desc(V ∗), as its input. That is, there

exists a PPT algorithm S such that for arbitrary yx ∈ PL(x), {ViewV ∗〈P (yx), V
∗(z)〉(x)}x∈L,z∈{0,1}∗

and {SV ∗(desc(V ∗), 1t, x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable, where t is a bound on

the running time of V ∗ upon inputs x, z.

2.2 Witness indistinguishable proof

The notion of witness indistinguishable proof (argument) requires that no information about which wit-

ness is being used by provers be revealed to verifiers. For any L ∈ NP , denote by RL(x) the corresponding

NP-relation induced by L.

Definition 3. An interactive proof (argument) system 〈P, V 〉 for a NP language L is (statistical) witness

indistinguishable (WI) if for every pair of witness sequences {w1
x}x∈L, {w2

x}x∈L such that (x,w1
x), (x,w

1
x) ∈

RL and any polynomial-time machine V ∗, two distributions, {ViewV ∗〈P (w1
x), V

∗(z)〉(x)}x∈L,z∈{0,1}∗ and

{ViewV ∗〈P (w2
x), V

∗(z)〉(x)}x∈L,z∈{0,1}∗ are computationally (statistically) indistinguishable.

If a witness indistinguishable system 〈P, V 〉 is also a proof of knowledge, 〈P, V 〉 is said to be witness

indistinguishable proof (argument) of knowledge. Constant-round statistical WI arguments for any L ∈
NP are well known to exist.

2.3 Proof of knowledge

In a proof of knowledge for a relationship R, the prover holding a witness w such that R(x,w) = 1

interacts with the verifier on a common input x. The goal of the protocol is to convince the verifier that

the prover indeed knows w. This is in contrast to a regular interactive proof, where the verifier is just

convinced of the validity of the proved statement.

The concept of “knowledge” for machines is formalized by stating that if a prover can convince the

verifier, then an efficient procedure (known as knowledge extractor) exists that can “extract” a witness

from this prover (thus the prover knows a witness because it could run the extraction procedure on itself).

The standard definition of proofs of knowledge in [3] requires the existence of a universal knowledge

extractor that use the algorithm of the prover only as a black-box. Our definition of proofs of knowl-

edge slightly differs from the standard definition. Concretely speaking, the knowledge extractor of our

definition is given the description of the prover’s circuit (or algorithm), and so is called non-black-box

extraction. Requiring that the knowledge extractor is a PPT algorithm, we need to assume that the

description of the prover’s circuit is polynomially bounded.
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This non-black-box extraction was first used in [17] to obtain resettable ZKA of knowledge for NP. Sub-

sequently, Ref. [16] also used the non-black-box-extraction definition of arguments of knowledge to present

the first constant-round zero-knowledge argument of knowledge with strict polynomial-time extractors

for NP, and proved that the use of non-black box extraction is essential for obtaining a constant-round

argument (or proof) of knowledge with strict polynomial-time extractor. Our following definition is on

proofs of knowledge.

Definition 4. An interactive protocol 〈P, V 〉 is a system of proofs of knowledge for a (poly-balanced)

relation R with knowledge error κ if the following conditions hold:

1) Efficiency: 〈P, V 〉 is polynomially bounded, and V is computable in PPT.

2) Non-triviality: There exists an interactive machine P such that for every (x,w) ∈ R all possible

interactions of V with P on common input x and auxiliary y are accepting.

3) Validity: There exists a polynomial-time machine K, such that for any interactive machine P ∗,
and every x, y, r ∈ {0, 1}∗, the machine K, upon input (desc(P ∗), x, r), outputs a solution w satisfying

R(x,w) = 1 with probability at least p(x, y, r) − κ(|x|), where p(x, y, r) is the probability that the

interactive machine V on input x accepts the proof when interacting with the prover specified by P ∗
x,y,r

(the prover’s strategy when fixing common x, auxiliary input y and random tape r).

2.4 Universal arguments

The notion of universal arguments, introduced by Barak et al. [18], is used to present proof system for

language LU = {(M,x, t) : non-deterministic machine M accepts x within t steps}. The corresponding

relation is denoted by RU , that is, RU ((M,x, t), w) = 1 if and only if M (viewed here as a two-input

deterministic machine) accepts (x,w) within t steps. We can handle all NP language by a universal

argument for LU , because every language in NP is linear time reducible to LU .

Definition 5 (Universal arguments, [18]). A universal-argument system is a pair of strategies, denoted

〈P, V 〉, that satisfies the following properties:

1) Efficient verification: there exists a polynomial p such that for any y = (M,x, t), the total time

spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|). In particular, all

messages exchanged in the protocol have length smaller than p(|y|). (Here, |y| is assumed polynomial

bounded).

2) Completeness by a relatively-efficient prover: for every ((M,x, t), w) in RU , Pr[〈P (w), V 〉(M, x, t) =

1] = 1. Furthermore, there exists a polynomial p such that the total time spent by P (w), on common

input (M,x, t), is at most p(TM (x,w)) � p(t), where TM (x,w) denote the number of steps made by M

on input (x,w).

3) Computational soundness: for every polynomial-size circuit family { ˜Pn}n∈N , and every (M,x, t)

∈ {0, 1}n − LU , Pr[〈 ˜Pn, V 〉(M,x, t) = 1] < neg(n).

