logo

Thermo- and pH- dual responsive inorganic-organic hybrid hydrogels with tunable luminescence

More info
  • ReceivedAug 11, 2017
  • AcceptedSep 1, 2017
  • PublishedNov 17, 2017

Abstract

A thermo- and pH- dual responsive luminescent hydrogel was successfully constructed by coupling dysprosium-containing polyoxometalates Na9DyW10O36 (DyW10) with the ABA triblock copolymer, where the B block is PEO and the A block is the thermosensitive poly(methoxydi(ethylene glycol) methacrylate-co-N,N-dimethylaminoethyl methacrylate). The complex hybrid underwent a sol-gel phase transition above the lower critical solution temperature (LCST) of the A block. DyW10 was electrostatically encapsulated into the hydrophobic domain of the A block with enhanced photoluminescence. When temperature cooled down, the luminescence could be restored. By addition of acids to protonate the A block, and emission of DyW10 was simultaneously enhanced. Sensitivity of poly(N,N-dimethy laminoethyl methacrylate) (PDMAEMA) to pH also enabled the emission of DyW10/copolymer hydrogel to be reversibly switched by alternating acid/base treatments.


Funded by

National Natural Science Foundation of China(51373001,51673002)

International Science & Technology Cooperation Program of China(2015DFA41670)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51373001, 51673002), and the International Science & Technology Cooperation Program of China (2015DFA41670).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Jochum FD, Theato P. Chem Soc Rev, 2013, 42: 7468-7483 CrossRef PubMed Google Scholar

[2] Gohy JF, Zhao Y. Chem Soc Rev, 2013, 42: 7117-7129 CrossRef PubMed Google Scholar

[3] Roy D, Brooks WLA, Sumerlin BS. Chem Soc Rev, 2013, 42: 7214-7243 CrossRef PubMed Google Scholar

[4] Grubbs RB, Sun Z. Chem Soc Rev, 2013, 42: 7436-7445 CrossRef PubMed Google Scholar

[5] Lin S, Theato P. Macromol Rapid Commun, 2013, 34: 1118-1133 CrossRef PubMed Google Scholar

[6] Hu J, Liu S. Macromolecules, 2010, 43: 8315-8330 CrossRef ADS Google Scholar

[7] Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Chem Soc Rev, 2013, 42: 7421-7435 CrossRef PubMed Google Scholar

[8] Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Biomaterials, 2013, 34: 3647-3657 CrossRef PubMed Google Scholar

[9] Yuan J, Fang X, Zhang L, Hong G, Lin Y, Zheng Q, Xu Y, Ruan Y, Weng W, Xia H, Chen G. J Mater Chem, 2012, 22: 11515-11522 CrossRef Google Scholar

[10] Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC. J Control Release, 2011, 152: 57-66 CrossRef PubMed Google Scholar

[11] Klaikherd A, Nagamani C, Thayumanavan S. J Am Chem Soc, 2009, 131: 4830-4838 CrossRef PubMed Google Scholar

[12] Jiang X, Feng C, Lu G, Huang X. ACS Macro Lett, 2014, 3: 1121-1125 CrossRef Google Scholar

[13] Jung SH, Song HY, Lee Y, Jeong HM, Lee H. Macromolecules, 2011, 44: 1628-1634 CrossRef ADS Google Scholar

[14] Yamamoto SI, Pietrasik J, Matyjaszewski K. Macromolecules, 2008, 41: 7013-7020 CrossRef ADS Google Scholar

[15] París R, Quijada-Garrido I. Eur Polymer J, 2010, 46: 2156-2163 CrossRef Google Scholar

[16] Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W. J Mater Chem, 2011, 21: 9239-9247 CrossRef Google Scholar

[17] Han D, Tong X, Boissière O, Zhao Y. ACS Macro Lett, 2012, 1: 57-61 CrossRef Google Scholar

[18] Han D, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. Macromolecules, 2012, 45: 7440-7445 CrossRef ADS Google Scholar

[19] Jin N, Woodcock JW, Xue C, O’Lenick TG, Jiang X, Jin S, Dadmun MD, Zhao B. Macromolecules, 2011, 44: 3556-3566 CrossRef ADS Google Scholar

[20] Li F, Lu J, Kong X, Hyeon T, Ling D. Adv Mater, 2017, 29: 1605897 CrossRef PubMed Google Scholar

[21] Zhang L, Guo R, Yang M, Jiang X, Liu B. Adv Mater, 2007, 19: 2988-2992 CrossRef Google Scholar

[22] Qiao ZY, Ji R, Huang XN, Du FS, Zhang R, Liang DH, Li ZC. Biomacromolecules, 2013, 14: 1555-1563 CrossRef PubMed Google Scholar

[23] Wang SS, Yang GY. Chem Rev, 2015, 115: 4893-4962 CrossRef PubMed Google Scholar

[24] Proust A, Matt B, Villanneau R, Guillemot G, Gouzerh P, Izzet G. Chem Soc Rev, 2012, 41: 7605-7622 CrossRef PubMed Google Scholar

[25] Dolbecq A, Dumas E, Mayer CR, Mialane P. Chem Rev, 2010, 110: 6009-6048 CrossRef PubMed Google Scholar

[26] Song YF, Tsunashima R. Chem Soc Rev, 2012, 41: 7384-7402 CrossRef PubMed Google Scholar

