the National Natural Science Foundation of China(51672282,21373238)
the major State Basic Research Program of China(2013CB934000)
and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010101)
This work was supported by the National Natural Science Foundation of China (51672282, 21373238), the Major State Basic Research Program of China (2013CB934000), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010101).
The authors declare that they have no conflict of interest.
[1] Titirici MM, Antonietti M. Chem Soc Rev, 2010, 39: 103-116 CrossRef PubMed Google Scholar
[2] Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M. Nat Mater, 2015, 14: 763-774 CrossRef PubMed ADS Google Scholar
[3] Wang GH, Hilgert J, Richter FH, Wang F, Bongard HJ, Spliethoff B, Weidenthaler C, Schüth F. Nat Mater, 2014, 13: 293-300 CrossRef PubMed ADS Google Scholar
[4] Wei F, Liu J, Zhu YN, Wang XS, Cao CY, Song WG. Sci China Chem, 2017, 60: 1236-1242 CrossRef Google Scholar
[5] Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Nat Commun, 2015, 6: 7221 CrossRef PubMed Google Scholar
[6] Roberts AD, Li X, Zhang H. Chem Soc Rev, 2014, 43: 4341-4356 CrossRef PubMed Google Scholar
[7] Valle-Vigón P, Sevilla M, Fuertes AB. Chem Mater, 2010, 22: 2526-2533 CrossRef Google Scholar
[8] Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Nat Nanotech, 2014, 9: 618-623 CrossRef PubMed ADS Google Scholar
[9] Stein A, Wilson BE, Rudisill SG. Chem Soc Rev, 2013, 42: 2763-2803 CrossRef PubMed Google Scholar
[10] Fuertes AB, Valle-Vigón P, Sevilla M. Chem Commun, 2012, 48: 6124-6126 CrossRef PubMed Google Scholar
[11] Wang Z, Li F, Stein A. Nano Lett, 2007, 7: 3223-3226 CrossRef PubMed ADS Google Scholar
[12] Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF. Angew Chem Int Ed, 2012, 51: 3591-3595 CrossRef PubMed Google Scholar
[13] Liu J, Yang T, Wang DW, Lu GQM, Zhao D, Qiao SZ. Nat Commun, 2013, 4: 2798 CrossRef Google Scholar
[14] White RJ, Tauer K, Antonietti M, Titirici MM. J Am Chem Soc, 2010, 132: 17360-17363 CrossRef PubMed Google Scholar
[15] Wu Z, Wu WD, Liu W, Selomulya C, Chen XD, Zhao D. Angew Chem Int Ed, 2013, 52: 13764-13768 CrossRef PubMed Google Scholar
[16] Bin DS, Chi ZX, Li Y, Zhang K, Yang X, Sun YG, Piao JY, Cao AM, Wan LJ. J Am Chem Soc, 2017, 139: 13492-13498 CrossRef PubMed Google Scholar
[17] Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQM. Angew Chem Int Ed, 2011, 50: 5947-5951 CrossRef PubMed Google Scholar
[18] Irisarri E, Ponrouch A, Palacin MR. J Electrochem Soc, 2015, 162: A2476-A2482 CrossRef Google Scholar
[19] Li Z, Hu X, Xiong D, Li B, Wang H, Li Q. Electrochim Acta, 2016, 219: 339-349 CrossRef Google Scholar
[20] Wang X, Kong D, Wang B, Song Y, Zhi L. Sci China Chem, 2016, 59: 713-718 CrossRef Google Scholar
[21] Li S, Wang M, Lian Y. Sci China Chem, 2016, 59: 405-411 CrossRef Google Scholar
[22] Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN. Nano Lett, 2011, 11: 5165-5172 CrossRef PubMed ADS Google Scholar
[23] Simon P, Gogotsi Y. Nat Mater, 2008, 7: 845-854 CrossRef PubMed ADS Google Scholar
[24] Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L. Int J Hydrogen Energy, 2009, 34: 4889-4899 CrossRef Google Scholar
[25] Pernak J, Skrzypczak A, Lota G, Frackowiak E. Chem Eur J, 2007, 13: 3106-3112 CrossRef PubMed Google Scholar
[26] Fang B, Binder L. Electrochim Acta, 2007, 52: 6916-6921 CrossRef Google Scholar
[27] Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM. Carbon, 2006, 44: 216-224 CrossRef Google Scholar
[28] Xu B, Wu F, Chen S, Zhang C, Cao G, Yang Y. Electrochim Acta, 2007, 52: 4595-4598 CrossRef Google Scholar
[29] Katakabe T, Kaneko T, Watanabe M, Fukushima T, Aida T. J Electrochem Soc, 2005, 152: A1913 CrossRef Google Scholar
[30] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. J Phys Chem C, 2009, 113: 13103-13107 CrossRef Google Scholar
[31] Wang H, Hao Q, Yang X, Lu L, Wang X. Electrochem Commun, 2009, 11: 1158-1161 CrossRef Google Scholar
Figure 1
TEM images of the 3-AF resin spheres synthesized in ethanol/water solvent (
Figure 2
TEM images of the 3-AF resin spheres synthesized in ethanol/water solvent with different quotient of ethanol at room temperature.(a) Ethanol/water (
Figure 3
TEM images of the 3-AF resin spheres synthesized in
Figure 4
TEM images of 3-AF resin spheres prepared in the
Figure 5
TEM images of 3-AF resin spheres prepared in the
Figure 6
Information of the BPC spheres. (a) TEM image of the BPC spheres; (b) XRD patterns of the BPC spheres, labelled with the (002) peak and (100) peak of graphite; (c) Raman spectrum of the BPC spheres; (d) nitrogen adsorption and desorption isotherms (inset: size distribution curves) of the BPC spheres; (e) STEM image of the BPC spheres; (f, g) elemental mapping of the BPC spheres (color online).
Figure 7
Electrochemical performance of the BPC based super capacitors. (a) Cyclic voltammetry curves tested at different scan rates; (b) charge/discharge curves obtained in galvanostatic tests at different current densities; (c) cycling performance tested at
Precipitation time (min) | |
0 mL/ | 0.5 |
2 mL/ | 0.75 |
3 mL/ | 1.2 |
4 mL/ | 1.5 |
10 mL/ | 5 |
Ethanol/water ( | Precipitation time (min) |
0 mL/ | 0.5 |
4 mL/ | 1 |
6 mL/ | 1.3 |
10 mL/ | 4 |
12 mL/ | 7.5 |
Scan rate (mV/s) | Specific capacity (F/g) |
1 | 145.1 |
2 | 137.2 |
5 | 128.5 |
10 | 121.6 |
20 | 113.4 |
50 | 99.8 |
100 | 85.4 |
Current density (A/g) | Specific capacity (F/g) |
0.1 | 162.7 |
0.2 | 128.9 |
0.5 | 105.8 |
1 | 101.5 |
2 | 97.2 |
5 | 90.7 |
Material | Workingvoltage (V) | Specific capacitance (mA h/g) |
Our work | 1.0 | 162.7 |
Activated carbon (AC) | 3.5 | 40 |
Carbon aerogels | 3.0 | 160 |
Mesoporous carbon | 0.9 | 180 |
AC fiber cloth | 1.0 | 208 |
Carbon nanotubes | 2.3 | 50 |
Graphene | 1.0 | 205 |
PANI fibers | 0.45 | 216 |
Graphene coated PANIfibers | 0.45 | 531 |