4) A weak proof of knowledge property: for every positive polynomial p there exists a positive poly-

nomial p′ and a PPT oracle machine E such that the following holds: For every polynomial-size circuit

family { ˜Pn}n∈N , and every sufficiently long y = (M,x, t) ∈ {0, 1}∗ if Pr[〈 ˜Pn, V 〉(y) = 1] > 1/p(|y|) then
Pr[∃w = w1 · · ·wt ∈ RU (y) s. t. ∀i ∈ [t], E

˜Pn(y, i) = wi] > 1/p′(|y|). The oracle machine E is called a

(knowledge) extractor.

2.5 Commitment schemes

Commitment schemes are used to enable a party (the sender) to commit itself to a value while keeping it

secret from another party (the receiver). This property is called hiding. Furthermore, the commitment

is binding, and thus, at a later stage when the commitment is opened, it is guaranteed that the opening

can yield only a single value determined in the committing phase. Given below is a sketch of the two

properties. General definitions can be found in [3].

1) Statistically binding commitments: the binding property holds against unbounded senders, while

the hiding property only holds against computationally bounded receivers.
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2) Statistically hiding commitments: the hiding property holds against unbounded receivers, while the

binding property only holds against computationally bounded senders.

In this paper, we will use non-interactive statistically binding commitments and constant-round sta-

tistically hiding commitments. It is well known that noninteractive statistically binding commitment

schemes can be constructed using any one-to-one one-way functions (see Subsection 4.4.1 of [3]). Statis-

tically hiding commitments need stronger assumptions, for example, some number-theoretic complexity

assumptions. In [20], a construction of statistically hiding commitments is presented under a general

assumption of the existence of any one-way permutation. Haitner et al. [21] improved upon this result

by showing a construction based on the assumption of the existence of one-way function. However, these

known constructions are not constant-round protocols although constant-round statistically hiding com-

mitment schemes exist under stronger assumptions. In fact, Haitner et al. [22] gave a lower bound of

round complexity for a fully-black-box construction of a statistically hiding commitment scheme from

trapdoor permutations showing a constant-round statistically hiding scheme cannot be constructed from

one-way permutations. On the other hand, Ref. [5] presented a two-round construction of statistically

hiding commitments by means of claw-free functions.

Here and throughout this paper, we denote by Comm(·; ·) a non-interactive computationally hiding

commitment scheme, and assume that a two-round construction of statistically hiding commitments is

as follows: the receiver first sends a random index θ ∈ Θ, and then the sender’s commitment to u is

computed by Commθ(u; s), where s ∈R {0, 1}poly(|u|). The decommitment of such a two-round scheme

consists of the committed value and a random input of Commθ(·; ·).
• Commit-with-extract schemes. Commit-with-extract schemes were first introduced to construct

constant-round ZKA of knowledge with a strict polynomial-time extractor in [16], and were used to

construct the constant-round non-malleable commitment scheme in [23]. Loosely speaking, a commitment

scheme is a commit-with-extract scheme if an extractor exists that can simulate the interaction with the

sender, and extract a committed value that is determined by the transcript of the simulated interaction.

To obtain the committed value in strict PPT, the extractor uses the strategy of the sender in a non-

black-box manner.

Definition 6 (Commit-with-extract, [16]). A statistically binding commitment scheme Comm-Ext with

sender S and receiver R is a commit-with-extract scheme if the following holds: there exists a probabilistic

polynomial-time commitment extractor Kc such that for every probabilistic polynomial-time committing

party S∗ and for every x, y, r ∈ {0, 1}∗, upon input (desc(S∗), 1t, x, r), where t is a bound on the run-

ning time of S∗(x, y, r), machine Kc outputs a pair, denoted by (K1
c ,K2

c) = (K1
c(desc(S

∗), 1t, x, y, r);
K2

c(desc(S
∗); 1t, x, y, r)), satisfying the following conditions:

1) {K1
c(desc(S

∗), 1t, x, y, r)}x,y,r∈{0,1}∗ ≡ {ViewS∗〈S∗(x, y, r);B〉}x,y,r∈{0,1}∗ .

2) Pr[K2
c(desc(S

∗); 1t, x, y, r) = commit-value(K1
c )] > 1 − (|x|), where commit-value(K1

c ) denotes the

committed value determined by K1
c , and commit-value(K1

c ) = ⊥ if no committed value exists.

3 A new commit-with-extract scheme

The construction of ZKA of knowledge for an NP-relation R in [16] consists of two phases. In phase 1,

the prover and verifier run a special (statistically binding) commitment scheme, known as a commit-with-

extract scheme, in which the prover commits to the witness w satisfying R(x,w) = 1. In phase 2, they

run a constant-round zero-knowledge argument for NP in which the prover proves that the value being

committed to during the commitment in the previous phase is a valid witness of x ∈ LR. The central tool

in their construction is the constant-round (statistically binding) commit-with-extract scheme. Compared

with general commitment schemes, commit-with-extract schemes have the following additional property:

an extractor exists that can extract the value being committed to during the commitment stage. The

fact that the construction is zero-knowledge results from the hiding property of the commitment scheme

and the zero-knowledge property of the proof system used in phase 2. The knowledge extractor of the

construction can be derived from the extraction property of the commit-with-extract scheme.
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Their construction of a commit-with-extract scheme is derived from following Blums non-interactive

commitment scheme: to commit to bit σ, the sender randomly picks r and sends (f(r), b(r) ⊕ σ) to

the receiver, where f is a one-way permutation and b(·) is its hard-core predicate. The details of the

commitment stage of the construction are as follows:

1) The sender chooses a permutation f .

