logo

Precursor synthesis strategy for polycyclic aromatic conjugated polymers on the application of supercapacitors

More info
  • ReceivedMar 21, 2017
  • AcceptedApr 13, 2017
  • PublishedJul 4, 2017

Abstract


Funded by

National Natural Science Foundation of China(51573055,21334002,51373054)

National Basic Research Program of China(2013CB834705,2014CB643504)

and Fundamental Research Funds for the Central Universities.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51573055, 21334002, 51373054), the National Basic Research Program of China (2013CB834705, 2014CB643504), and Fundamental Research Funds for the Central Universities.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK. Science, 2008, 320: 356-358 CrossRef PubMed ADS arXiv Google Scholar

[2] Wu J, Pisula W, Müllen K. Chem Rev, 2007, 107: 718-747 CrossRef PubMed Google Scholar

[3] Craats AM, Warman JM, Müllen K, Geerts Y, Brand JD. Adv Mater, 1998, 10: 36-38 CrossRef Google Scholar

[4] Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K. Nat Mater, 2009, 8: 421-426 CrossRef PubMed ADS Google Scholar

[5] Hughes JM, Hernandez Y, Aherne D, Doessel L, Müllen K, Moreton B, White TW, Partridge C, Costantini G, Shmeliov A, Shannon M, Nicolosi V, Coleman JN. J Am Chem Soc, 2012, 134: 12168-12179 CrossRef PubMed Google Scholar

[6] Pisula W, Tomović , Simpson C, Kastler M, Pakula T, Müllen K. Chem Mater, 2005, 17: 4296-4303 CrossRef Google Scholar

[7] Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E. J Am Chem Soc, 2009, 131: 16048-16050 CrossRef PubMed Google Scholar

[8] Guo X, Baumgarten M, Müllen K. Prog Polymer Sci, 2013, 38: 1832-1908 CrossRef Google Scholar

[9] Dössel LF, Kamm V, Howard IA, Laquai F, Pisula W, Feng X, Li C, Takase M, Kudernac T, De Feyter S, Müllen K. J Am Chem Soc, 2012, 134: 5876-5886 CrossRef PubMed Google Scholar

[10] Zhang W, Jin W, Fukushima T, Saeki A, Seki S, Aida T. Science, 2011, 334: 340-343 CrossRef PubMed ADS Google Scholar

[11] Jin W, Yamamoto Y, Fukushima T, Ishii N, Kim J, Kato K, Takata M, Aida T. J Am Chem Soc, 2008, 130: 9434-9440 CrossRef PubMed Google Scholar

[12] Qin L, Zhang Y, Wu X, Nian L, Xie Z, Liu L, Ma Y. Small, 2015, 11: 3028-3034 CrossRef PubMed Google Scholar

[13] Lei T, Wang JY, Pei J. Acc Chem Res, 2014, 47: 1117-1126 CrossRef PubMed Google Scholar

[14] Gu C, Fei T, Lv Y, Feng T, Xue S, Lu D, Ma Y. Adv Mater, 2010, 22: 2702-2705 CrossRef PubMed Google Scholar

[15] Fortage J, Peltier C, Nastasi F, Puntoriero F, Tuyèras F, Griveau S, Bedioui F, Adamo C, Ciofini I, Campagna S, Lainé PP. J Am Chem Soc, 2010, 132: 16700-16713 CrossRef PubMed Google Scholar

[16] Zhao D, Wu Q, Cai Z, Zheng T, Chen W, Lu J, Yu L. Chem Mater, 2016, 28: 1139-1146 CrossRef Google Scholar

[17] Zhang S, Wen Y, Zhou W, Guo Y, Ma L, Zhao X, Zhao Z, Barlow S, Marder SR, Liu Y, Zhan X. J Polym Sci A Polym Chem, 2013, 51: 1550-1558 CrossRef ADS Google Scholar

[18] Würthner F, Stepanenko V, Chen Z, Saha-Möller CR, Kocher N, Stalke D. J Org Chem, 2004, 69: 7933-7939 CrossRef PubMed Google Scholar

[19] Mahler C, Müller U, Müller WM, Enkelmann V, Moon C, Brunklaus G, Zimmermann H, Höger S. Chem Commun, 2008, 96: 4816 CrossRef PubMed Google Scholar

