logo

Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors

More info
  • ReceivedNov 30, 2017
  • AcceptedMar 2, 2018
  • PublishedApr 10, 2018

Abstract


Funded by

National Natural Science Foundation of China(51602182,21535004,21390411)

Shandong Provincial Natural Science Foundation(ZR2016EMQ02,ZR2016BP07)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51602182, 21535004, 21390411) and Shandong Provincial Natural Science Foundation (ZR2016EMQ02, ZR2016BP07).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting Information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X, Hao G, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X. Science, 2017, 356: 599-604 CrossRef ADS Google Scholar

[2] Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M. Energy Environ Sci, 2016, 9: 102-106 CrossRef Google Scholar

[3] Wang RT, Lang JW, Yan XB. Sci China Chem, 2014, 57: 1570-1578 CrossRef Google Scholar

[4] Faraji S, Ani FN. Renew Sustain Energy Rev, 2015, 42: 823-834 CrossRef Google Scholar

[5] Wang X, Kong D, Wang B, Song Y, Zhi L. Sci China Chem, 2016, 59: 713-718 CrossRef Google Scholar

[6] Kim HK, Bak SM, Lee SW, Kim MS, Park B, Lee SC, Choi YJ, Jun SC, Han JT, Nam KW, Chung KY, Wang J, Zhou J, Yang XQ, Roh KC, Kim KB. Energy Environ Sci, 2016, 9: 1270-1281 CrossRef Google Scholar

[7] Boukhalfa S, Evanoff K, Yushin G. Energy Environ Sci, 2012, 5: 6872-6879 CrossRef Google Scholar

[8] Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C. Nat Commun, 2015, 6: 10310 CrossRef ADS Google Scholar

[9] Sun J, Li W, Zhang B, Li G, Jiang L, Chen Z, Zou R, Hu J. Nano Energy, 2014, 4: 56-64 CrossRef Google Scholar

[10] Hao P, Cui G, Shi X, Xie J, Xia X, Sang Y, Wong CP, Liu H, Tang B. Chin J Chem, 2017, 35: 699-706 CrossRef Google Scholar

[11] Yu Z, Tetard L, Zhai L, Thomas J. Energy Environ Sci, 2015, 8: 702-730 CrossRef Google Scholar

[12] Zhang Z, Ma W, Xu B, Zhou X, Wang C, Xie Z, Liu L, Ma Y. Sci China Chem, 2018, 61: 192-199 CrossRef Google Scholar

[13] Acerce M, Voiry D, Chhowalla M. Nat Nanotech, 2015, 10: 313-318 CrossRef PubMed ADS Google Scholar

[14] Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P. Chem Soc Rev, 2015, 44: 1777-1790 CrossRef PubMed Google Scholar

[15] Li X, Xiao X, Li Q, Wei J, Xue H, Pang H. Inorg Chem Front, 2018, 5: 11-28 CrossRef Google Scholar

[16] Zhang WJ, Huang KJ. Inorg Chem Front, 2017, 4: 1602-1620 CrossRef Google Scholar

[17] Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y. Nano Lett, 2017, 17: 3097-3104 CrossRef PubMed ADS Google Scholar

[18] Nyström G, Marais A, Karabulut E, Wågberg L, Cui Y, Hamedi MM. Nat Commun, 2015, 6: 7259 CrossRef PubMed ADS Google Scholar

[19] Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Nat Nanotech, 2014, 9: 555-562 CrossRef PubMed ADS Google Scholar

[20] Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z. Carbon, 2014, 67: 119-127 CrossRef Google Scholar

[21] Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong CP, Liu H, Yang B. Nano Energy, 2015, 15: 9-23 CrossRef Google Scholar

[22] Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H. Nanoscale, 2016, 8: 16292-16301 CrossRef PubMed Google Scholar

[23] Gomez J, Kalu EE. J Power Sources, 2013, 230: 218-224 CrossRef Google Scholar

[24] Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M. Carbon, 2017, 113: 151-158 CrossRef Google Scholar

[25] Faraji S, Ani FN. J Power Sources, 2014, 263: 338-360 CrossRef ADS Google Scholar

[26] Chen LY, Hou Y, Kang JL, Hirata A, Chen MW. J Mater Chem A, 2014, 2: 8448-8455 CrossRef Google Scholar

[27] Du W, Xu X, Zhang D, Lu Q, Gao F. Sci China Chem, 2015, 58: 627-633 CrossRef Google Scholar

[28] Ge F, Li MM, Ye H, Zhao BX. J Hazard Mater, 2012, 211-212: 366-372 CrossRef PubMed Google Scholar

[29] Rapti S, Pournara A, Sarma D, Papadas IT, Armatas GS, Hassan YS, Alkordi MH, Kanatzidis MG, Manos MJ. Inorg Chem Front, 2016, 3: 635-644 CrossRef Google Scholar

[30] Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS. Carbohydrate Polym, 2013, 91: 322-332 CrossRef Google Scholar