2) Both the parties run a coin-tossing protocol to generate a uniformly random string y: a) The

receiver randomly selects two strings y1, s1 and sends the sender c = Comm(y1; s1) (the commitments to

y1). b) The sender sends a random string y2. c) The receiver opens the commitment c: only revealing

y1 and proving, by a constant-round zero-knowledge argument with a strict polynomial-time simulator,

that the commitment c defined in the previous step is the commitment to y1. d) Both the parties set

y = y1 ⊕ y2.

3) The sender computes r = f−1(y) and sends b(r)⊕ σ to the receiver.

In the coin-tossing protocol, instead of revealing the commitment c, the receiver only reveals y1 and

invokes a (constant-round) zero-knowledge argument to prove it is consistent with c. Note that the

commitment-value extractor works in the simulated setting, and it extracts the committed value by

revealing a new string y′1 such that it knows f−1(y′1 ⊕ y2), and then invoking the simulator of this

zero-knowledge argument system to prove a false statement: c is a correct commitment to y′1. From

the assumption that the sender is a computational bounded machine, the sender will always accept the

proof given by the simulator. However, to extract the committed value in strict polynomial-time this

simulator must be a strict polynomial-time algorithm. Here, Barak’s first constant-round (non-black-

box) zero-knowledge argument with a strict polynomial-time simulator can be used, and as a result in

the knowledge extractor must work in a non-black-box manner.

To construct a zero-knowledge proof of knowledge for an NP-relation R with a strict polynomial-time

(non-black-box) knowledge extractor, we need a constant-round statistically binding commit-with-extract

scheme, the commitment-value extractor of which must succeed even if the sender is a computationally

unbounded machine. It is unfortunate that such statistically-binding commit-with-extract schemes cannot

be directly derived from the above commit-with-extract scheme by means of replacing Comm(·; ·) with a

statistically hiding commitment scheme.

Next, we will construct such a constant-round statistically binding commit-with- extract scheme. The

presented commitment scheme is similar to the construction in [16], and it consists of an augmented

coin-tossing protocol and Blums non-interactive commitment. Other than replacing the computationally

hiding commitment scheme with a two-rounds statistically hiding commitment scheme, there are two

differences between the presented scheme and that from [16]: (1) a new augmented coin-tossing is used;

and so (2) instead of using a constant-round zero-knowledge argument (with PPT simulator) for the

verifier to prove that the previous committed value is correctly opened, the proposed scheme only uses a

special statistical WI argument in the augmented coin-tossing protocol for the verifier to prove that the

committed value is correctly opened or the transcript of the augmented coin-tossing protocol satisfies a

specified condition.

The construction uses any family of enhanced trapdoor permutations, that consists of four PPT algo-

rithms: a function-sampling algorithm I, a domain-sampling algorithm Df for the specified permutation

by I, a permutation-computing algorithm f and permutation-inverting algorithm f−1. For convenience

we use Df (r) to denote the deterministic algorithm derived from Df when treating the coins, denoted

by r, as an auxiliary input. Let b(·) be a hard-core predictor of the enhanced trapdoor permutations.

Define T (n) = nω(1) and let {Hn} be a family of collision-resistant hash functions against T (n)-

size circuits, where h ∈ Hn : {0, 1}∗ → {0, 1}n. Given an enhanced trapdoor permutation f , h and

Commθ(·; ·), for convenience, define two languages:

Λ0 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(c, y, w) : 1) c ∈ {0, 1}poly(n), y ∈ {0, 1}n;
2) ∃z ∈ {0, 1}n and s1 ∈ {0, 1}poly(n), such that

a) c = Commθ(z; s1); b) w = Df (y ⊕ z).

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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Λ1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(h, c, y) : 1) (h, c, y) ∈ Hn × {0, 1}poly(n) × {0, 1}n;
2) ∃d ∈ {0, 1}n, and TM π, s2 ∈ {0, 1}poly(n) such that

a) d = h(π); b) c = Commθ(d; s2); c) π(c) output y within T (n) steps.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Obviously, (c, y, w) ∈ Λ0 means that the random input used to select w is determined by y and the

committed value of c. Whereas (h, c, y) ∈ Λ1 means there exists a Turing machine π that, upon inputting

the commitment to h(π), will output y.

The details of the proposed construction are as follows:

Construction 1 (Commit-with-extract scheme). The sender commits to σ ∈ {0, 1}; n is a security

parameter.

Commitment stage:

1) The sender randomly picks an enhanced trapdoor permutation f by the function-sampling algorithm

I, a hash function h ∈ Hn, and θ ∈ Θ (the index for the two-round statistically hiding commitment

schemes).

2) The receiver randomly selects z ∈ {0, 1}n and s1 ∈ {0, 1}poly(n), computes c = Commθ(z; s1) and

sends c to the prover P .

3) The sender randomly picks y ∈ {0, 1}n and sends y to the receiver.

4) The receiver computes w = Df (y ⊕ z) and sends w to the sender.

5) By running a special WI argument (given in construction 2) with a common input λ = (h, c, y, w),

the receiver proves that (c, y, w) ∈ Λ0 or (h, c, y) ∈ Λ1.

