SCIENCE CHINA Information Sciences, Volume 63 , Issue 3 : 132201(2020) https://doi.org/10.1007/S11432-019-9946-6

Global Mittag-Leffler stability for fractional-order coupled systems on network without strong connectedness

More info
  • ReceivedJan 26, 2019
  • AcceptedMay 30, 2019
  • PublishedFeb 10, 2020


This study investigates the global Mittag-Leffler stability (MLS) problem of the equilibrium point for a new fractional-order coupled system (FOCS) on a network without strong connectedness. In particular, an integer-order coupled system is extended into the FOCS on a complex network without strong connectedness. Based on the theory of asymptotically autonomous systems and graph theory, sufficient conditions are derived to ensure the existence, uniqueness, and global MLS of the solutions of this FOCS on a network. Finally, a numerical example is provided to demonstrate the validity and potential of the proposed method for studying the MLS of FOCSs.


This work was supported by National Natural Science Foundation of China (Grant No. 61873071) and Shandong Provincial Natural Science Foundation (Grant No. ZR2019MF027).


[1] Sun H G, Zhang Y, Baleanu D. A new collection of real world applications of fractional calculus in science and engineering. Commun NOnlinear Sci Numer Simul, 2018, 64: 213-231 CrossRef ADS Google Scholar

[2] Krijnen M E, van Ostayen R A J, HosseinNia H. The application of fractional order control for an air-based contactless actuation system.. ISA Trans, 2018, 82: 172-183 CrossRef PubMed Google Scholar

[3] Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45: 1965-1969 CrossRef Google Scholar

[4] Ding S B, Wang Z S, Zhang H G. Quasi-synchronization of delayed memristive neural networks via region-partitioning-dependent intermittent control. IEEE Trans Cybern, 2018. doi: 10.1109/TCYB.2018.2856907. Google Scholar

[5] Wang C H, Liang M. Adaptive NN Tracking Control for Nonlinear Fractional Order Systems With Uncertainty and Input Saturation. IEEE Access, 2018, 6: 70035-70044 CrossRef Google Scholar

[6] Yang Z J, Zhang H G. A fuzzy adaptive tracking control for a class of uncertain strick-feedback nonlinear systems with dead-zone input. Neurocomputing, 2018, 272: 130-135 CrossRef Google Scholar

[7] Sun G H, Wu L G, Kuang Z A. Practical tracking control of linear motor via fractional-order sliding mode. Automatica, 2018, 94: 221-235 CrossRef Google Scholar

[8] Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59: 1810-1821 CrossRef Google Scholar

[9] Chen W H, Guan Z H, Lu X M. Delay-dependent robust stabilization and $H_{\infty}$-control of uncertain stochastic systems with time-varying delay. IMA J Math Control Inf, 2004, 21: 345-358 CrossRef Google Scholar

[10] Kao Y G, Wang C H. Global stability analysis for stochastic coupled reaction-diffusion systems on networks. NOnlinear Anal-Real World Appl, 2013, 14: 1457-1465 CrossRef Google Scholar

[11] Mu J B, Li S Y, Wu J. On the structural controllability of distributed systems with local structure changes. Sci China Inf Sci, 2018, 61: 052201 CrossRef Google Scholar

[12] Kao Y G, Wang C H, Karimi H R. Global stability of coupled Markovian switching reaction-diffusion systems on networks. NOnlinear Anal-Hybrid Syst, 2014, 13: 61-73 CrossRef Google Scholar

[13] Li Y B, Kao Y G. Stability of coupled impulsive Markovian jump reaction-diffusion systems on networks. J Syst Sci Complex, 2016, 29: 1269-1280 CrossRef Google Scholar

[14] Kao Y G, Zhu Q X, Qi W H. Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching. Appl Math Computation, 2015, 271: 795-804 CrossRef Google Scholar

[15] Li M Y, Shuai Z S. Global-stability problem for coupled systems of differential equations on networks. J Differ Equ, 2010, 248: 1-20 CrossRef ADS Google Scholar

