logo

Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity

More info
  • ReceivedOct 4, 2017
  • AcceptedNov 7, 2017
  • PublishedJan 25, 2018

Abstract

Hierarchically nanostructured, porous TiO2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO2 adsorption as well as CO2 conversion. The TiO2(B) nanostructures exhibited marked photocatalytic activity for CO2 reduction to methane and methanol. Anatase TiO2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO2(B) than that of anatase TiO2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO2 under illumination over TiO2(B) photocatalyst.


Funded by

the National Basic Research Program of China(2013CB632402)

the National Natural Science Foundation of China(51320105001,21433007,51372190,21573170)

the Natural Science Foundation of Hubei Province(2015CFA001)

the Fundamental Research Funds for the Central Universities(WUT:,2015-III-034)

Innovative Research Funds of SKLWUT(2017-ZD-4)

the Discovery Early Career Researcher Award(DECRA)


Acknowledgment

This work was supported by the National Basic Research Program of China (2013CB632402), the National Natural Science Foundation of China (51320105001, 21433007, 51372190, 21573170), the Natural Science Foundation of Hubei Province (2015CFA001), the Fundamental Research Funds for the Central Universities (WUT: 2015-III-034), Innovative Research Funds of SKLWUT (2017-ZD-4) and the Discovery Early Career Researcher Award (DECRA) by Australian Research Council (DE160101488).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Ola O, Maroto-Valer MM. J Photochem Photobiol C-PhotoChem Rev, 2015, 24: 16-42 CrossRef Google Scholar

[2] Low J, Yu J, Ho W. J Phys Chem Lett, 2015, 6: 4244-4251 CrossRef PubMed Google Scholar

[3] Nikokavoura A, Trapalis C. Appl Surf Sci, 2017, 391: 149-174 CrossRef ADS Google Scholar

[4] Tu W, Zhou Y, Feng S, Xu Q, Li P, Wang X, Xiao M, Zou Z. Chem Commun, 2015, 51: 13354-13357 CrossRef PubMed Google Scholar

[5] Marszewski M, Cao S, Yu J, Jaroniec M. Mater Horiz, 2015, 2: 261-278 CrossRef Google Scholar

[6] Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Angew Chem Int Ed, 2013, 52: 7372-7408 CrossRef PubMed Google Scholar

[7] Li X, Wen J, Low J, Fang Y, Yu J. Sci China Mater, 2014, 57: 70-100 CrossRef Google Scholar

[8] Tahir M, Tahir B, Saidina Amin NA, Alias H. Appl Surf Sci, 2016, 389: 46-55 CrossRef ADS Google Scholar

[9] Sim LC, Leong KH, Saravanan P, Ibrahim S. Appl Surf Sci, 2015, 358: 122-129 CrossRef ADS Google Scholar

[10] Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277: 637-638 CrossRef ADS Google Scholar

[11] Low J, Cheng B, Yu J, Jaroniec M. Energy Storage Mater, 2016, 3: 24-35 CrossRef Google Scholar

[12] Mao J, Li K, Peng T. Catal Sci Technol, 2013, 3: 2481-2498 CrossRef Google Scholar

[13] Low J, Cheng B, Yu J. Appl Surf Sci, 2017, 392: 658-686 CrossRef ADS Google Scholar

[14] Dhakshinamoorthy A, Navalon S, Corma A, Garcia H. Energy Environ Sci, 2012, 5: 9217-9233 CrossRef Google Scholar

[15] Liu L, Li Y. Aerosol Air Qual Res, 2014, 14: 453-469 CrossRef Google Scholar

[16] Li H, Gao Y, Wu X, Lee PH, Shih K. Appl Surf Sci, 2017, 402: 198-207 CrossRef ADS Google Scholar

[17] Akple MS, Low J, Qin Z, Wageh S, Al-Ghamdi AA, Yu J, Liu S. Chin J Catal, 2015, 36: 2127-2134 CrossRef Google Scholar