6) If the above proof fails, the sender aborts; Otherwise, the sender computes r = f−1(w) and sends

ρ = b(r)⊕ σ to the receiver.

Revealment stage: To reveal the commitment, the sender sends σ and r to the receiver. The receiver

verifies f(r) = w and σ = ρ⊕ b(r).

The special WI argument used in the protocol deals with language Λ0 ∨ Λ1. Note that Λ1 does not

lie in NP under the assumption that T (n) = nω(1). So general WI arguments for NP do not work and a

special WI universal argument is needed.

Additionally, it follows from the statistically hiding property of Commθ(·; ·) that (c, y, w) ∈ Λ0 and

(h, c, y) ∈ Λ1 hold almost certainly. Therefore, to resist a cheating receiver this special WI universal

argument used in step 5 should be a “proof-of-knowledge”, that is, it should be a statistical WI universal

argument of knowledge. In such a way, the probability that the proof is accepted by the sender is almost

same as the probability that the receiver knows the witness for (c, y, w) ∈ Λ0 or (h, c, y) ∈ Λ1. Thus,

if the sender accepts the proof with a non-negligible probability then the receiver must obtain, with a

non-negligible probability, the witness for (c, y, w) ∈ Λ0 or (h, c, y) ∈ Λ1. The former means, by the

definitions of Λ0, that the receiver selects w according to the protocol (otherwise the receiver is able

to attack the binding property of Commθ(·; ·)), and then the receiver has no information of f−1(w) as

f is an enhanced trapdoor permutation. The later shows by the definition of Λ1 that the receiver can

guess y (the output of the sender) with non-negligible probability in advance. This is impossible in real

setting. Therefore, the sender accepts the proof with a non-negligible probability must mean that the

receiver honestly executes the protocol and then has no information of f−1(w). The computationally

hiding property of Construction 1 follows.

Our construction of the special WI universal arguments of knowledge for Λ0∨Λ1, denoted by 〈Pswi, Vswi〉,
is similar to the construction in [18] and two ingredients, Barak’s universal argument and a statistical

WI argument of knowledge for NP, are used. Let 〈Pua, Vua〉 be Barak’s 4-round, public-coin universal

argument for Λ1 (for simplicity, denote the interaction by (1)Pua
α← Vua; (2) Pua

β→ Vua; (3) Pua
γ← Vua;

(4) Pua
δ→ Vua), and let 〈Pwi, Vwi〉 be a statistical WI argument of knowledge for NP. Without loss of

generality, the length of the messages in 〈Pua, Vua〉 has upper bound from above by the length of the

common input. The details of 〈Pswi, Vswi〉 are as follows.

Construction 2 (Special WI argument for Λ0 ∨ Λ1: 〈Pswi, Vswi〉). Common inputs: (h, c, y, w) and

index θ.
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Phase 1: encrypted 〈Pua, Vua〉 for Λ1. Let |(h, c, y)| = n.

1) The verifier randomly selects α ∈ {0, 1}n and sends α to the prover.

2) The prover sends ˜β = Commθ(0
n; τ1) to the verifier, where τ1 ∈R {0, 1}poly(n).

3) The verifier randomly selects γ ∈ {0, 1}n and sends γ to the prover.

4) The prover sends ˜δ = Commθ(0
n; τ2) to the verifier, where τ2 ∈R {0, 1}poly(n).

Phase 2: Both parties run statistical (black-box) WI arguments of knowledge 〈Pwi, Vwi〉, with common

input ((h, c, y, w), (α, ˜β, γ, ˜δ)), in which the prover proves the OR of the following statements:

1) (c, y, w) ∈ Λ0.

2) There exists (β, γ, τ1, τ2) such that a) ˜β = Commθ(β; τ1); b) γ̃ = Commθ(γ; τ2); c) (α, β, γ, δ) is an

accepting transcript for 〈Pua, Vua〉 proving that (h, c, y) ∈ Λ1.

Next, we will show that construction 1 is a commit-with extract scheme. It is easy to see that an

honest sender can commit to any bit. The computationally hiding property of the scheme, roughly

speaking, follows from the following two facts: (1) Blum’s scheme is computationally hiding; (2) Λ1 is

a hard language, that is, no matter what the verifier does in the real interaction, (h, c, y) ∈ Λ1 with at

most a negligible probability. On the other hand, when given the description of the sender’s strategy the

extractor is able to make (h, c, y) ∈ Λ1 hold, and can then honestly complete step 5 using a witness for

(h, c, y) ∈ Λ1. Thus, the extractor can extract the committed value by choosing r and setting w = f(r).

Theorem 1. Let 〈Pua, Vua〉, 〈Pwi, Vwi〉 and Commθ(·; ·) are as above. Construction 1, using the special

WI argument given by construction 2 in step 5, is a constant-round statistically binding commit-with-

extract scheme.

Proof. We will first prove that construction 1 is a statistically binding scheme, and then prove that it

satisfies definition 6.