[31] Demirbas A. J Hazard Mater, 2008, 157: 220-229 CrossRef PubMed Google Scholar

[32] Yu D, Wang H, Yang J, Niu Z, Lu H, Yang Y, Cheng L, Guo L. ACS Appl Mater Interfaces, 2017, 9: 21298-21306 CrossRef Google Scholar

[33] Fu F, Dionysiou DD, Liu H. J Hazard Mater, 2014, 267: 194-205 CrossRef PubMed Google Scholar

[34] Homhuan NB, Imwiset KJ, Bureekaew S, Ogawa M. Clay Sci, 2017, 21: 21–28. Google Scholar

[35] Tahmasebi E, Yamini Y. Microchim Acta, 2014, 181: 543-551 CrossRef Google Scholar

[36] Zhou Y, Zhou W, Hou D, Li G, Wan J, Feng C, Tang Z, Chen S. Small, 2016, 12: 2768-2774 CrossRef PubMed Google Scholar

[37] Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412-419 CrossRef Google Scholar

[38] Li Y, Zhang J, Xu C, Zhou Y. Sci China Chem, 2016, 59: 95-105 CrossRef Google Scholar

[39] Fan L, Zhang N, Sun K. RSC Adv, 2014, 4: 21419 CrossRef Google Scholar

[40] Hu J, Tao P, Wang S, Liu Y, Tang Y, Zhong H, Lu Z. J Mater Chem A, 2013, 1: 6558 CrossRef Google Scholar

[41] Tao P, Hu J, Wang W, Wang S, Li M, Zhong H, Tang Y, Lu Z. RSC Adv, 2014, 4: 13518 CrossRef Google Scholar

[42] Cho HH, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP. Langmuir, 2010, 26: 967-981 CrossRef PubMed Google Scholar

[43] Lee J, Lee DM, Kim YK, Jeong HS, Kim SM. Small, 2017, 13: 1701131 CrossRef Google Scholar

[44] Kolhe P, Kannan RM. Biomacromolecules, 2003, 4: 173-180 CrossRef PubMed Google Scholar

[45] Gu X, Yang Y, Hu Y, Hu M, Wang C. ACS Sustain Chem Eng, 2015, 3: 1056-1065 CrossRef Google Scholar

[46] Wei B, Liang H, Zhang D, Wu Z, Qi Z, Wang Z. J Mater Chem A, 2017, 5: 2844-2851 CrossRef Google Scholar

[47] Pandey K, Yadav P, Mukhopadhyay I. Phys Chem Chem Phys, 2015, 17: 878-887 CrossRef PubMed ADS Google Scholar

[48] Li Q, Li K, Sun C, Li Y. J Electroanal Chem, 2007, 611: 43-50 CrossRef Google Scholar

[49] Wang Y, Zhang Y, Pei L, Ying D, Xu X, Zhao L, Jia J, Cao X. Sci Rep, 2017, 7: 41523 CrossRef PubMed ADS Google Scholar

  • Figure 1

    SEM images of F-CNTs (a, b) and CHIT/F-CNTs (c, d).

  • Scheme 1

    Schematic illustration of the formation process of metal-carbon nanotube hybrid structures (color online).

  • Figure 2

    TEM images of (a–c) F-CNTs and (d–f) CHIT/F-CNTs (color online).

  • Figure 3

    XPS (a) and FTIR (b) spectra of the samples (color online).

  • Figure 4

    (a) Adsorption isotherms of Cr(VI) and Cu(II) with concentrations from 20 to 400 mg L−1 by CHIT/F-CNTs; (b) equilibrium adsorption capacity of different samples in metal aqueous solutions (color online).

  • Figure 5

    XRD patterns of Cr-CHIT/F-CNTs, Cu-CHIT/F-CNTs and CHIT/F-CNTs after carbonization (color online).

  • Figure 6

    CV curves of CHIT/F-CNTs after carbonization (a), Cr-CHIT/F-CNTs (b), and Cu-CHIT/F-CNTs (c) at various scan rates in 0.5 mol L−1 H2SO4 aqueous electrolyte; (d) specific capacitance as a function of scan rate (color online).

  • Figure 7

    Charge-discharge curves of CHIT/F-CNTs after carbonization (a), Cr-CHIT/F-CNTs (b), and Cu-CHIT/F-CNTs (c); (d) specific capacitance as a function of current density (color online).

  • Table 1   Adsorption isotherm parameters of Freundlich and Langmuir models for Cr(VI) and Cu(II) ions on CHIT/F-CNTs

    Isotherm Parameters

    Langmuir

    Freundlich

    qm(mg g−1)

    KL(L mg−1)

    R2

    n

    KF(L g−1)

    R2

    Cr(VI)

    146.5

    0.03

    0.998

    2.42

    15.61

    0.857

    Cu(II)

    127.8

    0.04

    0.999

    2.88

    19.25

    0.903