SCIENCE CHINA Chemistry, Volume 58 , Issue 10 : 1524-1531(2015) https://doi.org/10.1007/s11426-015-5405-y

Thermal-reductive transformations of carbon dioxide catalyzed by small molecules using earth-abundant elements

More info
  • ReceivedDec 1, 2014
  • AcceptedDec 29, 2014
  • PublishedSep 21, 2015


In the present review, we summarize the progress for thermal reductive transformations of CO2 catalyzed by small homogeneous catalysts using earth-abundant elements. Three main types of transformations categorized by the use of different reductants (hydrogen, hydrosilanes, and boranes), in which no C-C bond formation is involved, are surveyed.


[1] Jolla L. CO2 concentration at Mauna Loa observatory.. Google Scholar

[2] Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev, 2014, 114: 1709-1742. Google Scholar

[3] Suib SL. New and Future Developments in Catalysis. Vol. 4. Oxford: Elsevier, 2013. 81-147. Google Scholar

[4] Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K. Mechanistic studies on the reversible hydrogenation of carbon dioxide catalyzed by an Ir-PNP complex. Organometallics, 2011, 30: 6742-6750. Google Scholar

[5] Sanderson RT. Polar Covalence. New York: Academic Press, 1983. Google Scholar

[6] Sanderson RT. Chemical Bonds and Bond Energy. New York, London: Academic Press, 1971. Google Scholar

[7] Inoue Y, Izumida H, Sadaki Y, Hashimoto H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild condition. Chem Lett, 1976: 863-864. Google Scholar

[8] Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed, 2010, 49: 9777-9780. Google Scholar

[9] Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J Am Chem Soc, 2012, 134: 20701-20704. Google Scholar

[10] Drake JL, Manna CM, Byers JA. Enhanced carbon dioxide hydrogenation facilitated by catalytic quantities of bicarbonate and other inorganic salts. Organometallics, 2013, 32: 6891-6894. Google Scholar

[11] Yang XZ. Hydrogenation of carbon dioxide catalyzed by PNP pincer iridium, iron, and cobalt complexes: a computational design of base metal catalysts. ACS Catal, 2011, 1: 849-854. Google Scholar

[12] Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew Chem Int Ed, 2011, 50: 9948-9952. Google Scholar

[13] Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Catalytic hydrogenation of carbon dioxide and bicarbonates with a well defined cobalt dihydrogen complex. Chem Eur J, 2012, 18: 72-75. Google Scholar

[14] Matthew SJ, Michael TM, Appel AM, Linehan JC. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J Am Chem Soc, 2013, 135: 11533-11536. Google Scholar

[15] Kumar N, Camaioni DM, Dupuis M, Raugei S, Appel AM. Mechanistic insights into hydride transfer for catalytic hydrogenation of CO2 with cobalt complexes. Dalton Trans, 2014, 43: 11803-11806. Google Scholar

[16] Badiet YM, Wang WH, Hull JF, Szalda DJ, Himeda Y, Fujita E. Muckerman JT, Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media. Inorg Chem, 2013, 52: 12576-12586. Google Scholar

[17] Hou C, Jiang JX, Zhang SD, Wang G, Zhang ZH, Ke ZF, Zhao CY Hydrogenation of carbon dioxide using half-sandwich cobalt, rhodium, and iridium complexes: DFT study on the mechanism and metal effect. ACS Catal, 2014, 4: 2990-2997. Google Scholar

[18] Inoue Y, Izumid H, Sasaki Y, Hashimoto H. Catalystic fixation of carbon dioxide to acid by transition-metal complexes under mild conditons. Chem Lett, 1976: 863-864. Google Scholar

[19] Tai CC, Chang T, Roller B, Jessop PG. High-pressure combinatorial screening of homogeneous catalysts: hydrogenation of carbon dioxide. Inorg Chem, 2003, 42: 7340-7341. Google Scholar

[20] Motokura K, Kashiwame D, Miyaji A, Baba T. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O. Org Lett, 2012, 14: 2642-2645. Google Scholar

[21] Motokura K, Takahashi N, Kashiwame D, Yamaguchi S, Miyaji A, Baba T. Copper-diphosphine complex catalysts for N-formylation of amines under 1 atm of carbon dioxide with polymethylhydrosiloxane. Catal Sci Technol, 2013, 3: 2392-2396. Google Scholar

[22] Zhang L, Cheng J, Hou Z. Highly efficient catalytic hydrosilylation of carbon dioxide by an N-heterocyclic carbene copper catalyst. Chem Commun, 2013, 49: 4782-4784. Google Scholar

[23] Frogneux X, Jacquet O, Cantat T. Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Catal Sci Technol, 2014, 4: 1529-1533. Google Scholar

[24] Jacquet O, Frogneux X, Gomes CDN, Cantat T. CO2 as a C1-building block for the catalytic methylation of amines. Chem Sci, 2013, 4: 2127-2131. Google Scholar

