References
[1]
Bass
R F,
Chen
Z Q.
Brownian motion with singular drift.
Ann Probability,
2003, 31: 791-817
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brownian motion with singular drift&author=Bass R F&author=Chen Z Q&publication_year=2003&journal=Ann Probability&volume=31&pages=791-817
[2]
Bergh J, Löfström J. Interpolation Spaces: An Introduction. Berlin: Springer-Verlag, 1976.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bergh J, Löfström J. Interpolation Spaces: An Introduction. Berlin: Springer-Verlag, 1976&
[3]
Bogachev
V,
Krylov
N,
R?ckner
M.
ON REGULARITY OF TRANSITION PROBABILITIES AND INVARIANT MEASURES OF SINGULAR DIFFUSIONS UNDER MINIMAL CONDITIONS.
Commun Partial Differ Equ,
2001, 26: 2037-2080
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=ON REGULARITY OF TRANSITION PROBABILITIES AND INVARIANT MEASURES OF SINGULAR DIFFUSIONS UNDER MINIMAL CONDITIONS&author=Bogachev V&author=Krylov N&author=R?ckner M&publication_year=2001&journal=Commun Partial Differ Equ&volume=26&pages=2037-2080
[4]
Bogachev
V I,
Krylov
N V,
R?ckner
M.
Elliptic and parabolic equations for measures.
Russ Math Surv,
2009, 64: 973-1078
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elliptic and parabolic equations for measures&author=Bogachev V I&author=Krylov N V&author=R?ckner M&publication_year=2009&journal=Russ Math Surv&volume=64&pages=973-1078
[5]
Bouchut
F.
Hypoelliptic regularity in kinetic equations.
J de Mathématiques Pures Appliquées,
2002, 81: 1135-1159
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hypoelliptic regularity in kinetic equations&author=Bouchut F&publication_year=2002&journal=J de Mathématiques Pures Appliquées&volume=81&pages=1135-1159
[6]
Bramanti
M,
Cupini
G,
Lanconelli
E.
Global L p estimates for degenerate Ornstein?CUhlenbeck operators.
Math Z,
2010, 266: 789-816
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Global L p estimates for degenerate Ornstein?CUhlenbeck operators&author=Bramanti M&author=Cupini G&author=Lanconelli E&publication_year=2010&journal=Math Z&volume=266&pages=789-816
[7]
Chaudru de Raynal
P E.
Strong existence and uniqueness for degenerate SDE with H?lder drift.
Ann Inst H Poincaré Probab Statist,
2017, 53: 259-286
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strong existence and uniqueness for degenerate SDE with H?lder drift&author=Chaudru de Raynal P E&publication_year=2017&journal=Ann Inst H Poincaré Probab Statist&volume=53&pages=259-286
[8]
Chen Z Q, Zhang X. $L^p$-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Z Q, Zhang X. $L^p$-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators,&
[9]
Cherny A S. On the uniqueness in law and the pathwise uniqueness for stochastic differential equations. Theory Probab Appl, 2006, 46: 483--497.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cherny A S. On the uniqueness in law and the pathwise uniqueness for stochastic differential equations. Theory Probab Appl, 2006, 46: 483--497&
[10]
Crippa G, De Lellis C. Estimates and regularity results for the DiPerna-Lions flow. J Reine Angew Math, 2008, 616: 15--46.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Crippa G, De Lellis C. Estimates and regularity results for the DiPerna-Lions flow. J Reine Angew Math, 2008, 616: 15--46&
[11]
Fedrizzi
E,
Flandoli
F.
Noise prevents singularities in linear transport equations.
J Funct Anal,
2013, 264: 1329-1354
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Noise prevents singularities in linear transport equations&author=Fedrizzi E&author=Flandoli F&publication_year=2013&journal=J Funct Anal&volume=264&pages=1329-1354
[12]
Fedrizzi
E,
Flandoli
F.
H?lder Flow and Differentiability for SDEs with Nonregular Drift.
Stochastic Anal Appl,
2013, 31: 708-736
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=H?lder Flow and Differentiability for SDEs with Nonregular Drift&author=Fedrizzi E&author=Flandoli F&publication_year=2013&journal=Stochastic Anal Appl&volume=31&pages=708-736
[13]
Fedrizzi E, Flandoli F, Priola E, et al. Regularity of stochastic kinetic equations,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fedrizzi E, Flandoli F, Priola E, et al. Regularity of stochastic kinetic equations,&
[14]
Figalli
A.
Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients.
J Funct Anal,
2008, 254: 109-153
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients&author=Figalli A&publication_year=2008&journal=J Funct Anal&volume=254&pages=109-153
[15]
Jin P. Brownian motion with singular time-dependent drift. J Theoret Probab, 2016, https://doi.org/10.1007/s1095.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin P. Brownian motion with singular time-dependent drift. J Theoret Probab, 2016, https://doi.org/10.1007/s1095&
[16]
Karatza I, Shreve S E. Brownian Motion and Stochastic Calculus. New York: Springer-Verlag, 1988.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Karatza I, Shreve S E. Brownian Motion and Stochastic Calculus. New York: Springer-Verlag, 1988&
[17]
Krylov N V. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. Providence: Amer Math Soc, 2008.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Krylov N V. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. Providence: Amer Math Soc, 2008&
[18]
Krylov
N V,
R?ckner
M.
Strong solutions of stochastic equations with singular time dependent drift.