[18] Zhao H, Chen J, Rao G, Deng W, Li Y. Appl Surf Sci, 2017, 404: 49-56 CrossRef ADS Google Scholar

[19] Liu L, Zhao H, Andino JM, Li Y. ACS Catal, 2012, 2: 1817-1828 CrossRef Google Scholar

[20] Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Adv Mater, 2017, 29: 1601694 CrossRef PubMed Google Scholar

[21] Yu J, Low J, Xiao W, Zhou P, Jaroniec M. J Am Chem Soc, 2014, 136: 8839-8842 CrossRef PubMed Google Scholar

[22] Liu B, Khare A, Aydil ES. ACS Appl Mater Interf, 2011, 3: 4444-4450 CrossRef PubMed Google Scholar

[23] Li W, Liu C, Zhou Y, Bai Y, Feng X, Yang Z, Lu L, Lu X, Chan KY. J Phys Chem C, 2008, 112: 20539-20545 CrossRef Google Scholar

[24] Wang P, Xie T, Wang D, Dong S. J Colloid Interf Sci, 2010, 350: 417-420 CrossRef PubMed ADS Google Scholar

[25] Chakraborty AK, Qi Z, Chai SY, Lee C, Park SY, Jang DJ, Lee WI. Appl Catal B-Environ, 2010, 93: 368-375 CrossRef Google Scholar

[26] Xiang G, Li T, Zhuang J, Wang X. Chem Commun, 2010, 46: 6801-6803 CrossRef PubMed Google Scholar

[27] Ren Y, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG. Angew Chem Int Ed, 2012, 51: 2164-2167 CrossRef PubMed Google Scholar

[28] Liu S, Jia H, Han L, Wang J, Gao P, Xu D, Yang J, Che S. Adv Mater, 2012, 24: 3201-3204 CrossRef PubMed Google Scholar

[29] Li X, Yu J, Jaroniec M. Chem Soc Rev, 2016, 45: 2603-2636 CrossRef PubMed Google Scholar

[30] Fu J, Zhu B, Jiang C, Cheng B, You W, Yu J. Small, 2017, 13: 1603938 CrossRef PubMed Google Scholar

[31] Di T, Zhu B, Cheng B, Yu J, Xu J. J Catal, 2017, 352: 532-541 CrossRef Google Scholar

[32] Jin J, He T. Appl Surf Sci, 2017, 394: 364-370 CrossRef ADS Google Scholar

[33] Tahir M, Tahir B. Appl Surf Sci, 2016, 377: 244-252 CrossRef ADS Google Scholar

[34] Chen C, Hu X, Hu P, Qiao Y, Qie L, Huang Y. Eur J Inorg Chem, 2013, 2013: 5320-5328 CrossRef Google Scholar

[35] Akple MS, Low J, Liu S, Cheng B, Yu J, Ho W. J CO Util, 2016, 16: 442-449 CrossRef Google Scholar

[36] Xia P, Zhu B, Yu J, Cao S, Jaroniec M. J Mater Chem A, 2017, 5: 3230-3238 CrossRef Google Scholar

[37] Wang W, Xu D, Cheng B, Yu J, Jiang C. J Mater Chem A, 2017, 5: 5020-5029 CrossRef Google Scholar

[38] Cychosz KA, Guillet-Nicolas R, García-Martínez J, Thommes M. Chem Soc Rev, 2017, 46: 389-414 CrossRef PubMed Google Scholar

[39] Jin J, Yu J, Guo D, Cui C, Ho W. Small, 2015, 11: 5262-5271 CrossRef PubMed Google Scholar

[40] He Z, Tang J, Shen J, Chen J, Song S. Appl Surf Sci, 2016, 364: 416-427 CrossRef ADS Google Scholar

[41] Su W, Zhang J, Feng Z, Chen T, Ying P, Li C. J Phys Chem C, 2008, 112: 7710-7716 CrossRef Google Scholar