[16] Li H L, Jiang Y L, Wang Z L. Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network. Appl Math Computation, 2015, 270: 269-277 CrossRef Google Scholar

[17] Li H L, Hu C, Jiang Y L. Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls. Neurocomputing, 2016, 214: 233-241 CrossRef Google Scholar

[18] Gao Y. Mittag-Leffler stability for a new coupled system of fractional-order differential equations on network. Adv Differ Equ, 2018, 2018(1): 121 CrossRef Google Scholar

[19] Chen J Y, Li C D, Yang X J. Global Mittag-Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control. Neurocomputing, 2018, 313: 324-332 CrossRef Google Scholar

[20] Lanjewar A, Khubalkar S W, Junghare A S. Comparative analysis of two loop integer and fractional order PID controller for inverted pendulum. In: Proceedings of International Conference on Smart Electric Drives and Power System (ICSEDPS). New York: IEEE, 2018. 380--383. Google Scholar

[21] Wang Z. Stability and moment boundedness of an age-structured model with randomly-varying immigration or harvesting. J Math Anal Appl, 2019, 471: 423-447 CrossRef Google Scholar

[22] Zhang C L, Deng F Q, Luo Y P. Stabilization for multi-group coupled stochastic models by delay feedback control and nonlinear impulsive control. Sci China Inf Sci, 2018, 61: 70212 CrossRef Google Scholar

[23] Boukal Y, Darouach M, Zasadzinski M. Robust $H_{\infty~}$ Observer-Based Control of Fractional-Order Systems With Gain Parametrization. IEEE Trans Automat Contr, 2017, 62: 5710-5723 CrossRef Google Scholar

[24] Wei Y Q, Liu D Y, Boutat D. Innovative fractional derivative estimation of the pseudo-state for a class of fractional order linear systems. Automatica, 2019, 99: 157-166 CrossRef Google Scholar

[25] Zhang Q, Cui N X, Shang Y L. Relevance between fractional-order hybrid model and unified equivalent circuit model of electric vehicle power battery. Sci China Inf Sci, 2018, 61: 70208 CrossRef Google Scholar

[26] Xie J Q, Wang T, Ren Z K. Haar wavelet method for approximating the solution of a coupled system of fractional-order integral-differential equations. Math Comput Simul, 2019, 163: 80-89 CrossRef Google Scholar

[27] Liu R J, She J H, Wu M. Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach. Sci China Inf Sci, 2018, 61: 70222 CrossRef Google Scholar

[28] Liu Y, Mei J L, Li W X. Stochastic stabilization problem of complex networks without strong connectedness. Appl Math Computation, 2018, 332: 304-315 CrossRef Google Scholar

[29] Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Commun NOnlinear Sci Numer Simul, 2014, 19: 2951-2957 CrossRef ADS Google Scholar

[30] Li H L, Hu C, Jiang H J. Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control. Chaos Solitons Fractals, 2017, 103: 357-363 CrossRef ADS Google Scholar

  • Figure 3

    (Color online) Response curves of (17) with the initial values $\textbf{\textit{Z}}_{1},\textbf{\textit{Z}}_{2}$, and $\textbf{\textit{Z}}_{3}$. (a) and (b) show the curves of states and control inputs of system (17).

  • Table 1  

    Table 1Parameters used in the coupled system (16)