[27] Shi N, Zhang J, Wan XH. Acta Polym Sin, 2016: 1645–1653. Google Scholar

[28] Binnemans K. Chem Rev, 2009, 109: 4283-4374 CrossRef PubMed Google Scholar

[29] Wei H, Shi N, Zhang J, Guan Y, Zhang J, Wan X. Chem Commun, 2014, 50: 9333-9335 CrossRef PubMed Google Scholar

[30] Wei H, Zhang J, Shi N, Liu Y, Zhang B, Zhang J, Wan X. Chem Sci, 2015, 6: 7201-7205 CrossRef PubMed Google Scholar

[31] O’Lenick TG, Jin N, Woodcock JW, Zhao B. J Phys Chem B, 2011, 115: 2870-2881 CrossRef PubMed Google Scholar

[32] Woodcock JW, Wright RAE, Jiang X, O’Lenick TG, Zhao B. Soft Matter, 2010, 6: 3325-3336 CrossRef ADS Google Scholar

[33] Fechler N, Badi N, Schade K, Pfeifer S, Lutz JF. Macromolecules, 2009, 42: 33-36 CrossRef ADS Google Scholar

[34] Han S, Hagiwara M, Ishizone T. Macromolecules, 2003, 36: 8312-8319 CrossRef ADS Google Scholar

[35] Ishizone T, Seki A, Hagiwara M, Han S, Yokoyama H, Oyane A, Deffieux A, Carlotti S. Macromolecules, 2008, 41: 2963-2967 CrossRef ADS Google Scholar

[36] Zhang J, Shi N, Zhang J, Guan Y, Qiao W, Wan X. Macromol Rapid Commun, 2017, 38. Google Scholar

[37] Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Müller AHE. Macromolecules, 2007, 40: 8361-8366 CrossRef ADS Google Scholar

  • Scheme 1

    Schematic illustration of structures of thermo- and pH- dual responsive hydrogel constructed by DyW10 and the triblock copolymer (color online).

  • Figure 1

    1H NMR spectrum of copolymer P(G119-co-M8)-b-PEO455-b-P(G119-co-M8) in CDCl3.

  • Figure 2

    (a) Turbidity curve of copolymer at λ=550 nm before and after adding DyW10 (cpolym=5.0 mg/mL, f+=0.55); (b) 1H NMR spectra of the copolymer in D2O at 25 and 50 °C (color online).

  • Scheme 2

    Synthesis of P(DEGMMA-co-DMAEMA)-b-PEO-b-P(DEGMMA-co-DMAEMA) [P(G-co-M)-b-PEO-b-P(G-co-M)] triblock copolymer.

  • Figure 3

    Plots of dynamic storage modulus G′ and loss modulus G′′ of the DyW10/copolymer complex (cpolym=12 wt%) as a function of temperature. The inserts are photographs of the sol and gel states of the mixtures (color online).

  • Figure 4

    (a) The SAXS patterns acquired for DyW10/copolymer complex at 25 and 50 °C; (b) corresponding distance distribution p(r) as a function of radius (r) at 50 °C (color online).

  • Figure 5

    (a) Temperature dependent emission spectra of the DyW10/copolymer complex; (b) temperature-dependent integrated photoluminescent intensity of the DyW10/copolymer complex; (c) temperature variable emission decay curves of the DyW10/copolymer complex; (d) reversible switch of the luminescence intensity of DyW10/copolymer complex by alternating heating/cooling treatment (color online).

  • Figure 6

    (a) Emission spectra of DyW10/copolymer complex before and after adding acid or base. Insert: reversible switch of the luminescence intensity of DyW10/copolymer complex by alternating acid/base treatment. (b) Decay curves of the DyW10/copolymer complex after an equivalent amount of acid and base treatment (color online).

  • Figure 7

    Plots of dynamic storage modulus G′ and loss modulus G′′ of DyW10/copolymer complex after acid treatment (cpolym=12 wt%) (color online).

  • Figure 8

    (a) The SAXS patterns obtained from the acid-added DyW10/copolymer complex; (b) corresponding distance distribution p(r) as a function of radius (r) at 60 °C (color online).

  • Figure 9

    Emission spectra of DyW10/copolymer complex after acid addition at 25 and 60 °C (color online).

  • Table 1   Summary of the luminescence decay intensity () of DyW/copolymer complex as a function of the decay time with the changing of the temperature

    Temperature (°C)

    Lifetime and its amplitude a)

    τ1 (μs)

    A1

    τ2 (μs)

    A2

    χ2

    DyW10 (aq)

    5.22

    1.000

    1.221

    25

    5.36

    0.259

    51.72

    0.741

    1.059

    30

    5.48

    0.213

    52.03

    0.787

    1.036

    35

    5.45

    0.152

    50.66

    0.848

    1.003

    40

    6.15

    0.084

    49.49

    0.916

    1.149

    45

    7.13

    0.097

    48.03

    0.903

    1.074

    The luminescence decay intensity I(t) as a function of the decay time t was fitted by the equation consisting of two exponential terms, I(t)=A1exp(‒t/τ1)+A2exp(‒t/τ2), where the amplitude of each lifetime component Ai represents the fractional contribution of the fluorophore in specific environment to the total fluorescent decay.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号