[42] Ye L, Mao J, Peng T, Zan L, Zhang Y. Phys Chem Chem Phys, 2014, 16: 15675-15680 CrossRef PubMed ADS Google Scholar

[43] Collins SE, Baltanás MA, Bonivardi AL. J Phys Chem B, 2006, 110: 5498-5507 CrossRef PubMed Google Scholar

[44] Wu W, Bhattacharyya K, Gray K, Weitz E. J Phys Chem C, 2013, 117: 20643-20655 CrossRef Google Scholar

[45] Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y. ACS Catal, 2016, 6: 1097-1108 CrossRef Google Scholar

[46] Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH. Chem Eng J, 2011, 170: 471-481 CrossRef Google Scholar

[47] Mao J, Ye L, Li K, Zhang X, Liu J, Peng T, Zan L. Appl Catal B-Environ, 2014, 144: 855-862 CrossRef Google Scholar

[48] Liao LF, Lien CF, Shieh DL, Chen MT, Lin JL. J Phys Chem B, 2002, 106: 11240-11245 CrossRef Google Scholar

[49] Araña J, Doña-Rodrı́guez JM, Cabo CG, González-Dı́az O, Herrera-Melián JA, Pérez-Peña J. Appl Catal B-Environ, 2004, 53: 221-232 CrossRef Google Scholar

[50] Araña J, Martı́nez Nieto JL, Herrera Melián JA, Doña Rodrı́guez JM, González Dı́az O, Pérez Peña J, Bergasa O, Alvarez C, Méndez J. Chemosphere, 2004, 55: 893-904 CrossRef PubMed Google Scholar

  • Figure 1

    FESEM images (a, b), TEM (c) and HRTEM (d) images of porous hierarchical TiO2(B) particles (color online).

  • Figure 2

    FESEM pictures of the TiO2 precursor and the products obtained after heat treatment at different temperatures.

  • Figure 3

    (a) TG-DTA curves of the TiO2 precursor in air; (b) FTIR spectra of the TiO2 precursor, TiO2(B) and TiO2(A); (c) XRD pattern of the TiO2(B) and TiO2(A) and corresponding PDF standard cards; (d) Raman spectra of the TiO2 precursor, TiO2(B) and TiO2(A) (color online).

  • Figure 4

    XPS survey spectra (a), high-resolution X-ray photoelectron spectra of Ti 2p (b) and O 1s (c); nitrogen adsorption-desorption isotherms and the corresponding pore-size distribution curves (inset) (d), UV-Vis diffuse reflection spectra (e), Mott-Schottky plots (f) of TiO2(B) and TiO2(A) (color online).

  • Figure 5

    (a) CO2 adsorption curves of TiO2(B) and TiO2(A); (b) CH4 and CH3OH generated after the first-hour illumination upon TiO2(B), TiO2(A) and P25. Time courses of photocatalytic CH4 and CH3OH production over TiO2(B) (c) and TiO2(A) (d) (color online).

  • Figure 6

    The MS signals of the produced CH4 over sample TiO2(B) using 12CO2 and 13CO2 as carbon source, respectively (color online).

  • Figure 7

    Transient photocurrent responses for TiO2(B) and TiO2(A) under LED light irradiation (λ=365 nm) in 0.5 M Na2SO4 aqueous solution (color online).

  • Figure 8

    In-situ FTIR spectra of the TiO2(B) sample: (1) without CO2 gas in dark, (2–5) exposure to mixture of CO2 and H2O vapor in dark taken every 15 min interval, (6–9) exposure to mixture of CO2 and H2O under LED (λ=365 nm) irradiation taken every 15 min interval (color online).

  • Table 1   Specific surface area, pore volume, pore diameter and the corresponding CO uptake ability of TiO(B) and TiO(A)

    Sample

    CT (°C)

    SBET(m2 g−1)

    PV (cm3 g−1)

    APS (nm)

    CA (mmol g−1)

    TiO2(B)

    350

    142

    0.34

    9.5

    0.42

    TiO2(A)

    650

    73

    0.28

    15.2

    0.25

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号