Probab Theor Relat Fields,
2005, 131: 154-196
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strong solutions of stochastic equations with singular time dependent drift&author=Krylov N V&author=R?ckner M&publication_year=2005&journal=Probab Theor Relat Fields&volume=131&pages=154-196
[19]
Kunita H. Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge: Cambridge University Press, 1990.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kunita H. Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge: Cambridge University Press, 1990&
[20]
Menoukeu-Pamen
O,
Meyer-Brandis
T,
Nilssen
T.
A variational approach to the construction and Malliavin differentiability of strong solutions of SDE's.
Math Ann,
2013, 357: 761-799
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A variational approach to the construction and Malliavin differentiability of strong solutions of SDE's&author=Menoukeu-Pamen O&author=Meyer-Brandis T&author=Nilssen T&publication_year=2013&journal=Math Ann&volume=357&pages=761-799
[21]
Menozzi S. Martingale problems for some degenerate Kolmogorov equations. Stochastic Process Appl, 2017, in press.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Menozzi S. Martingale problems for some degenerate Kolmogorov equations. Stochastic Process Appl, 2017, in press&
[22]
Mohammed
S E A,
Nilssen
T K,
Proske
F N.
Sobolev differentiable stochastic flows for SDEs with singular coefficients: Applications to the transport equation.
Ann Probab,
2015, 43: 1535-1576
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sobolev differentiable stochastic flows for SDEs with singular coefficients: Applications to the transport equation&author=Mohammed S E A&author=Nilssen T K&author=Proske F N&publication_year=2015&journal=Ann Probab&volume=43&pages=1535-1576
[23]
Priola
E.
On Weak Uniqueness for Some Degenerate SDEs by Global L p Estimates.
Potential Anal,
2015, 42: 247-281
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On Weak Uniqueness for Some Degenerate SDEs by Global L p Estimates&author=Priola E&publication_year=2015&journal=Potential Anal&volume=42&pages=247-281
[24]
R?ckner
M,
Zhang
X.
Weak uniqueness of Fokker?CPlanck equations with degenerate and bounded coefficients.
Comptes Rendus Mathematique,
2010, 348: 435-438
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weak uniqueness of Fokker?CPlanck equations with degenerate and bounded coefficients&author=R?ckner M&author=Zhang X&publication_year=2010&journal=Comptes Rendus Mathematique&volume=348&pages=435-438
[25]
Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. Series on Advances in Mathematics for Applied Sciences, vol. 17. Singapore: World Scientific, 1994.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. Series on Advances in Mathematics for Applied Sciences, vol. 17. Singapore: World Scientific, 1994&
[26]
Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970&
[27]
Stroock D, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer-Verlag, 1997.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stroock D, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer-Verlag, 1997&
[28]
Talay D. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure and discretization by the implicit Euler scheme. Markov Process Related Fields, 2002, 8: 1--36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Talay D. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure and discretization by the implicit Euler scheme. Markov Process Related Fields, 2002, 8: 1--36&
[29]
Trevisan D. Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron J Probab, 2016, in press.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Trevisan D. Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron J Probab, 2016, in press&
[30]
Wang
F Y,
Zhang
X.
Degenerate SDE with H?lder--Dini Drift and Non-Lipschitz Noise Coefficient.
SIAM J Math Anal,
2016, 48: 2189-2226
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Degenerate SDE with H?lder--Dini Drift and Non-Lipschitz Noise Coefficient&author=Wang F Y&author=Zhang X&publication_year=2016&journal=SIAM J Math Anal&volume=48&pages=2189-2226
[31]
Xie
L,
Zhang
X.
Sobolev differentiable flows of SDEs with local Sobolev and super-linear growth coefficients.
Ann Probab,
2016, 44: 3661-3687
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sobolev differentiable flows of SDEs with local Sobolev and super-linear growth coefficients&author=Xie L&author=Zhang X&publication_year=2016&journal=Ann Probab&volume=44&pages=3661-3687
[32]
Zhang
X.
Strong solutions of SDES with singular drift and Sobolev diffusion coefficients.
Stochastic Processes their Appl,
2005, 115: 1805-1818
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strong solutions of SDES with singular drift and Sobolev diffusion coefficients&author=Zhang X&publication_year=2005&journal=Stochastic Processes their Appl&volume=115&pages=1805-1818
[33]
Zhang
X.
Stochastic Homeomorphism Flows of SDEs with Singular Drifts and Sobolev Diffusion Coefficients.
Electron J Probab,
2011, 16: 1096-1116
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic Homeomorphism Flows of SDEs with Singular Drifts and Sobolev Diffusion Coefficients&author=Zhang X&publication_year=2011&journal=Electron J Probab&volume=16&pages=1096-1116
[34]
Zhang
X.
Stochastic partial differential equations with unbounded and degenerate coefficients.
J Differ Equ,
2011, 250: 1924-1966
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic partial differential equations with unbounded and degenerate coefficients&author=Zhang X&publication_year=2011&journal=J Differ Equ&volume=250&pages=1924-1966
[35]
Zhang
X.
Stochastic differential equations with Sobolev diffusion and singular drift and applications.
Ann Appl Probab,
2016, 26: 2697-2732
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic differential equations with Sobolev diffusion and singular drift and applications&author=Zhang X&publication_year=2016&journal=Ann Appl Probab&volume=26&pages=2697-2732
[36]
Zvonkin A K. A transformation of the phase space of a diffusion process that removes the drift. Mat Sb, 1974, 93: 129--149.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zvonkin A K. A transformation of the phase space of a diffusion process that removes the drift. Mat Sb, 1974, 93: 129--149&