• Computationally hiding property. From the property of Blum’s commitment scheme, it is easy to

see that the computationally hiding property holds if the augmented coin-tossing protocol is secure; i.e.,

w is generated by the receiver according to the protocol specification. As the sender cannot directly verify

whether the receiver selects w honestly, the receiver is asked to prove that at least one of (c, y, w) ∈ Λ0

(i.e. w is generated according to the protocol specification) and (h, c, y) ∈ Λ1 (i.e. the transcript

meets some special conditions) holds by means of the special WI universal arguments of knowledge for

Λ0 ∨ Λ1. Note that (c, y, w) ∈ Λ0 and (h, c, y) ∈ Λ1 all are hold almost certainly (because Commθ(·; ·)
is statistically-hiding). Therefore, we need to prove the following: if the sender accepts the proof of

step 5 with a noticeable probability then the receiver knows a witness for (c, y, w) ∈ Λ0 with a noticeable

probability, which means that the receiver selects w according to the protocol specification (otherwise,

the receiver with a noticeable probability knows a witness for (c, y, w) ∈ Λ0 while he does not follow the

protocol specification to generate w. This means that the receiver is able to attack the binding property

of Commθ(·; ·)).
To this end, we need to prove that, if the sender accepts the proof in step 5 with a noticeable probability,

there exists an extractor K that can output a witness for (c, y, w) ∈ Λ0 with a noticeable probability

when given access to the strategy of the (possibly cheating) receiver R∗. In the following we will show

the existence of K.
Roughly speaking, K only needs to simulate the interaction with R∗ by playing an honest sender. As

the sender only sends random messages before reaching the phase 2, R∗ cannot distinguish this simulated

interaction from the real one. K proceeds as follows:

Extractor K: 1) Emulate an execution from step 1 to 4 of construction 1 by playing the role of the

sender. If the emulation fails at any time, output ⊥ and halt. 2) Emulate an execution of encrypted

〈Pua, Vua〉 by playing the role of the sender (that is, a verifier of the special WI argument). If the emulation

fails at any time, output ⊥ and halt. 3) Construct a prover (denoted by P ∗
wi) and a verifier (denoted by

Vwi) of the WI argument of knowledge system 〈Pwi, Vwi〉, respectively from the residual receiver R∗ and

the residual sender S with a fixed view so far. 4) Invoke the extractor Ewi for 〈P ∗
wi, Vwi〉. Finally, output

the output of Ewi.
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Let pc be the probability that the sender S, interacting with the (possible) cheating receiver R∗, accepts
the proof given by R∗ in step 5 of construction 1, and pwi be the probability that Vwi (the residual sender

of S) accepts the proof given by Pwi (the residual receiver of R∗) in phase 2 of the special WI argument.

Obviously, pc � pwi. It follows that if pc is noticeable then so is pwi.

Let Γ denote the event that K completes steps 1 and 2 without aborting. If Γ takes place, P ∗
wi (a

prover of 〈Pwi, Vwi〉 in the simulation setting) is well defined from the residual receiver R∗ with a fixed

view until now. Assume that p∗wi is the probability that P ∗
wi succeeds in convincing Vwi in the emulation

process. As the sender only needs to send random messages to the receiver, the probability that Γ take

place is the same as the probability that the protocol 〈Pwi, Vwi〉 is reached in the real execution. This

shows that |pwi − p∗wi| must be negligible. Hence, p∗wi is noticeable if pc is a noticeable.

From the proof-of-knowledge property of 〈P ∗
wi, Vwi〉 (with common input ((h, c, y, w), (α, ˜β, γ, ˜δ))), there

exists an expected polynomial-time extractor Ewi such that, with a noticeable probability, Ewi (when

given access to P ∗
wi) can output a witness (z, s1) (for (c, y, w) ∈ Λ0) satisfying c = Commθ(z; s1) and w =

Df (y⊕z), or outputs a witness (β, τ1, δ, τ2) such that the following conditions hold: a) ˜β = Commθ(β; τ1);

b) ˜δ = Commθ(δ; τ2); c) (α, β, γ, δ) is an accepting transcript for 〈Pua, Vua〉 proving that (h, c, y) ∈ Λ1.

Next, we will prove the probability, denoted by pe, that Ewi outputs a accepting transcript (β, τ1, δ, τ2)

is negligible. K then outputs a witness for (c, y, w) ∈ Λ0 with a noticeable probability.

Let n′ be the length of the common input of 〈P ∗
wi, Vwi〉 (n′ = poly(n)). Suppose to the contrary that for

infinitely many values of n′ (denoted by N1), pe is noticeable, i.e. pe > 1/poly(n′) for n′ ∈ N1. Then, we

can construct P ∗
ua, a strict polynomial-time prover of the universal argument 〈Pua, Vua〉, from 〈Pswi, Vswi〉

and Ewi (the extractor of knowledge of 〈Pwi, Vwi〉), such that the probability with which P ∗
ua convince

Vua of (h, c, y) ∈ Λ1 is noticeable for infinitely many value of n′′ (here, n′′ is the length of the common

input for 〈Pua, Vua〉 and n′′ = poly(n)), that is, the following holds pua = Pr[〈P ∗
ua, Vua〉(h, c, y) = 1] =

poly(pe) � 1/poly(n′′), n′′ ∈ N2 We first construct P ∗′
ua as follows:

1) P ∗′
ua first receives message α from verifier Vua. To generate response β, P ∗′

ua starts to emulate the

execution of 〈Pswi, Vswi〉 by playing the role of an honest verifier Vswi. P
∗
ua proceeds as follows: a) Sends

α to Pswi and obtains ˜β from Pswi. b) Randomly selects γ and then sends it to Pswi. Pswi responds with
˜δ. c) Executes protocol 〈Pwi, Vwi〉 with prover Pwi, and abort if Pwi fails in convincing of P ∗′

ua; otherwise,

invokes extractor Ewi. d) If Ewi outputs a witness (β, δ, τ1, τ2) such that (α, β, γ, δ) is an accepting

transcript for 〈Pua, Vua〉 proving that (h, c, y) ∈ Λ1, proceeds to the next step; otherwise, aborts.