[25] Sattler W, Parkin G. Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization. J Am Chem Soc, 2012, 134: 17462-17465. Google Scholar

[26] González-Sebastián L, Flores-Alamo M, García JJ. Nickel-catalyzed hydrosilylation of CO2 in the presence of Et3B for the synthesis of formic acid and related formates. Organometallics, 2013, 32: 7186- 7194. Google Scholar

[27] Scheuermann ML, Semproni Scott P, Chirik PJ. Carbon dioxide hydrosilylation promoted by cobalt pincer complexes. Inorg Chem, 2014, 53: 9463-9465. Google Scholar

[28] Khandelwal M, Wehmschulte RJ. Deoxygenative reduction of carbon dioxide to methane, toluene, and diphenylmethane with [Et2Al]+ as catalyst. Angew Chem Int Ed, 2012, 51: 7323-7326. Google Scholar

[29] Wehmschulte RJ, Saleh M, Powell DR. CO2 activation with bulky neutral and cationic phenoxyalanes. Organometallic, 2013, 32: 6812- 6819. Google Scholar

[30] Riduan SN, Zhang Y, Ying JY. Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed, 2009, 48: 3322-3325. Google Scholar

[31] Huang F, Lu G, Zhao L, Li H, Wang ZX. The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. J Am Chem Soc, 2010, 132: 12388-12396. Google Scholar

[32] Das Neves Gomes C, Jacquet O, Villiers C, Thuery P, Ephritikhine M, Cantat T. A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew Chem Int Ed, 2012, 51: 187-190. Google Scholar

[33] Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. Recycling of carbon and silicon wastes: room temperature formylation of N-H bonds using carbon dioxide and polymethylhydrosiloxane. J Am Chem Soc, 2012, 134: 2934-2937. Google Scholar

[34] Berkefeld A, Piers WE, Parvez M. Tandem frustrated lewis pair/ tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc, 2010, 132: 10660-10661. Google Scholar

[35] Chakraborty S, Zhang J, Krause JA, Guan H. An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J Am Chem Soc, 2010, 132: 8872-8873. Google Scholar

[36] Chakraborty S, Zhang J, Patel YJ, Krause JA, Guan H. Pincer-ligated nickel hydridoborate complexes: the dormant species in catalytic reduction of carbon dioxide with boranes. Inorg Chem, 2012, 52: 37- 47. Google Scholar

[37] Laitar DS, Müller P, Sadighi JP. Efficient homogeneous catalysis in the reduction of CO2 to CO. J Am Chem Soc, 2005, 127: 17196- 17197. Google Scholar

[38] Zhao H, Lin Z, Marder TB. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes. J Am Chem Soc, 2006, 128: 15637-15643. Google Scholar

[39] Shintani R, Nozaki K. Copper-catalyzed hydroboration of carbon dioxide. Organometallics, 2013, 32: 2459-2462. Google Scholar

[40] Courtemanche MA, Légaré MA, Maron L, Fontaine FG. A highly active phosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. J Am Chem Soc, 2013, 135: 9326-9329. Google Scholar

[41] Courtemanche MA, Légaré MA, Maron L, Fontaine FG. Reducing CO2 to methanol using frustrated Lewis Pairs: on the mechanism of phosphine-borane mediated hydroboration of CO2. J Am Chem Soc, 2014, 136: 10708-10717. Google Scholar

[42] Courtemanche MA, Larouche J, Légaré MA, Fontaine FG. A tris(triphenylphosphine) aluminum ambiphilic precatalyst for the reduction of carbon dioxide with catecholborane. Organometallics, 2013, 32: 6804-6811. Google Scholar

[43] Wang T, Stephan DW. Carbene-9-BBN ring expansions as a route to intramolecular frustrated Lewis Pairs for CO2 reduction. Chem Eur J, 2014, 20: 3036-3039. Google Scholar

[44] Wang T, Stephan DW. Phosphine catalyzed reduction of CO2 with boranes. Chem Commun, 2014, 50: 7007-7010. Google Scholar

[45] Das Neves Gomes C, Blondiaux E, Thuery P, Cantat T. Metal-free reduction of CO2 with hydroboranes: two efficient pathways at play for the reduction of CO2 to methanol. Chem Eur J, 2014, 20: 7098- 7106. Google Scholar

[46] Enguerrand B, Jacky P, Thibault C. Carbon dioxide reduction to methylamines under metal-free conditions Angew Chem Int Ed, 2014, 53: 12186-12190. Google Scholar

[47] Shang R, Liu L. Transition metal-catalyzed decarboxylative cross- coupling reactions. Sci China Chem, 2011, 54: 1670-1687. Google Scholar

[48] Zhang SL, Fu Y, Shang R. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins. J Am Chem Soc, 2010, 132: 638-646. Google Scholar

[49] Wang S, Huang H, Kahnt J, Mueller AP, Köpke M, Thauer RK. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol, 2013, 195: 4373-4386. Google Scholar

[50] Schuchmann K, Müller V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science, 2013, 342: 1382-1385. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号