logo

POSS-embedded supramolecular hyperbranched polymers constructed from a 1→7 branching monomer with controllable morphology transitions

More info
  • ReceivedSep 13, 2017
  • AcceptedNov 1, 2017
  • PublishedDec 27, 2017

Abstract

The research on the supramolecular hyperbranched polymers (SHPs) that combines the advantages of supramolecular polymer and hyperbranched architecture has attracted considerable interests in many applications. Here we demonstrate a simple approach to prepare POSS-embedded supramolecular hyperbranched polymers (POSS-SHPs) with varied morphology and size by controlling monomer concentration and mixed solvents. The SHPs formations can further transfer into the core-shell structured micelles by addition of competitive guests based on the double supramolecular driving forces.


Funded by

National Natural Science Foundation of China(21504096,21674120,21474115)

MOST(2014CB932200)

“Young Thousand Talents” Program.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21504096, 21674120, 21474115), Ministry of Science and Technology of China (2014CB932200) and “Young Thousand Talents” Program.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Lehn JM. Science, 2002, 295: 2400-2403 CrossRef PubMed ADS Google Scholar

[2] Ma X, Tian H. Acc Chem Res, 2014, 47: 1971-1981 CrossRef PubMed Google Scholar

[3] Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. J Am Chem Soc, 2013, 135: 4765-4770 CrossRef PubMed Google Scholar

[4] Qin B, Zhang S, Song Q, Huang Z, Xu JF, Zhang X. Angew Chem Int Ed, 2017, 56: 7639-7643 CrossRef PubMed Google Scholar

[5] Dong S, Zheng B, Wang F, Huang F. Acc Chem Res, 2014, 47: 1982-1994 CrossRef PubMed Google Scholar

[6] Li SL, Xiao T, Lin C, Wang L. Chem Soc Rev, 2012, 41: 5950-5968 CrossRef PubMed Google Scholar

[7] Bai Y, Fan X, Tian W, Liu T, Yao H, Yang Z, Zhang H, Zhang W. Polym Chem, 2015, 6: 732-737 CrossRef Google Scholar

[8] Tian W, Li X, Wang J. Chem Commun, 2017, 53: 2531-2542 CrossRef PubMed Google Scholar

[9] Liu T, Wang S, Song Y, Li J, Yan H, Tian W. Polym Chem, 2017, 8: 1306-1314 CrossRef Google Scholar

[10] Wang X, Hu R, Zhao Z, Qin A, Tang BZ. Sci China Chem, 2016, 59: 1554-1560 CrossRef Google Scholar

[11] Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ. Nature, 2002, 417: 424-428 CrossRef PubMed ADS Google Scholar

[12] Moore AN, Hartgerink JD. Acc Chem Res, 2017, 50: 714-722 CrossRef PubMed Google Scholar

[13] Liu G, Chen P, Tang R, Li Z. Sci China Chem, 2016, 59: 1561-1567 CrossRef Google Scholar

[14] Wang Z, Zhang F, Wang Z, Liu Y, Fu X, Jin A, Yung BC, Chen W, Fan J, Yang X, Niu G, Chen X. J Am Chem Soc, 2016, 138: 15027-15034 CrossRef PubMed Google Scholar

[15] Webber MJ, Appel EA, Meijer EW, Langer R. Nat Mater, 2015, 15: 13-26 CrossRef PubMed ADS Google Scholar

[16] Ji X, Huang F. Sci China Chem, 2015, 58: 436-437 CrossRef Google Scholar

[17] Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C. Prog Polym Sci, 2014, 39: 235-249 CrossRef Google Scholar

[18] Hu J, Liu S. Sci China Chem, 2017, 60: 1153-1161 CrossRef Google Scholar

[19] Zhang D, Liu Y, Fan Y, Yu C, Zheng Y, Jin H, Fu L, Zhou Y, Yan D. Adv Funct Mater, 2016, 26: 7652-7661 CrossRef Google Scholar

[20] Chen CJ, Li DD, Wang HB, Zhao J, Ji J. Polym Chem, 2013, 4: 242-245 CrossRef Google Scholar

[21] Zhang J, Liu HJ, Yuan Y, Jiang S, Yao Y, Chen Y. ACS Macro Lett, 2013, 2: 67-71 CrossRef Google Scholar

[22] Dong R, Zhou L, Wu J, Tu C, Su Y, Zhu B, Gu H, Yan D, Zhu X. Chem Commun, 2011, 47: 5473-5475 CrossRef PubMed Google Scholar

[23] Wang X, Yang Y, Zhuang Y, Gao P, Yang F, Shen H, Guo H, Wu D. Biomacromolecules, 2016, 17: 2920-2929 CrossRef PubMed Google Scholar

[24] Yin GZ, Zhang WB, Cheng SZD. Sci China Chem, 2017, 60: 338-352 CrossRef Google Scholar

[25] Wang X, Yang Y, Gao P, Li D, Yang F, Shen H, Guo H, Xu F, Wu D. Chem Commun, 2014, 50: 6126-6129 CrossRef PubMed Google Scholar

[26] Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang WB, Yue K, Cheng SZD. Science, 2015, 348: 424-428 CrossRef PubMed ADS Google Scholar

[27] Wang X, Yang Y, Zuo Y, Yang F, Shen H, Wu D. Chem Commun, 2016, 52: 5320-5323 CrossRef PubMed Google Scholar

[28] Li D, Niu Y, Yang Y, Wang X, Yang F, Shen H, Wu D. Chem Commun, 2015, 51: 8296-8299 CrossRef PubMed Google Scholar

[29] Wang J, Li B, Wang X, Yang F, Shen H, Wu D. Langmuir, 2016, 32: 13706-13715 CrossRef PubMed Google Scholar

[30] Wang X, Wang J, Yang Y, Yang F, Wu D. Polym Chem, 2017, 8: 3901-3909 CrossRef Google Scholar

[31] Flory PJ. J Am Chem Soc, 1952, 74: 2718-2723 CrossRef Google Scholar

[32] Galantini L, Jover A, Leggio C, Meijide F, Pavel NV, Tellini VHS, Tato J́V́, Tortolini C. J Phys Chem B, 2008, 112: 8536-8541 CrossRef PubMed Google Scholar

  • Figure 1

    Synthetic approach to AB7 monomer (a) and POSS-SHPs (b) (color online).

  • Figure 2

    1H NMR spectrum (a), MALDI-TOF spectrum (b), TEM image (c), and MD simulation (d) for computational model of Ada-POSS-(CD)7 (color online).

  • Figure 3

    (a) 2D NOESY 1H NMR spectra of Ada-POSS-(CD)7 in d6-DMSO (5 mg/mL), inset (green frame) shows the NOE signals between the protons attributed to the Ada and CD group; (b) concentration dependence of specific viscosity for aqueous solutions ((25±0.2) °C) of Ada-POSS-(CD)7 (color online).

  • Figure 4

    TEM images (A), AFM images (B), and DLS profiles (C) of POSS-SHPs formations in aqueous solutions with various Ada-POSS-(CD)7 concentrations at 2 (a), 4 (b), 6 (c), and 8 mg/mL (d). Inset is higher magnification image (color online).

  • Figure 5

    TEM images (A) and DLS profiles (B) of the self-assemblies at 5 mg/mL in aqueous solutions (a), acetone-H2O mixtures (b), and acetone-H2O mixtures (c) after addition of Ada-Na. (C) Schematic representation of the possible morphology transition mechanism from POSS-SHPs formation to nanosized micelle in mixed solvents (color online).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号