2) P ∗′
ua sends β to Vua and receives γ from Vua.

3) To generate response δ, P ∗
ua rewinds Pswi to the point where it waits for the response message γ

and emulates the execution of 〈Pswi, Vswi〉 again. P ∗
ua proceed as follows: a) sends γ to Pswi and receives

˜δ from Pswi; b) executes protocol 〈Pwi, Vwi〉 with prover Pwi, and aborts if Pwi fails in convincing of P ∗′
ua;

otherwise, invokes the extractor Ewi; c) if Ewi again outputs a witness (β′, δ′, τ ′1, τ
′
2) such that (α, β′, γ, δ′)

is an accepting transcript proving that (h, c, y) ∈ Λ1, proceed to the next step; otherwise, aborts.

4) If β �= β′, P ∗′
ua aborts; otherwise, P ∗′

ua sends δ to Vua.

Note that Pswi succeeds in convincing Vswi with a larger probability than pe. It is obvious that P ∗′
ua

reaches step 4 without aborting with probability p = poly(pe) � 1/poly(n′) � 1/poly(n′′). On the other

hand, because β �= β′ means that P ∗′
ua is able to open the commitment ˜β as two different values, then

from the computationally binding property of commθ(·; ·), Pr[β �= β′] must be negligible. Therefore,

P ∗′
ua can convince Vua with probability p − μ(n′) � 1/poly(n′) � 1/poly(n′′) (because (α, β, γ, δ′) is an

accepting transcript). Clearly, P ∗′
ua is only expected polynomial-time because the extractor Ewi is expected

polynomial-time. Nevertheless, we can obtain a strict polynomial-time P ∗
ua, which can convince Vua with

a non-negligible probability, by truncating the execution of P ∗′
ua.

By the weak proof of knowledge property of 〈Pua, Vua〉, there exists a PPT oracle machine EP∗
ua who

can extract any bit of a witness for (h, c, y) ∈ Λ1 with a probability q � 1/poly(n′′) � 1/poly(n).

Furthermore, because the length of d and s2 is bounded above by a fixed polynomial, d and s2 can be

exactly extracted by EP∗
ua in polynomial-time.

Because the probability that the receiver correctly guesses y in advance is negligible, there must exist

many y’s (at least a noticeable fraction 1/poly(n)) such that EP∗
ua can give an implicit representation of
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a witness with probability q � 1/poly(n′′) � 1/poly(n). Thus, EP∗
ua can obtain the implicit presentations

of the witness for (h, c, y) ∈ Λ1 (denoted by (d, π, s2)) and the witness for (h, c, y′) ∈ Λ1 (denoted by

(d′, π′, s′2)) for uniformly distributed y and y′ with a noticeable probability. By definition, we have d =

h(π), c = Commθ(d, s1), y = π(c) and d′ = h(π′), c = Commθ(d
′, s′1), y′ = π(c′). As Pr[y = y′] = 2−n,

π �= π′ holds with probability 1−μ(n). On the one hand, d = h(π) �= h(π′) = d′ implies that the receiver

is able to open c in two different ways. This contradicts the binding property of Commθ(·; ·). On the

other hand, h(π) = h(π′) means that EP∗
ua can find a collision of h with a noticeable probability and

contradicts the assumption. Therefore, pua must be negligible.

More formally, we construct a non-uniform strategy A from EP∗
ua to attack the binding property of

Commθ(·; ·) or to find collisions for {Hn}. The details of A are as follows:

1) Incorporate the receiver’s strategyR∗ and emulate the honest sender S until the special WI argument

protocol 〈Pwi, Vwi〉 is reached.
2) Invoke the knowledge extractor EP∗

ua , fail and halt if EP∗
ua fails.

3) Otherwise, obtain d, s2 and an implicit representation of the Turing machine π.

4) Rewind R∗ until the point where y is expected.

5) After receiving w, invoke the knowledge extractor EP∗
ua , fail and halt if EP∗

ua fails.

6) Otherwise, obtain d′, s′2 and an implicit representation of the Turing Machine π′.
7) If d �= d′, output (d, s2), (d′, s′2) and halt.

8) Otherwise, obtain π and π′ from the respective implicit representation in time T (n)O(1).

From the above we know that EP∗
ua succeeds with a noticeable property if pe is noticeable. Indeed,

A with a non-negligible property obtains either (d, s2) and (d′, s′2) satisfying d �= d′ and commθ(d; s2) =

commθ(d
′; s′2), or π and π′ satisfying π �= π′ and h(π) = h(π′). This contradicts the binding property of

Commθ(·; ·) or the collision property of {Hn}. Therefore, pe is negligible.

• Binding property. The statistically binding property is derived from that of Blum’s commitment

scheme.

• Extraction property. To prove the extraction property, we show that there exists a polynomial-time

extractor Kc which, given the polynomial bounded description of the sender’s strategy , can extract the

committed value from S∗.
In this instance, Kc should play the role of receiver and simulate the interaction with S∗. From the

hiding property of Commθ(·; ·), S∗ cannot distinguish this simulated interaction from the real one. Thus,

the behavior of S∗ is almost the same in the real setting as in the simulated setting.