    Parameter ValueParameterValueParameterValueParameter ValueParameter ValueParameter Value
    $\alpha_{1}$0.17 $\beta_{1,1}$0 $\beta_{2,1}$0.1$\beta_{3,1}$0.4$\beta_{4,1}$0$\beta_{5,1}$0
    $\alpha_{2}$0.30$\beta_{1,2}$0.1 $\beta_{2,2}$0 $\beta_{3,2}$0$\beta_{4,2}$0$\beta_{5,2}$0
    $\alpha_{3}$0.46$\beta_{1,3}$0 $\beta_{2,3}$0 $\beta_{3,3}$0$\beta_{4,3}$0.2$\beta_{5,3}$0.4
    $\alpha_{7}$0.98 $\beta_{1,7}$0$\beta_{2,7}$0$\beta_{3,7}$0$\beta_{4,7}$0$\beta_{5,7}$0.4
    $\alpha_{9}$1.21$\beta_{1,9}$0$\beta_{2,9}$ 0$\beta_{3,9}$0$\beta_{4,9}$0.4$\beta_{5,9}$0
    $\beta_{6,2}$ 0$\beta_{7,2}$0.4$\beta_{8,2}$0$\beta_{9,2}$0 $\beta_{10,2}$0
    $\beta_{6,5}$0.4$\beta_{7,5}$0 $\beta_{8,5}$0$\beta_{9,5}$0$\beta_{10,5}$0
    $\beta_{6,7}$0$\beta_{7,7}$0$\beta_{8,7}$0.2$\beta_{9,7}$0 $\beta_{10,7}$0
    $\beta_{6,9}$0$\beta_{7,9}$0 $\beta_{8,9}$0$\beta_{9,9}$0$\beta_{10,9}$0.1
    $\beta_{6,10}$0$\beta_{7,10}$0$\beta_{8,10}$0.4$\beta_{9,10}$0.1$\beta_{10,10}$ 0
  • Table 2  

    Table 2Equilibrium values of $\textbf{\textit{Z}}^{\ast}$ of (17) for different values of $m_{k}$

    Parameter $\textit{m}_{k}=1$ $\textit{m}_{k}=2$ $\textit{m}_{k}=3$ $\textit{m}_{k}=4$ Parameter $\textit{m}_{k}=1$ $\textit{m}_{k}=2$ $\textit{m}_{k}=3$ $\textit{m}_{k}=4$
    $\textit{x}^{\ast}_{1}$ 0.1755 0.0982 0.0680 0.0520 $\textit{u}^{\ast}_{1}$ 0.1595 0.1785 0.1854 0.1890
    $\textit{x}^{\ast}_{2}$ 0.3199 0.1959 0.1401 0.1088 $\textit{u}^{\ast}_{2}$ 0.2666 0.3265 0.3503 0.3627
    $\textit{x}^{\ast}_{3}$ 0.4110 0.2765 0.2066 0.1644 $\textit{u}^{\ast}_{3}$ 0.3161 0.4254 0.4769 0.5058
    $\textit{x}^{\ast}_{4}$ 0.4691 0.3371 0.2618 0.2133 $\textit{u}^{\ast}_{4}$ 0.3351 0.4816 0.5609 0.6095
    $\textit{x}^{\ast}_{5}$ 0.5045 0.3870 0.3124 0.2611 $\textit{u}^{\ast}_{5}$ 0.3363 0.5159 0.6248 0.6963
    $\textit{x}^{\ast}_{6}$ 0.5560 0.4424 0.3660 0.3112 $\textit{u}^{\ast}_{6}$ 0.3475 0.5530 0.6862 0.7779
    $\textit{x}^{\ast}_{7}$ 0.6302 0.5115 0.4293 0.3689 $\textit{u}^{\ast}_{7}$ 0.3707 0.6018 0.7575 0.8680
    $\textit{x}^{\ast}_{8}$ 0.6496 0.5407 0.4628 0.4040 $\textit{u}^{\ast}_{8}$ 0.3609 0.6007 0.7713 0.8978
    $\textit{x}^{\ast}_{9}$ 0.6949 0.5882 0.5101 0.4500 $\textit{u}^{\ast}_{9}$ 0.3657 0.6192 0.8054 0.9473
    $\textit{x}^{\ast}_{10}$ 0.7136 0.6153 0.5413 0.4830 $\textit{u}^{\ast}_{10}$ 0.3568 0.6153 0.8119 0.9660

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号