[20] Spiliopoulos IK, Mikroyannidis JA, Tsivgoulis GM. Macromolecules, 1998, 31: 522-529 CrossRef ADS Google Scholar

[21] Ohlendorf G, Mahler CW, Jester SS, Schnakenburg G, Grimme S, Höger S. Angew Chem Int Ed, 2013, 52: 12086-12090 CrossRef PubMed Google Scholar

[22] Wunderlich K, Grigoriadis C, Zardalidis G, Klapper M, Graf R, Butt HJ, Müllen K, Floudas G. Macromolecules, 2014, 47: 5691-5702 CrossRef ADS Google Scholar

[23] Feng X, Wu J, Enkelmann V, Müllen K. Org Lett, 2006, 8: 1145-1148 CrossRef PubMed Google Scholar

[24] Gerber LCH, Frischmann PD, Williams TE, Tichelaar M, Tsai EY, Liu YS, Guo J, Pemmaraju CD, Prendergast D, Helms BA. Polym Chem, 2015, 6: 5560-5564 CrossRef Google Scholar

[25] Dumslaff T, Yang B, Maghsoumi A, Velpula G, Mali KS, Castiglioni C, De Feyter S, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4726-4729 CrossRef PubMed Google Scholar

[26] Yue W, Larsen-Olsen TT, Hu X, Shi M, Chen H, Hinge M, Fojan P, Krebs FC, Yu D. J Mater Chem A, 2013, 1: 1785-1793 CrossRef Google Scholar

[27] Avlasevich Y, Müller S, Erk P, Müllen K. Chem Eur J, 2007, 13: 6555-6561 CrossRef PubMed Google Scholar

[28] Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K. J Am Chem Soc, 2014, 136: 6083-6091 CrossRef PubMed Google Scholar

[29] Kumar S, McEvoy N, Lutz T, Keeley GP, Nicolosi V, Murray CP, Blau WJ, Duesberg GS. Chem Commun, 2010, 46: 1422-1424 CrossRef PubMed Google Scholar

[30] Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP. J Power Sources, 1994, 47: 89-107 CrossRef ADS Google Scholar

[31] Fiordiponti P, Pistoia G. Electrochim Acta, 1989, 34: 215-221 CrossRef Google Scholar

[32] Kou Y, Xu Y, Guo Z, Jiang D. Angew Chem Int Ed, 2011, 50: 8753-8757 CrossRef PubMed Google Scholar

[33] Zhang QW, An K, Liu LC, Yue Y, He W. Angew Chem Int Ed, 2015, 54: 6918-6921 CrossRef PubMed Google Scholar

[34] Zhang H, Zhang Y, Gu C, Ma Y. Adv Energy Mater, 2015, 5: 1402175-1402181 CrossRef Google Scholar

  • Figure 1

    CV curves for successive 40 scan cycles of poly-PDI-DUA in chloroform with TEAPF6 as supporting electrolytes and ITO as the working electrode (color online).

  • Scheme 1

    Synthesis route of the DUA monomer, precursor polymer poly-PDI-DUA and fused polymer poly-CDI-HBC, oligomer PDI-DUA-PDI, CDI-HBC-CDI, and CDI.

  • Figure 2

    (a) UV-Vis spectra of poly-PDI-DUA in chloroform and poly-CDI-HBC on ITO prepared by CV at a scan rate of 50 mV s−1; (b) UV-Vis spectra of CDI-HBC-CDI, CDI and PDI-DUA-PDI in chloroform at room temperature (color online).

  • Figure 3

    Raman spectra of poly-CDI-HBC compared with poly-PDI-DUA (color online).

  • Figure 4

    (a) Cyclicvoltammograms of the polymers poly-CDI-HBC on ITO recorded in solution at scan rate of 0.05 V s−1; (b) electrochemical impedance spectroscopy profiles of poly-CDI-HBC in different cycles. The inset shows the magnified high-frequency regions of the Nyqusit curves (color online).

  • Figure 5

    (a) CV curves of poly-CDI-HBC on ITO recorded in chloroform using TEAPF6 as the supporting electrolyte. Potential scan rates ranged in 0.05–1.0 V s−1, potential ranged from −1.4 V to −0.2 V. (b) Plots of redox peak current densities versus potential scan rates. ip,a and ip,c denote the anodic and cathodic peak current densities, respectively. (c) Galvanostatic charge/discharge curves at different current density. (d) The specific capacitances current density (color online).