This extractor Kc works if the following two conditions hold: (1) it knows the pre-image of w under f

and (2) it can convince the sender of the statement that (c, y, w) ∈ Λ0 or (h, c, y) ∈ Λ1. Obviously, this

is impossible in a real setting (the computationally binding property). This however can be achieved in

this simulation because taking as input the description of the sender’s strategy (for simplicity, denoted by

desc(π)), Kc has an advantage over the real receiver. To make condition (1) hold, Kc needs to choose a

string in r advance and then to uses w = f(r) to respond to y. To make condition (2) hold, the extractor

Kc only needs to make (h, c, y) ∈ Λ1 hold by computing c = Commθ(h(desc(π)); s1) for s1 ∈R {0, 1}poly(n)
(here, assuming desc(π)) is polynomially bounded).

In more details, Kc taking as input π proceeds as follows:

1) Kc receives a trapdoor permutation f , a hash function h, and an index θ.

2) Kc randomly picks s2, computes c = Commθ(h(π); s1), and sends c to the sender.

3) Kc receives y.

4) Kc randomly chooses r and sets w = f(r).

5) Playing the role of a prover, Kc honestly runs the special WI argument (given in construction 2)

with (π, d = h(π), s2), a witness for (h, c, y) ∈ Λ1, to prove ((c, y, w) ∈ Λ0) ∨ ((h, c, y) ∈ Λ1). If the proof

succeeds, Kc will receive the sender’s commitment ρ.

6) Upon receiving ρ, Kc computes and outputs σ = ρ⊕ b(r).

Note that c = Commθ(h(desc(π)); s1) is enough to make (h, c, y) ∈ Λ1 hold. Thus, although Kc deviate

from the protocol specification by computing w = f(r), Kc has a witness for ((c, y, w) ∈ Λ0)∨(h, c, y) ∈ Λ1,
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by which Kc can convince the sender of ((c, y, w) ∈ Λ0)∨(h, c, y) ∈ Λ1 in step 5. Therefore, Kc can receive

ρ and compute σ = ρ⊕ b(r).

Remark 1. The above analysis is based on the assumption that {Hn} is collision resistant against

T (n)O(1)-size circuits. By the methods of [18], this assumption can be weakened to the assumption that

is collision resistant against polynomial-size circuits.

Remark 2. Construction 1 is only a bit commitment scheme, but we can obtain a string commitment

scheme by running it several times in parallel. Concretely speaking, to commit w = w1 · · ·wk ∈ {0, 1}k,
the sender and the receiver run k instances of the bit commitment protocol in parallel, where instance i

is used to commit wi. Nevertheless, there exist two exceptions: (1) the sender use the same h, f , and θ

in all instance; (2) as Barak’s non-black-box technique is used, a single special WI argument is necessary

in step 5. To this end, we define a language:

Λ′
1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(h, c, y) : 1) h ∈ Hn, c = (c1, . . . , ck) ∈ {0, 1}k·poly(n), and y = (y1, . . . , yk) ∈ {0, 1}k·n.
2) ∃ an TM π and (s12, . . . , s

k
2) ∈ {0, 1}k·poly(n), such that a) d = h(π);

b) cj = Commθ(d; s
j
2), j = 1, . . . , k; c) π(c) outputs y within T (n) steps.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

The details of the string commitment scheme are as follows:

Construction 3 (String commit-with-extract scheme). The sender commits to σ = σ1 · · ·σk ∈ {0, 1}k.
n is a security parameter.

Commitment stage:

1) The sender randomly picks an enhanced trapdoor permutation f by I, a hash function h ∈ Hn, and

an index θ (the index of two-round statistically hiding commitment scheme).

2) The receiver randomly selects zj ∈ {0, 1}n and sj1 ∈ {0, 1}poly(n), computes cj = Commθ(zj ; s
j
1),

j = 1, . . . , k. Then, it sends c = (c1, . . . , ck) to the sender S.

3) The sender randomly picks y = (y1, . . . , yk) ∈ {0, 1}k·n and sends y to the receiver.

4) The receiver computes wj = Df (yj ⊕ zj) and sends w = (w1, · · · , wk) to the sender.

5) By running a special WI argument (given in construction 2) with a common input λ = (h, c, y, w),

the receiver proves that (1) (cj , yj , wj) ∈ λ0 for j = 1, . . . , k, or (2) (h, c, y) ∈ Λ′
1.

6) If the above proof fails, the sender aborts; otherwise, the sender computes rj = f−1(wj) and

ρj = b(rj)⊕ σj . Finally, the sender sends ρ = ρ1 · · · ρk to the receiver.

Revealment stage: To reveal the commitment, the sender sends σ and r = (r1, . . . , rk) to the receiver.

The receiver verifies f(rj) = wj and σj = ρj ⊕ b(rj), j = 1, . . . , k.

The proof of construction 3 is analogous to that of construction 1. For convenience, the commitment

to a string w is denoted by c = Commit-Extract(w; r), where r is the decommitment of c.

4 Constant-round zero-knowledge proofs of knowledge with PPT extractor

In this section, we will use the proposed commit-with-extract scheme to construct a constant-round

zero-knowledge proof-of-knowledge system with PPT extractor for NP.

Construction 4. Zero-knowledge proof of knowledge.

Common input: x ∈ L.

Auxiliary input to the prover: a witness w such that RL(x,w) = 1.

Part 1: Both parties run the above commit-with-extract protocol, in which the prover commits to the

witness w, denoted by ρ = Commit-Extract(w; r). Let v be all messages received by the receiver in this

stage.

Part 2: a) The prover and the verifier run a general zero-knowledge proof Π, in which the prover (with

common input (x, ρ) and auxiliary input (w, r)) proves to the verifier (with auxiliary v) that there exist

w and r such that the following two conditions hold: (1) ρ is a commitment to w; (2) RL(x,w) = 1,

 https://engine.scichina.com/doi/10.1007/s11432-013-5044-x



Li H D, et al. Sci China Inf Sci January 2014 Vol. 57 012112:13

where RL is the poly-balanced relation derived by L. b) The verifier accepts if and only if it accepts the

above proof.

Theorem 2. Construction 4 is a Zero-knowledge proof of knowledge for NP satisfying the definition 3

under the assumed conditions.

Proof. Completeness: This follows immediately from the definitions.

Validity: We need to construct a knowledge extractor Kz satisfying definition 3. In fact, all Kz

does is to invoke the extractor of the commit-with-extract scheme. Concretely, the knowledge extractor

Kz(desc(P
∗), x, r) proceeds as follows:

1) Invoke the extractor Kz of the commit-with-extract protocol and obtain the committed string w.

2) If RL(x,w) = 1, output w; otherwise, abort.

Assume that the prover P ∗ succeeds in convincing the honest verifier of x ∈ L with probability p. We

show that Kz outputs a valid witness for x ∈ L with probability at lest p− μ(|x|).
In fact, the only difference between executing Kz and executing the commit-with-extract protocol is

that the receiver completes the WI argument with two different witnesses. This means that the residual

prover P ∗∗ generated by executing Kz can successfully convince the verifier with almost same probability

as a real prover. That is, the probability that P ∗∗ convinces the verifier, denoted by p′, is at least

p− μ(|x|). If Kz(desc(P
∗), x, r) outputs w with probability at most p− 1/poly(|x|), the residual prover

P ∗∗ can convince the verifier of a false statement with non-negligible probability. This contradicts the

soundness of the zero-knowledge proof system used in part 2. Therefore, the probability that Kz outputs

a valid witness for x ∈ L is at least p− μ(|x|).
• Zero-knowledge. By the definition of the zero-knowledge property, we need to present a simulator

SV ∗ for any given polynomial-time verifier V ∗. Because of the hiding property of Blum’s commitment

scheme, SV ∗ can play an honest prover in part 1 to interact with V ∗, although SV ∗ does not know any

witness. In fact, SV ∗ only needs to commit to a dummy string, such as 0poly(|x|). Thus, by the soundness

of the zero-knowledge proof system used in part 2, SV ∗ cannot complete the proof of part 2. Let v′

denote all the messages sent (by SV ∗) to V ∗ before reaching part 2 in the simulated setting. We know

the strategy of the residual verifier V ∗(v′) is the same as that of V ∗(v), where v denotes all the messages

V ∗ received during executing part 1 in the real setting. Hence, SV ∗ can invoke the simulator for V ∗(v)
to simulate the proof of part 2.

Let O be the simulator for the zero-knowledge proof system used in part 2. For any (possibly cheating)

verifier V ∗, the simulator SV ∗ proceeds as follows:

1) SV ∗ plays the role of a prover to run part 1. Instead of committing to a witness, SV ∗ commits to

0poly(|x|) by ρ′ = Commit-Extract(0poly(|x|); r′).
2) Let v′ denote all the messages sent to V ∗ during the running of part 1. SV ∗ invokes the simulator

O for the zero-knowledge proof system executed in part 2 with (x, ρ′), denoted as OV ∗(v′)(x, ρ
′), where

V ∗(v′) plays the role of the verifier.

3) SV ∗ outputs v′ and OV ∗(v′)(x, ρ
′).

By the definition, we have to prove that {SV ∗(x)} c
= {ViewV ∗〈P, V ∗〉(x)}. To this end, we define a

hybrid simulator ˜S which completes part 1 using the strategy of an honest prover and complete part 2

as SV ∗ does.

First, note that ViewV ∗〈P, V ∗〉(x) = (v,ViewV ∗(v)〈P (w, r), V ∗(v)〉(x, ρ)) and thus it follows from the

zero-knowledge property of Π that {ViewV ∗〈P, V ∗〉(x) c
= { ˜S(x)} = {(v,OV ∗(v)(x, ρ))}. In addition, the

hiding property of the presented commit-with-extract scheme means that the strategy of residual V ∗(v′)
is same as the strategy of the residual verifier V ∗(v). Thus, we have {SV ∗(x)} = {(v′,OV ∗(v′)(x, ρ

′))} c
=

{(v,OV ∗(v)(x, ρ))} = { ˜S(x)}. Over all, we have {SV ∗(x)} c
= {ViewV ∗〈P, V ∗〉(x)}.

It is well known that 4-round public-coin universal arguments exist if collision-resistant hash functions

exist and that the existence of claw-free functions means the the existence of a 2-round statistically hiding

commitment scheme and statistical WI arguments of knowledge for NP. Therefore, we obtain our main

theorem from Theorems 1 and 2.
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